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Preface

The goals were to provide modules and to eliminate as-
signment altogether.

—Alan Kay, History of Smalltalk

Diagrams

Draw them by hand. Diagrams are the programmer’s doodling lan-
guage. Using a tool that draws them for you from the existing code defeats
the purpose. Assigning students to do so defeats the purpose of learning
to doodle.

Stuff

Conventional text books at this level present object-oriented program-
ming as an extension of imperative programming. The reasoning is that
computations interact with the real world where physical objects change
their state all the time. For example, people get sick and become patients;
balls drop from a hand and change location; and so on. Therefore, the rea-
soning goes, computational objects, which represent physical objects, en-
capsulate and hide the state of the world for which they are responsible
and, on method calls, they change state. Naturally, people begin to express
computations as sequences of assignment statements that change the value
of variables and fields (instance variables).

We disagree with this perspective and put classes and the design of
classes into the center of our approach. In “How to Design Programs” we
defined classes of data. As we developed larger and larger programs, it be-
came clear that the design of a program requires the introduction of many
classes of data and the development of several functions for each class. The
rest is figuring out how the classes of data and their functions related to
each other.

In this volume, we show students how object-oriented programming



languages such as C# and Java support this effort with syntactic constructs.
We also refine the program design discipline.

What you will learn

What you won’t learn

Java.
It is a good idea to study the programming language that you use on a

daily basis and to learn as much as possible about it. We strongly believe,
however, that it is a bad idea to teach the details of any programming lan-
guage in a course. Nobody can predict which programming language you
will use. Therefore, time in a course is better spent on studying the general
principles of program design rather than the arcane principles of any given
programming language.

Why Java?

Why ProfessorJ?

ProfessorJ is not Java; it is a collection of relatively small, object-oriented
programming languages made up for teaching the design of classes, i.e.,
the essence of object-oriented programming. For the most part, they are
subsets of Java but, to support the pedagogy of this book, they also come
with constructs for playing with examples and testing methods.

ProfessorJ is useful for the first four chapters. After that, it is essential
that you switch to a full-fledged programming language and an industrial
programming environment. This may mean switching to something like
Java with Eclipse or C# with Microsoft’s Visual Studio.

Acknowledgments

Daniel P. Friedman, for asking the first author to co-author A Little Java,
A Few Patterns (also MIT Press);

Richard Cobbe for many nagging questions on Java
typos: David van Horn
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Purpose and Background

The goal of this chapter is to develop data modeling skills.
We assume that students have understood data definitions in Parts I, II,

and III of How to Design Programs. That is, they should understand what it
means to represent atomic information (numbers, strings), compounds of
information (structures), unions of information (unions), and information
of arbitrary size (lists, trees); ideally students should also understand that
a program may rely on an entire system of interconnected data definitions
(family trees, files and folders).

In the end, students should be able to design a system of classes to rep-
resent information. In particular, when given a system of classes and a
piece of information, they should be able to create objects and represent
this information with data; conversely, given an instance of a class in the
system, they should be able to interpret this object as information in the
“real” world.



6 Preface

TODO

— add examples that initialize fields between sections 1 and LAST
— add exercises that ask students to represent something with classes

that isn’t completely representable; they need to recognize what to omit
when going from information to data. do it early in the chapter.

— add modeling exercise to Intermezzo 1 that guides students through
the process of modeling Java syntax (information) via Java classes (data)
start with an exercise that says

class ClassRep String name; ClassRep(String name) this. name = name;

and ask them to translate a class with fields and one without.



I The Varieties of Data

In How to Design Programs, we learned that the systematic design of a pro-
gram requires a solid understanding of the problem information. The first
step of the design process is therefore a thorough reading of the problem
statement, with the goal of identifying the information that the requested
program is given and the information that it is to compute. The next step is
to represent this information as data in the chosen programming language.
More precisely, the programmer must describe the classes of all possible
input data and all output data for the program. Then, and only then, it is
time to design the program itself.

ProfessorJ:
BeginnerThus, when you encounter a new programming language, your first

goal is to find out how to represent information in this language. In How to
Design Programs you used an informal mixture of English and Scheme con-
structors. This book introduces one of the currently popular alternatives:
programming in languages with a notation for describing classes of data
within the program. Here the word “class” is short for “collection” in the
spirit in which we used the word in How to Design Programs; the difference
is that the designers of such languages have replaced “data” with “object,”
and that is why these languages are dubbed object-oriented.

Of course, for most problems describing a single class isn’t enough. In-
stead, you will describe many classes, and you will write down how the
classes are related. Conversely, if you encounter a bunch of related classes,
you must know how to interpret them in the problem space. Doing all
this takes practice—especially when data descriptions are no longer infor-
mal comments but parts of the program—and that is why we dedicate the
entire chapter to the goal of designing classes and describing their rela-
tionships. For motivational previews, you may occasionally want to take a
peek at corresponding sections of chapter II, which will introduce functions
for similar problems and classes as the following sections.
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1 Primitive Forms of Data

Like Scheme, Java provides a number of built-in atomic forms of data with
which we represent primitive forms of information. Here we use four of
them: int, double, boolean, and String.1

How to Design Programs uses number to represent numbers in the prob-
lem domain. For integers and rational numbers (fractions or numbers with
a decimal point), these representations are exact. When we use Java—and
most other programming languages—we give up even that much preci-
sion. For example, while Java’s int is short for integer, it doesn’t truly in-
clude all integers—not even up to the size of a computer. Instead, it means
the numbers

from − 2147483648 to 2147483647 .

If an addition of two ints produces something that exceeds 2147483647,
Java finds a good enough2 number in the specified range to represent the re-
sult. Still, for our purposes, int is often reasonable for representing integers.

In addition to exact integers, fractions, and decimals, How to Design Pro-
grams also introduced inexact numbers. For example, the square root func-
tion (sqrt) produces an inexact number when given 2. For Java and similar
languages, double is a discrete collection of rational numbers but is used
to represent the real numbers. That is, it is roughly like a large portion of
the real number line but with large gaps. If some computation with real
numbers produces a number that is in the gap between two doubles, Java
somehow determines which of the two is a good enough approximation to
the result and takes it. For that reason, computations with doubles are in-
herently inaccurate, but again, for our purposes we can think of doubles as
a strange form of real numbers. Over time, you will learn when to use ints
and when to use doubles to represent numeric information.

As always, the boolean values are true and false. We use them to repre-
sent on/off information, absence/presence information, and so on.

Finally, we use Strings to represent symbolic information in Java. Sym-
bolic information means the names of people, street addresses, pieces of
conversations, and similarly symbolic information. For now, a String is a
sequence of keyboard characters enclosed in quotation marks; e.g.,

1For Java, String values are really quite different from integers or booleans. We ignore
the difference for now.

2Java uses modular arithmetic; other languages have similar conventions.
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"bob"
"#$%ˆ&"
"Hello World"
"How are U?"
"It is 2 good to B true."

Naturally, a string may not include a quotation mark, though there are
ways to produce Strings that contain this character, too.

2 Classes

For many programming problems, we need more than atomic forms of data
to represent the relevant information. Consider the following problem:

. . . Develop a program that keeps track of coffee sales at a spe-
cialty coffee seller. The sales receipt must include the kind of
coffee, its price (per pound), and its weight (in pounds). . . .

The program may have to deal with hundreds and thousands of sales. Un-
less a programmer keeps all the information about a coffee sale together in
one place, it is easy to lose track of the various pieces. More generally, there
are many occasions when a programmer must represent several pieces of
information that always go together.

Our sample problem suggests that the information for a coffee sale con-
sists of three (relevant) pieces: the kind of coffee, its price, and its weight.
For example, the seller may have sold

1. 100 pounds of Hawaiian Kona at $20.95/pound;

2. 1,000 pounds of Ethiopian coffee at $8.00/pound; and

3. 1,700 pounds of Colombian Supreme at $9.50/pound.

In How to Design Programs, we would have used a class of structures to
represent such coffee sales:

(define-struct coffee (kind price weight))
;; Coffee (sale) is:
;; — (make-coffee String Number Number)

The first line defines the shape of the structure and operations for creating
and manipulating structures. Specifically, the definition says that a coffee
structure has three fields: kind, price, and weight. Also, the constructor is
called make-coffee and to get the values of the three fields, we can use the
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functions coffee-kind, coffee-price, and coffee-weight. The second and third
line tells us how to use this constructor; it is applied to a string and two
numbers:

(make-coffee "Hawaiian Kona" 20.95 100)
(make-coffee "Ethiopian" 8.00 1000)
(make-coffee "Colombian Supreme" 9.50 1)

Note the use of ordinary numbers, which in Beginning Student Scheme
denote precisely the decimal numbers written down.

In Java, we define the CLASS in figure 1 for the same purpose. The left
column of the figure shows what such a class definition looks like. The first
line is a Java-style end-of-line comment, spanning the rest of the line; the
slashes are analogous to “;;” in Scheme. The second line

class Coffee {

announces a class definition. The name of the class is Coffee. The opening
brace “{” introduces the items that belong to the class. The next three lines

String kind;
int price; // cents per pound
int weight; // pounds

state that an element of the Coffee class (think collection for the moment)
has three FIELDs. Their names are kind, price, and weight. The left of each
field declaration specifies the type of values that the field name represents.
Accordingly, kind stands for a String and price and weight are ints.

The two lines for price and weight definitions end with comments, indi-
cating which monetary and physical units that we use for price and weight.
Valuating prices in integer cents is good practice because Java’s calculations
on integers are accurate as long as we know that the numbers stay in the
proper interval.3

The next four lines in Coffee define the CONSTRUCTOR of the class:

Coffee(String kind, int price, int weight) {
this.kind = kind;
this.price = price;
this.weight = weight;
}

3If you wish to design programs that deal with numbers properly, you must study the
principles of numerical computing.
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// the receipt for a coffee sale
class Coffee {

String kind;
int price; // cents per pound
int weight; // pounds

Coffee(String kind, int price, int weight) {
this.kind = kind;
this.price = price;
this.weight = weight;
}
}

Coffee

String kind
int price [in cents per pound]
int weight [in pounds]

Figure 1: A class definition and a class diagram

Unlike Scheme, Java doesn’t define this constructor automatically. Instead,
the programmer must add one manually. For now, we use the following
“cookie-cutter” approach to defining constructors:

1. A constructor’s body starts with an opening brace ({).

2. The parameters of a constructor look like the fields, separated by
commas (“,”).

3. Its body is a semicolon-separated (“;”) series of “equations” of the
shape4 “this. fieldname = fieldname;” and there are as many “equa-
tions” as fields.

4. The last line of a constructor body is a closing brace (}).

The last line of the class definition is }, closing off the class definition.

Even though a Java data representation looks more complex now than
a corresponding Scheme data definition, the two are actually equivalent. In
How to Design Programs, we used a structure definition with a data definition
to describe (in code and in English) how a piece of data represents some in-
formation. Here we combine the two into a single class definition. The only
extra work is the explicit definition of the constructor, which define-struct

introduces automatically. Can you think of situations when the ability to
define your own constructor increases your programming powers?

4No, they are not really equations, they just look like that.
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After we have defined a class, it is best to translate some sample pieces
of information into the chosen representation. This tests whether the de-
fined class is adequate for representing some typical problem information
and, later on, we can use these examples to test our program(s). For exam-
ple, to create an object of the Coffee class, you apply the constructor to as
many values as there are parameters:

new Coffee("Hawaiian Kona",2095,100)

The notation differs a bit from Scheme; here the three values are enclosed
in parentheses and separated by commas.5

The application of the constructor creates an INSTANCE—also known as
an OBJECT—of the Coffee class. Here we obtain the first sample of informa-
tion for our problem, that is, the sale of 100 pounds of Kona for US c 2095
per pound. The other two samples have similar translations:

new Coffee("Ethiopian", 800, 1000)

and

new Coffee("Colombia Supreme", 950, 1)

Finally, before we move on to a second example, take a look at the right
side of figure 1. It is a pictorial illustration of the Coffee class, which is useful
because of the notational overhead for Java’s class definition. The rectan-
gle has two pieces. The upper portion names the class; the lower portion
lists the fields and their type attributes. This picture is called a CLASS DI-
AGRAM.6 These diagrams are particularly useful while you analyze prob-
lems and for discussions on how to represent information as data. You will
encounter many of them in this book.

Here is another excerpt from a typical programming problem:

. . . Develop a program that helps you keep track of daily . . .

The word “daily” implies you are working with many dates. One date is
described with three pieces of information: a day, a month, and a year.

In Java, we need a class with three fields. We name the class Date and
the fields day, month, and year. Using ints to count days, months, and years
is natural, because that’s what people do. This suggests the class diagram
and the class definition in figure 2.

Let’s look at some instances of Date:

5This mimics ordinary mathematical notation for functions of several arguments.
6Work on object-oriented languages has produced a number of diagram languages. Our

class diagrams are loosely based on the Unified Modeling Language (UML).
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Date

int day
int month
int year

// calendar dates
class Date {

int day;
int month;
int year;

Date(int day, int month, int year) {
this.day = day;
this.month = month;
this.year = year;
}
}

Figure 2: Representing dates

1. new Date(5, 6, 2003) stands for June 5, 2003;

2. new Date(6, 6, 2003) stands for June 6, 2003; and

3. new Date(23, 6, 2000) stands for June 23, 2000.

Of course, we can also write new Date(45, 77, 2003). This expression creates
an instance of Date, but not one that corresponds to a true calendar date.7

Let’s take a look at a third problem statement:

. . . Develop a GPS-based navigation program for cars. The GPS
device feeds the program with the current location at least once
a second. The location is given as latitude and longitude.

Examples:

1. latitude 33.5, longitude 86.8;

2. latitude 40.2, longitude 72.4; and

3. latitude 49.0, longitude 110.3.

. . .

The relevant information is a called a GPS location.

7Recall the question on page 2 suggesting that a constructor can perform additional
tasks. For Date, your constructor could check whether the dates make sense or whether
it is a valid date in the sense of some (given) calendar. Explore Java’s Date class via on-line
resources.
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Location

double lattitude [in degrees]
double longitude [in degrees]

// GPS locations
class GPSLocation {

double latitude; // degrees ;
double longitude; // degrees

GPSLocation(double latitude, double longitude) {
this.latitude = latitude;
this.longitude = longitude;
}
}

Figure 3: Representing navigations in a GPS

A class for GPS locations needs two fields: one for latitude and one for
longitude. Since both are decimal numbers that are approximate anyway,
we use doubles to represent them. Figure 3 contains both the class diagram
and the class definition. As for turning data into information (and vice
versa) in this context, see exercise 2.1.

Ball

int x
int y
int RADIUS

// moving balls on a pool table
class Ball {

int x;
int y;
int RADIUS = 5;

Ball(int x, int y) {
this.x = x;
this.y = y;
}
}

Figure 4: Representing pool balls

On occasion, a class describes objects that all share an attribute:

. . . Develop a simulation program for balls on a pool table. . . .

Clearly, we need a class to describe the collection of balls. Movement on a
two-dimensional surface suggests that a ball object includes two fields, one
per coordinate. In addition, the balls also need a radius, especially if the
program is to compute bounces between balls or if it is supposed to draw
the balls.
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Now the radius of these balls is going to stay the same throughout the
simulation, while their coordinates constantly change. To express this dis-
tinction and to simplify the creation of instances of Ball, a programmer adds
an initialization “equation” directly to a field declaration: see RADIUS in
figure 4. By convention, we use uppercase letters for the names of fields to
indicate that they are constant, shared attributes.

If a field comes with an initialization “equation”, the constructor does
not contain an equation for that field. Thus, the Ball constructor consumes
two values, x and y, and contains two “equations:” one for x and one for
y. To create instances of Ball, you can now write expressions such as new
Ball(10,20), which produces an object with three attributes: x with value
10; y with value 20; and RADIUS with value 5. Explore the creation of such
objects in the interactions window.

// collect examples of coffee sales
class CoffeeExamples {

Coffee kona = new Coffee("Kona",2095,100);
Coffee ethi = new Coffee("Ethiopian", 800, 1000);
Coffee colo = new Coffee("Colombian", 950, 20);

CoffeeExamples() { }
}

Figure 5: An example class

ProfessorJ:
Examples

Before moving on, let’s briefly turn to the administration of examples.
A good way to keep track of examples is to create a separate class for them.
For example, figure 5 shows how to collect all the sample instances of Coffee
in a single Examples class. As you can see, all fields are immediately initial-
ized via “equations” and the constructor has neither parameters nor con-
structor “equations.” Creating an instance of the CoffeeExamples class also
creates three instances of the Coffee class, which ProfessorJ’s interactions
window visualizes immediately so that you can inspect them. Of course,
such example classes thus introduce a concept that we haven’t covered yet:
objects that contain objects. The next section is all about this idea.

2.1 Finger Exercises on Plain Classes

Exercise 2.1 Formulate the examples of information from the GPS problem
as instances of GPSLocation.
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What is the meaning of new GPSLocation(42.34,71.09) in this context?
Why does this question (as posed) not make any sense?

If we tell you that the first number is associated with north and the
second one with west, can you make sense out of the question? Can you
find this place on a globe? On a map of the USA?

Exercise 2.2 Take a look at this problem statement:

. . . Develop a program that assists bookstore employees. For
each book, the program should track the book’s title, its price,
its year of publication, and the author’s name. . . .

Develop an appropriate class diagram (by hand) and implement it with a
class. Create instances of the class to represent these three books:

1. Daniel Defoe, Robinson Crusoe, $15.50, 1719;

2. Joseph Conrad, Heart of Darkness, $12.80, 1902;

3. Pat Conroy, Beach Music, $9.50, 1996.

What does new Book("D. P. Friedman","The Little LISPer",900,1974) mean?
Does the question make sense? What do you need to know to interpret this
piece of data?

Exercise 2.3 Add a constructor to the following partial class definition and
draw the class diagram (by hand):

// represent computer images
class Image {

int height; // pixels
int width; // pixels
String source; // file name
String quality; // informal
. . .
}

The class definition was developed for this problem statement:

. . . Develop a program that creates a gallery from image de-
scriptions that specify the height, width, and name of the source
file, plus some additional information about their quality. . . .
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Explain what the expressions mean in the problem context:

new Image(5, 10, "small.gif", "low")
new Image(120, 200, "med.gif", "low")
new Image(1200, 1000, "large.gif", "high") .

Suppose the web designer decides that the Image class should also spec-
ify to which gallery the images belong so that functions for this class of data
have the information handy. Modify the class definition appropriately. As-
sume that the gallery is the same for all instances of Image.

Automobile

String model
int price [in dollars]
double mileage [in miles per gallon]
boolean used

Figure 6: A class diagram for automobiles

Exercise 2.4 Translate the class diagram in figure 6 into a class definition.
Also create instances of the class.

Exercise 2.5 Create three instances of the following class:

// introducing the concept of gravity
class Apple {

int x;
int y;
int RADIUS = 5;
int G = 10; // meters per second square

Apple(int x, int y) {
this.x = x;
this.y = y;
}
}

How many attributes describe each instance? How many arguments does
the constructor consume?
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2.2 Designing Classes

This first section on classes suggests that the design of a class proceeds in
three steps:

1. Read the problem statement. Look for statements that mention or list
the attributes of the objects in your problem space. This tells you how
many fields you need for the class definition and what information
they represent. Write down your findings as a class diagram because
they provide a quick overview of classes, especially when you are
dealing with many classes or when you return to the problem in a
few months from now.

2. Translate the class diagram into a class definition, adding a purpose
statement to each class. The purpose statement should explain what
information the instance of the class represent (and how).

This translation is mostly mechanical. Only one part needs your full
attention: the decision whether a field should have the same value for
all instances of this class. If so, use an initialization equation with the
field; otherwise, add the field as a parameter to the constructor and
add an equation of the shape this.field = field to the constructor.

3. Obtain examples of information and represent them with instances
of the class. Conversely, make up instances of the class and interpret
them as information.

Warning: Keep in class that some data examples have no explanation
in the problem space. You may wish to warn future readers of your
code about such instances with a comment.

This design recipe for creating classes corresponds to the first step in
the design recipe of How to Design Programs. There, we said that all designs
begin with a thorough understanding of the classes of data that a prob-
lem statement describes. The resulting descriptions were informal, and we
dealt with simple forms of data. Here we use the programming language
itself (Java) to describe classes of data, making this step much more rigor-
ous than before. The rest of this chapter introduces complex forms of data
and refines this design recipe.
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3 Class References, Object Containment

What we have seen so far is that a class in Java is somewhat like a structure
in Scheme. Each instance compounds several pieces of data into one. Your
experience—both in programming and in the real world—should tell you
that this kind of compounding can happen at several levels, that is, a piece
of information may contain some other piece of information that consists
of many pieces of information and so on. Let’s look at an example:

. . . Develop a program that manages a runner’s training log.
Every day the runner enters one entry about the day’s run. Each
entry includes the day’s date, the distance of the day’s run, the
duration of the run, and a comment describing the runner’s
post-run disposition. . . .

Clearly, a log entry consists of four pieces of information: a date, a distance,
a duration, and a comment. To represent the last three, we can use Java’s
primitive types: double (for miles), int (for minutes), and String. As we have
seen in section 2, however, the natural representation for dates consists of
three pieces; it is not a basic type.

Let’s make up some examples before we formulate a data definition:

on June 5, 2003 5.3 miles 27 minutes feeling good

on June 6, 2003 2.8 miles 24 minutes feeling tired

on June 23, 2003 26.2 miles 150 minutes feeling exhausted

. . . . . . . . . . . .

The three recordings are from three distinct dates, with widely varying
mileage and post-practice feelings.

If we were to represent these forms of data in Scheme we would formu-
late two structure definitions and two data definitions:

(define-struct entry (date distance duration comment))
;; Entry is:
;; — (make-entry Date Number Number String)

(define-struct date (day month year))
;; Date is:
;; — (make-date Number Number Number)

The first pair specifies the class of Entrys, the second the class of Dates. Just
as our analysis of the problem statement says, the data definition for Entry
refers to the data definition for Dates.
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Entry

Date d
double distance [in miles]
int duration [in minutes]
String comment

Date

int day
int month
int year

// an entry in a runner’s log
class Entry {

Date d;
double distance; // miles
int duration; // minutes
String comment;

Entry(Date d,
double distance,
int duration,
String comment) {

this.d = d;
this.distance = distance;
this.duration = duration;
this.comment = comment;
}
}

// calendar dates
class Date {

int day;
int month;
int year;

Date(int day, int month, int year) {
this.day = day;
this.month = month;
this.year = year;
}
}

Figure 7: Representing a runner’s log

Using these data definitions as guides for making up data, translating
the three examples into Scheme data is straightforward:

(make-entry (make-date 5 6 2003) 5.3 27 "Good")
(make-entry (make-date 6 6 2003) 2.8 24 "Tired")
(make-entry (make-date 23 6 2003) 26.2 150 "Exhausted")

When instances of structures are nested, like in this case, it often makes
sense to create the structures in a stepwise fashion, using definitions to give
names to the values:
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(define d1 (make-date 5 6 2003))
(define e1 (make-entry d1 5.3 27 "Good"))

For practice, construct the last two examples in the same fashion.

We already know how to express the data definition for Dates with a
class diagram. It is just a rectangle whose name portion is Date and whose
field portion contains three pieces: one for the day, one for the month, and
one for the year.

The diagram for Entrys is—in principle—also just a box. The field por-
tion contains four pieces: one for Date, one for the miles, one for the min-
utes, and one for the post-run condition. The difference between Entry and
classes such as Date or GPSLocation is that the type of the first field is not
a primitive Java type but another class. In the case of Entry, it is Date. In
class diagrams we explicate this relationship with a CONTAINMENT AR-
ROW from the Date field to the box for Date, which indicates that instances
of Entry contains an instance of Date. The left side of figure 7 displays the
complete diagram.

The right side of figure 7 shows how to translate this data definition
into class definitions. Roughly speaking, we just add constructors to each
box. The constructor for Entry consumes four pieces of data; the first of
those is an instance of the class Date. Conversely, if we wish to construct
an instance of Entry, we must first construct an instance of Date, just like in
Scheme. We can either just nest the uses of the constructors:

new Entry(new Date(5, 6, 2003), 5.3, 27, "Good")

or, we can construct the same value with an auxiliary definition:
ProfessorJ:

More on ExamplesDate d1 = new Date(5, 6, 2003);
Entry e1 = new Entry(d1, 5.3, 27, "Good");

Like every definition in Java, this definition starts with the type of the val-
ues (Date) that the variable (d1) may represent. The right-hand side of the
definition is the value for which d1 is a placeholder.

In Java, it is best to introduce definitions for all values:

Date d2 = new Date(6, 6, 2003);
Date d3 = new Date(23, 6, 2003);

Entry example2 = new Entry(d2, 2.8, 24, "Tired");
Entry example3 = new Entry(d3, 26.2, 150, "Exhausted");

It makes it easy to refer to these values in examples and tests later.
Let’s practice our data design skills with another example:
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Restaurant

String name
String kind
String pricing
Place place

Place

int ave
int street

// a restaurant in Manhattan
class Restaurant {

String name;
String kind;
String pricing;
Place place;

Restaurant(String name,
String kind,
String pricing,
Place place) {

this.name = name;
this.kind = kind;
this.pricing = pricing;
this.place = place;
}
}

// a intersection in Manhattan
class Place {

int ave;
int street;

Place(int ave, int street) {
this.ave = ave;
this.street = street;
}
}

Figure 8: Representing restaurants in Manhattan

. . . Develop a program that helps a visitor navigate Manhat-
tan’s restaurant scene. The program must be able to provide
four pieces of information for each restaurant: its name, the
kind of food it serves, its price range, and the closest intersec-
tion (street and avenue).

Examples: (1) La Crepe, a French restaurant, on 7th Ave and
65th Street, moderate prices; (2) Bremen Haus, a German restau-
rant on 2nd Ave and 86th Street, moderate; (3) Moon Palace, a
Chinese restaurant on 10th Ave and 113th Street, inexpensive;
. . .
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Again, three of the pieces of information can be represented with Java’s
primitive types, but the location consists of two pieces of information.

Our problem analysis suggests that we need two data definitions: one
for restaurants and one for places. Both consist of several pieces of infor-
mation, and the former refers to the latter. This suggests the class diagram
on the left side of figure 8. You can derive the corresponding pair of class
definitions on the right side in a mechanical manner. Of course, the arrow
doesn’t show up in the text; it is implicit in the type of the field.

Now that we have a class definition, we turn our examples of informa-
tion into examples of data:

Place p1 = new Place(7, 65);

Restaurant ex1 =
new Restaurant("La Crepe", "French", "moderate", p1);

We have used two definitions for the first example; translate the others on
your own using the same style.

Object containment is not restricted to one level:

. . . Develop a program that can assist railway travelers with
the arrangement of train trips. The available information about
a specific train includes its schedule, its route, and whether it is
local. (The opposite is an express train.) The route information
consists of the origin and the destination station. A schedule
specifies the departure and the arrival times. . . .

Obviously, this problem statement refers to many different classes of data,
and all these classes are related.

The most important one is the class of Trains. A train has three at-
tributes. To represent whether a train is local, we just use a boolean field,
called local. For the other two fields, it’s best to introduce new classes—
Routes and Schedules—because each represents more than what a primitive
Java type can represent. A Route consists of two pieces of information, the
origin and the destination stations; for those, Strings are fine representa-
tions. For Schedules, we need the (clock) time when the train leaves and
when it arrives. Usually, a ClockTime consists of two ints: one for the hour
(of the day) and one for the minutes (of the hour).

As we conduct the data analysis, it is natural to draw a class diagram,
especially for cases like this one, where we need four classes with three
connections. Figure 9 shows the final result of this effort. From there, it
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Train

Route r
Schedule s
boolean local

Route

String origin
String destination

Schedule

ClockTime departure
ClockTime arrival

ClockTime

int hour
int minute

Figure 9: A class diagram for train schedules

// trains from a train company
class Train {

Route r;
Schedule s;
boolean local;

Train(Route r, Schedule s, boolean local) {
this.r = r;
this.s = s;
this.local = local;
}
}

// a train schedule
class Schedule {

ClockTime departure;
ClockTime arrival;

Schedule(ClockTime departure,
ClockTime arrival) {

this.departure = departure;
this.arrival = arrival;
}
}

// a train route
class Route {

String origin;
String destination;

Route(String origin, String destination){
this.origin = origin;
this.destination = destination;
}

}

// the time on a 24-hour clock
class ClockTime {

int hour;
int minute;

ClockTime(int hour, int minute){
this.hour = hour;
this.minute = minute;
}
}

Figure 10: Classes for a train schedule
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is a short step to an equivalent class definition; see figure 10 for the four
definitions.

Let’s look at some examples:

Route r1 = new Route("New York", "Boston");
Route r2 = new Route("Chicago", "New York");

ClockTime t1 = new ClockTime(23, 50);
ClockTime t2 = new ClockTime(13, 20);
ClockTime t3 = new ClockTime(10, 34);
ClockTime t4 = new ClockTime(13, 18);

Schedule s1 = new Schedule(t1,t2);
Schedule s2 = new Schedule(t3,t4);

Train train1 = new Train(r1, s1, true);
Train train2 = new Train(r2, s2, false);

This collection of definitions introduces two trains, two schedules, four
clock times, and two routes. Interpret these objects in the context of the
original problem and determine whether someone can reach Chicago from
Boston in a day according to this imaginary train schedule.

3.1 Finger Exercises on Object Containment

Exercise 3.1 Design a data representation for this problem:

. . . Develop a “real estate assistant” program. The “assis-
tant” helps real estate agents locate available houses for clients.
The information about a house includes its kind, the number of
rooms, its address, and the asking price. An address consists of
a street number, a street name, and a city. . . .

Represent the following examples using your classes:

1. Ranch, 7 rooms, $375,000, 23 Maple Street, Brookline;

2. Colonial, 9 rooms, $450,000, 5 Joye Road, Newton; and

3. Cape, 6 rooms, $235,000, 83 Winslow Road, Waltham.

Exercise 3.2 Translate the data definition in figure 11 into classes. Also ob-
tain examples of weather information and translate them into instances of
the matching class.
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WeatherRecord

Date d
TemperatureRange today
TemperatureRange normal
TemperatureRange record

Date

int day
int month
int year

TemperatureRange

int high
int low

Figure 11: A class diagram for weather records

Exercise 3.3 Revise the data representation for the book store assistant in
exercise 2.2 so that the program can find additional information about au-
thors (name, year of birth). Modify the class diagram, the class definition,
and the examples.

3.2 Designing Classes that Refer to Classes

This section has introduced problem statements that imply a need for two,
or sometimes even several, classes of related information. More precisely,
the description of one kind of information in a problem refers to other (non-
primitive) information. In that case you must design a class that refers to
another class.

As before you first draw a class diagram, and you then indicate with
arrows which classes refer to other classes. When you translate the diagram
into class definitions, you start with the class(es) from which no arrows
originate. We sometimes call such classes primitive to indicate that they
don’t depend on others. The others are called compound classes here; you
may also encounter the word aggregate in other readings. For now, make
sure that the diagrams don’t contain loops (aka, cycles).

When the problem involves more than one class, you need to make ex-
amples for all classes, not just one. It is best to begin with primitive classes,
because making examples for them is easy; the constructors consume basic
kinds of values. For compound classes, you can reuse the examples of the
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primitive classes when we make up examples. As in the advice for design-
ing basic classes, it is important to transform information into data and to
understand how data represents information. If things look complex, don’t
forget the advice from How to Design Programs on creating data representa-
tions via an iterative refinement of more and more complex diagrams.

4 Unions of Classes

Our railroad example in the preceding section distinguishes between two
kinds of trains with a boolean field. If the field is true, the instance repre-
sents a local train; otherwise, it is an express train. While a boolean field
may work for a simple distinction like that, it really isn’t a good way to
think about distinct kinds of trains. It also doesn’t scale to large problems,
like those of real train companies, which offer a wide variety of trains with
many distinct attributes, e.g., city, local, regional, long distance, long dis-
tance express trains, and so on.

In this section, we show how to use classes to represent distinct yet
related kinds of information, such as kinds of trains. Even though the train
problem would benefit from this reformulation, we use a new problem and
leave the train example to an exercise:

. . . Develop a drawing program that deals with three kinds of
shapes on a Cartesian grid: squares, circles, and dots.
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A square’s location is specified via its north-west corner (see�@ )
and its size. A circle’s essential properties are its center point
(see�@ ) and its radius. A dot is drawn as a small disk of a fixed
size with a radius of 3 pixels. . . .

The problem says that there are three different kinds of shapes and the
collection of all shapes. In the terminology of How to Design Programs, the
collection of shapes is the UNION of three classes of shapes, also called
VARIANTs. More specifically, if we were to develop the shape class in How
to Design Programs, we would introduce four data definitions, starting with
one for shapes:
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;; A Shape is one of:
;; — a Dot
;; — a Square
;; — a Circle

This first definition does not tell us how to create actual shapes. For this,
we need the following, concrete definitions:

(define-struct dot (loc))
;; A Dot is a structure:
;; — (make-dot CartPt)

(define-struct square (loc size))
;; A Square is a structure:
;; — (make-square CartPt Number)

(define-struct circle (loc radius))
;; A Circle is a structure:
;; — (make-circle CartPt Number)

IShape

Dot

CartPt loc

Square

CartPt loc
int size

Circle

CartPt loc
int radius

CartPt

int x
int y

Figure 12: A class diagram for geometric shapes

Since the Scheme data definition consists of four definitions, a Java data
definition or class diagram should consist of four boxes. Drawing the boxes



Unions of Classes 29

for the last three is easy; for Shape we just use an empty box for now. Since
the relationship between Shape, on one hand, and the Dot, Square, and Cir-
cle, on the other, differs from anything we have seen, however, we actually
need to introduce two new concepts before we can proceed.

// geometric shapes
interface IShape {}

// a dot shape
class Dot

implements IShape {
CartPt loc;
Dot(CartPt loc) {

this.loc = loc;
}
}

// a square shape
class Square

implements IShape {
CartPt loc;
int size;

Square(CartPt loc,
int size) {

this.loc = loc;
this.size = size;
}
}

// a circle shape
class Circle

implements IShape {
CartPt loc;
int radius;

Circle(CartPt loc,
int radius) {

this.loc = loc;
this.radius = radius;
}
}

// Cartesian points on a computer monitor
class CartPt {

int x;
int y;

CartPt(int x, int y) {
this.x = x;
this.y = y;
}
}

Figure 13: Classes for geometric shapes

The first new concept is that of an INTERFACE, which is like a special
kind of class. Here IShape is such an interface because it is the name for
a union of variant classes; it is special because it doesn’t contribute any
objects to the complete collection. Its sole purpose is to represent the com-
plete collection of objects, regardless of which class they come from, to the
rest of the program. The second novelty is the arrow that represents the
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relationship between the interface and specific classes. To distinguish this
relationship from containment arrows, e.g., between Square and CartPt, the
diagram uses INHERITANCE ARROWS, which are arrows with hollow heads.
Figure 12 contains one of these arrows with three endings, one for Dot,
Square, and Circle.

In Java, interfaces look almost like classes. Instead of class, their defi-
nition is introduced with interface, and in this chapter, there is never any-
thing between the braces { . . . } for an interface. The INHERITANCE rela-
tionship between a class and an interface is expressed with the keyword
implements followed by an interface name:8

class Dot implements IShape { . . . }
Figure 13 displays the complete set of interface and class definitions for
figure 12. Once you accept the two syntactic novelties, translating class
diagrams into text is as mechanical as before.

4.1 Types vs Classes

To make the above discussion perfectly clear, we need to take a close look at
the notion of TYPE. Thus far, we just said that whatever you use to specify
the nature of a field is a type. But what can you use to specify a field’s type?
In Java, a type is either the name of an interface, a class, or a primitive type
(int, double, boolean or String). When we write

IShape s

we are saying that s has type IShape, which means that it is a placeholder
for some (yet) unknown shape. Similarly, when we introduce an example
such as

IShape s = new Square(. . . )

we are still saying that s has type IShape, even though we know that it
stands for an instance of Square.

In general, if the program contains “Ty inst” or “Ty inst = new Cls(. . . )”

1. then the variable inst has type Ty;

2. it stands for an instance of Cls; and

3. the “equation” is only correct if Cls is Ty or if it Cl implements Ty.
Otherwise, the statement is a TYPE ERROR, and Java tells you so.

8Using a leading I for the names of interfaces is a convention in this book; it makes it
easy to distinguish interfaces from names when you don’t have the definition handy.
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So a class is a general description of a collection of objects that provides
a mechanism for constructing specific objects. An interface is a uniform
“face” for several classes, which you sometimes wish to deal with as if it
were one. A type, finally, describes for what kind of objects a variable or a
parameter (such as the ones in constructors) may stand. Remember: every
class is a type, but not every type is a class because interfaces and primitive
types are types, too.

Exercise

Exercise 4.1 Translate the three graphical shape examples from the prob-
lem statement into objects in the context of figure 13. Conversely, sketch
the following instances on a grid: new Dot(new CartPt(−3,4)); new Cir-
cle(new CartPt(12,5),10); and new Square(new CartPt(30,−60),20).

Exercise 4.2 Consider this Java rendition of a union:

interface ISalesItem {}

class DeepDiscount implements ISalesItem {
int originalPrice;
. . .
}

class RegularDiscount implements ISalesItem {
int originalPrice;
int discountPercentage;
. . .
}

Say, in this context, you encounter these examples:

ISalesItem s = new DeepDiscount(9900);
ISalesItem t = new RegularDiscount(9900,10);
RegularDiscount u = new RegularDiscount(9900,10);

What are the types of s, t, and u? Also, someone has written down the
following examples:

RegularDiscount v = new DeepDiscount(9900);
DeepDiscount w = new RegularDiscount(9900,10);
RegularDiscount x = new RegularDiscount(9900,10);

Which of them are type correct and which one are type errors?
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IZooAnimal

Lion

int meat
String name
int weight

Snake

int length
String name
int weight

Monkey

String food
String name
int weight

Figure 14: A class diagram for zoo animals

4.2 Finger Exercises on Unions

In How to Design Programs, we encountered many definitions of unions.
Here is one of them:

. . . Develop a program that helps a zoo keeper take care of
the animals in the zoo. For now the zoo has lions, snakes, and
monkeys. Every animal has a name and weight. The zoo keeper
also needs to know how much meat the lion eats per day, the
length of each snake, and the favorite food for each monkey.
Examples:

1. Leo weighs 300 pounds and consumes 5 pounds of meat
every day.

2. Ana, the snake, weighs 50 pounds and is 5 feet long.

3. George is a monkey. He weighs 120 pounds and loves
kiwi.

. . .

The problem statement implies that the zoo program deals with an An-
imal class and that there are three distinct classes: Lion, Snake, and Monkey.
The three classes have two properties in common: name, which is repre-
sented with a String field, and weight, which is an int field (the number of
pounds that an animal weighs). Figure 14 shows how we can express these
classes and their relationship graphically.
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Translating this diagram into class definitions is again straightforward.
Each box becomes an interface or a class; each line in the box becomes one
field in the class. Each class is annotated with implements IZooAnimal.
In turn, all three constructors consume three values each and their bodies
contain three “equations” each. See figure 15 for the full definitions.

// zoo animals
interface IZooAnimal{}

// a zoo lion
class Lion

implements
IZooAnimal{

int meat;
String name;
int weight;

Lion(String name,
int weight,
int meat){

this.name = name;
this.weight = weight;
this.meat = meat;
}
}

// a zoo snake
class Snake

implements
IZooAnimal{

int length;
String name;
int weight;

Snake(String name,
int weight,
int length){

this.name = name;
this.weight = weight;
this.length = length;
}
}

// a zoo monkey
class Monkey

implements
IZooAnimal{

String food;
String name;
int weight;

Monkey(String name,
int weight,
String food){

this.name = name;
this.weight = weight;
this.food = food;
}
}

Figure 15: Classes for representing zoo animals

Lastly, we should represent the examples from the problem statement
with objects:

IZooAnimal leo = new Lion("Leo", 300, 5);
IZooAnimal boa = new Snake("Ana", 150, 5);
IZooAnimal george = new Monkey("George", 150, "kiwi");

All three objects, leo, boa, and george, have type IZooAnimal, yet they are
instances of three different classes.

Exercises

Exercise 4.3 Modify the representation of trains in figure 10 so that local
and express trains are separate classes.
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ITaxiVehicle

Cab

int idNum
int passengers
int pricePerMile

Limo

int minRental
int idNum
int passengers
int pricePerMile

Van

boolean access
int idNum
int passengers
int pricePerMile

Figure 16: A class diagram for taxis

Exercise 4.4 Design a data representation for this problem:

. . . Develop a “bank account” program. The program keeps
track of the balances in a person’s bank accounts. Each account
has an id number and a customer’s name. There are three kinds
of accounts: a checking account, a savings account, and a cer-
tificate of deposit (CD). Checking account information also in-
cludes the minimum balance. Savings account includes the in-
terest rate. A CD specifies the interest rate and the maturity
date. Naturally, all three types come with a current balance. . . .

Represent the following examples using your classes:

1. Earl Gray, id# 1729, has $1,250 in a checking account with minimum
balance of $500;

2. Ima Flatt, id# 4104, has $10,123 in a certificate of deposit whose inter-
est rate is 4% and whose maturity date is June 1, 2005;

3. Annie Proulx, id# 2992, has $800 in a savings account; the account
yields interest at the rate of 3.5%.

Exercise 4.5 Consider this generalization of exercise 2.3:

. . . Develop a program that creates a gallery from three differ-
ent kinds of media: images (gif), texts (txt), and sounds (mp3).
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All have names for source files and sizes (number of bytes).
Images also include information about the height, the width,
and the quality of the image. Texts specify the number of lines
needed for visual representation. Sounds include information
about the playing time of the recording, given in seconds. . . .

Develop a data representation for these media. Then represent these three
examples with objects:

1. an image, stored in flower.gif; size: 57,234 bytes; width: 100 pix-
els; height: 50 pixels; quality: medium;

2. a text, stored in welcome.txt; size: 5,312 bytes; 830 lines;

3. a music piece, stored in theme.mp3; size: 40,960 bytes, playing time
3 minutes and 20 seconds.

Exercise 4.6 Take a look at the class diagram in figure 16. Translate it into
interface and class definitions. Also create instances of each class.

Exercise 4.7 Draw a diagram for the classes in figure 17 (by hand).

4.3 Designing Unions of Classes

When a collection of information consists of n disjoint collections, the best
way to represent it is via an interface with n implementing classes. The
easiest way to recognize this situation is to study examples of information.
If you have several pieces of information that ought to belong to one and
the same collection but have different kinds of attributes or consist of dif-
ferent kinds of pieces, it is time to represent the information as the union of
distinct classes.

To design a union of classes, we proceed as before. We draw a diagram
with one interface and as many implementing classes as there are distinct
kinds of objects. The interface represents the collection of information in
its entirety; the implementing classes represent the distinct variants (or
subsets) of information. To indicate the relationship between the classes-
as-boxes in this diagram, we use the refinement arrow. Since this kind of
diagram resembles a tree, we speak of class hierarchies.

Naturally, some of the classes involved in a union may refer to other
classes. Indeed, in our very first example IShape referred to a CartPt, be-
cause we needed to represent the location of a shape. When this happens
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// tickets to a science museum
interface ITicket {}

// museum tickets
class Admission

implements ITicket {
Date d;
int price;

Admission(Date d,
int price) {

this.d = d;
this.price = price;
}
}

for ClockTime,
see figure 10

// omnimax admission
class OmniMax

implements ITicket {
Date d;
int price;
ClockTime t;
String title;

OmniMax(Date d,
int price,
ClockTime t,
String title) {

this.d = d;
this.price = price;
this.t = t;
this.title = title;
}
}

// laser admission
class LaserShow

implements ITicket {
Date d;
int price;
ClockTime t;
String row;
int seat;

LaserShow(Date d,
int price,
ClockTime t,
String row,
int seat) {

this.d = d;
this.price = price;
this.t = t;
this.row = row;
this.seat = seat;
}
}

Figure 17: Some classes

and things begin to look complicated, it is important to focus on the de-
sign of the union diagram first and to add the containment portion later,
following the suggestions in section 3.2.

After we have a complete class diagram, we translate the class diagram
into classes and interfaces. The box for the interface becomes an interface

and the others become classes where each class implements the interface.
Equip each class with a purpose statement; later we may write a paragraph
on the union, too.

Finally, we need to make up examples. While we cannot instantiate
the interface directly, we use it to provide a type for all the examples. The
latter are created from each of the implementing classes. For those who
may take over the program from us in the future, we should also explain in
a comment what the objects mean in the real world.
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5 Unions, Self-References and Mutual References

Thus far, all the programming problems involved objects that consist of a
fixed number of objects. They dealt with one receipt for a coffee sale; with
one entry in a runner’s log, which contains one date; or one train, which
contains one schedule, one route, and two dates. They never dealt with an
object that contains—or consists of—an unknown and arbitrary number of
objects. We know, however, that real-world problems deal with such cases.
For example, a runner’s log doesn’t consist of a single entry; it is an ever-
growing list of entries, and the runner may become interested in all kinds
of aspects of this list. Similarly, real train schedules for a real train company
aren’t about one train, but many trains at the same time.

In this section, we study several ways of representing such collections
of information as one piece of data. In How to Design Programs, we use
the terminology “arbitrarily large data” and studied those in two stages:
lists and complex generalizations. The two subsections here correspond to
those two stages.

5.1 Containment in Unions, Part 1

Recall the problem concerning a runner’s log:

. . . Develop a program that manages a runner’s training log.
Every day the runner enters one entry concerning the day’s run.
Each entry includes the day’s date, the distance of the day’s run,
the duration of the run, and a comment describing the runner’s
post-run disposition. . . . . . .

Naturally the program shouldn’t just deal with a single log entry but se-
quences of log entries. After collecting such entries for several seasons, a
runner may, for example, wish to compute the mileage for a month or the
pace of a daily workout.

We already know how to represent individual log entries and dates.
What we need to figure out is how to deal with an entire list of entries.
According to How to Design Programs, we would use a list to represent a
complete runner’s log:

�)
;; A Log is one of:
;; — a empty
;; — a (cons Entry Log)



38 Section 5

assuming Entry is defined. Using this data definition, it is easy to represent
arbitrarily large lists of data.

The data definition says that Log is a collection of data that consists of
two distinct sub-classes: the class of the empty list and the class of consed
lists. If we wish to represent this information with classes, we clearly need
to define a union of two variant classes:

1. ILog, which is the type of all logs;

2. MTLog, which represents an empty log; and

3. ConsLog, which represents the construction of a new log from an entry
and an existing log.

From Scheme, we know that an MTLog doesn’t contain any other informa-
tion, so it doesn’t contain any fields. A ConsLog, though, consists of two
values: an entry and another list of log entries; therefore the ConsLog class
requires two field definitions: one for the first Entry and one for the rest.

can we make the backarrow look different for this one picture?← check

ILog

MTLog ConsLog

Entry fst
ILog rst

Entry

Date d
... Date

int day
int month
int year

ILog

MTLog ConsLog

Entry fst
ILog rst

Entry

Date d
... Date

int day
int month
int year

Figure 18: A class diagram for a complete runner’s log

The class diagram for the union appears on the left in figure 18. Both
MTLog and ConsLog refine ILog. The only class that contains fields is Con-
sLog. One field is fst of type Entry; a containment arrow therefore connects
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the first field in ConsLog and Entry. The other field is rst; its type is ILog.
This left class diagram misses the arrow from rst to its class in this dia-
gram, which the informal Scheme definition above contains. Drawing it,
we obtain the diagram in the right column in figure 18. The result is a dia-
gram with a loop or cycle of arrows. Specifically, the diagram defines ILog
as the union of two variant classes with a reference from one of the two
classes back to ILog. We have created a pictorial data definition that is just
like the corresponding data definitions for lists that we know from How to
Design Programs.

Even if it weren’t a part of the design recipe for classes, we know from
our prior experience with How to Design Programs that we need examples
for self-referential data definitions. Otherwise, we never know whether
they make sense. Before we can make up examples of logs, however, we
need to translate the data definition (diagram) into a class hierarchy. For-
tunately, it suffices to apply what we already know, because arrows merely
emphasize the type of a field, which is always a part of the class definition
anyway. See figure 19 for the result.

// a runner’s log
interface ILog {}

// the empty log
class MTLog implements ILog {

MTLog() {}
}

// adding an entry to a log
class ConsLog implements ILog {

Entry fst;
ILog rst;

ConsLog(Entry fst, ILog rst) {
this.fst = fst;
this.rst = rst;
}
}

// an individual entry
class Entry { . . . }

Figure 19: Classes for a runner’s log

Now we can look at an actual log (information) and attempt to translate
it into objects. Recall our sample log:
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on June 5, 2003 5.3 miles 27 minutes feeling good

on June 6, 2003 2.8 miles 24 minutes feeling tired

on June 23, 2003 26.2 miles 150 minutes feeling exhausted

. . . . . . . . . . . .

We had already translated these three entries into objects:

Date d1 = new Date(5, 6, 2003);
Date d2 = new Date(6, 6, 2003);
Date d3 = new Date(23, 6, 2003);

Entry e1 = new Entry(d1, 5.3, 27, "Good");
Entry e2 = new Entry(d2, 2.8, 24, "Tired");
Entry e3 = new Entry(d3, 26.2, 150, "Exhausted");

The last step is to connect the three log entries in a single Log:

ILog l1 = new MTLog();
ILog l2 = new ConsLog(e1,l1);
ILog l3 = new ConsLog(e2,l2);
ILog l4 = new ConsLog(e3,l3);

Each of these examples represents a concrete log in the runner’s world. The
first one, l1, represents the empty log, before the runner has completed the
first entry. The last one, l4, represents the series of all three entries: e3, e2,
and e1.

IListing

MTListing ConsListing

IListing rst
Restaurant fst

Restaurant

String name
String kind
String pricing
Place place

Place

int ave
int street

Figure 20: A class diagram for listing restaurants
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With the creation of these examples, we have just completed the stan-
dard design recipe for classes. We have also verified that a circular diagram
describes a perfectly fine way of representing information as data. Natu-
rally it’s never clear whether such a definition does what we expected it to
do, so you should always experiment with several examples.

Exercises

Exercise 5.1 Translate these two objects of type ILog

ILog l5 = new ConsLog(e3,l1);
ILog l6 = new ConsLog(e3,l2);

into the runner’s world of logs. Assume these examples were constructed
in the context of the four examples above.

Exercise 5.2 Represent the following runner’s log as objects:

1. on June 15, 2004: 15.3 miles in 87 minutes, feeling great;

2. on June 16, 2004: 12.8 miles in 84 minutes, feeling good;

3. on June 23, 2004: 26.2 miles in 250 minutes, feeling dead;

4. on June 28, 2004: 26.2 miles in 150 minutes, good recovery.

For a second example in the same vein, let’s resume our discussion of
the program that assists a visitor with restaurant selection in Manhattan:

. . . Develop a program that helps visitors navigate Manhattan’s
restaurant scene. The program must provide four pieces of in-
formation per restaurant: its name, the kind of food it serves, its
price range, and the closest intersection (street/avenue). . . .

Clearly, this program should deal with lists of restaurants, because a visitor
may, for example, wish to learn about all German restaurants in a certain
area or all Thai restaurants in a certain price range.

If we were designing a representation in Scheme, we would again use a
cons-based representation of restaurant listings:

;; A List of Restaurants (ILoR) is is one of:
;; — a empty
;; — a (cons Restaurant ILoR)



42 Section 5

assuming the class of Restaurants is already defined.

To express this data definition with a class diagram, we follow the rea-
soning in the preceding example. A restaurant listing is a union of two
classes: those for empty listings and those for constructed listings. The lat-
ter consist of two pieces of data: the (first) restaurant and the rest of the
listing. The class diagram in figure 20 shows how all this works.

Figure 21 sketches the class definitions that correspond to the diagram.
As we have already seen, the cycle in the diagram doesn’t affect the defini-
tions at all. It just shows up in the class ConsListing, which both implements
ILoR and contains a field of type ILoR.

// a list of restaurants
interface ILoR { }

// the empty list
class MTListing implements ILoR {

MTListing(){ };
}

// adding a restaurant to a list
class ConsListing implements ILoR {

Restaurant fst;
ILoR rst;

ConsListing(Restaurant fst, ILoR rst) {
this.fst = fst;
this.rst = rst;
}
}

// an individual restaurant
class Restaurant { . . . }

Figure 21: Classes for representing restaurant listings

Let’s use the following restaurants to build a restaurant listing:

Restaurant ex1 =
new Restaurant("Chez Nous", "French", "exp.", new Place(7, 65));

Restaurant ex2 =
new Restaurant("Das Bier", "German", "cheap", new Place(2, 86));

Restaurant ex3 =
new Restaurant("Sun", "Chinese", "cheap", new Place(10, 113));
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Next the listings l1, l2, and l3 contain French, German, and Chinese restau-
rants, respectively; the last listing contains all restaurants:

ILoR mt = new MTListing();
ILoR l1 = new ConsListing(ex1,mt);
ILoR l2 = new ConsListing(ex2,mt);
ILoR l3 = new ConsListing(ex3,mt);
ILoR all =

new ConsListing(ex1,new ConsListing(ex2,new ConsListing(ex3,mt)));

Exercises

Exercise 5.3 Consider a revision of the problem in exercise 3.1:

. . . Develop a program that assists real estate agents. The pro-
gram deals with listings of available houses. . . . . . .

Make examples of listings. Develop a data definition for listings of houses.
Implement the definition with classes. Translate the examples into objects.

IWR

MTWR ConsWR

IWR rst
WeatherRecord fst

WeatherRecord

Date d
TemperatureRange today
TemperatureRange normal
TemperatureRange record

Date

int day
int month
int year

TemperatureRange

int high
int low

Figure 22: A class diagram for weather reports

Exercise 5.4 Consider a revision of the problem in exercise 2.2:
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. . . Design a program that assists a bookstore manager with
reading lists for local schools. . . . . . .

Develop a class diagram for a list of books (by hand). Translate the diagram
into classes and interfaces. Create two lists of books that contain at least one
of the books in exercise 2.2 plus one or more of your favorite books.

Exercise 5.5 Take a look at figure 22, which contains the data definition
for weather reports. A weather report is a sequence of weather records
(see exercise 3.2). Translate the diagram into classes and interfaces. Also
represent two (made-up) weather reports, one for your home town and
one for your college town, as objects.

5.2 Containment in Unions, Part 2

Lists are by no means the only form of information that requires a class
diagram with cycles for an accurate descriptions. Let’s take another look at
the problem of drawing shapes (page 27):

. . . Develop a drawing program that deals with at least three
kinds of shapes: dots, squares, and circles. . . . In addition, the
program should also deal with overlapping shapes. In the fol-
lowing figure, for example, we have superimposed a circle on
the right side of a square:

(20,40)

20
?

6�@ (40,30)
�@15@@R&%

'$

We could now also superimpose this compounded shape on an-
other shape and so on. . . .

The new element in this problem statement is the goal of combining
two shapes into one. This suggests a new class that refines IShape from
figure 12. The purpose of the new class is to represent the combination of
two shapes. We call it SuperImp for that reason.

Figure 23 contains the class diagram for our revised problem. Like the
diagrams for lists, this diagram contains a cycle, specifying a self-referential
data definition; but unlike the list diagrams, this one has two arrows that go
from an implemented class back to the interface. As before, this difference
doesn’t pose any problems for the translation into class definitions: see
figure 24.
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IShape

Dot

CartPt loc

Square

CartPt loc
int size

Circle

CartPt loc
int radius

Combination

IShape bot
IShape top

Figure 23: A class diagram for combination shapes

// geometric shapes
interface IShape {}

class Dot
implements
IShape {

CartPt loc;
. . .
}

class Square
implements
IShape {

CartPt loc;
int size;
. . .
}

class Circle
implements
IShape {

CartPt loc;
int radius;
. . .
}

class SuperImp
implements
IShape {

IShape bot;
IShape top;

SuperImp(
IShape bot,
IShape top) {

this.bot = bot;
this.top = top;
}
}

// Cartesian points on a computer monitor
class CartPt {

int x;
int y;
. . .
}

Figure 24: Classes for combination shapes
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Here is the object that represents the shape from the problem statement:

new SuperImp(new Square(new CartPt(20,40),20),
new Circle(new CartPt(40,30),15))

The SuperImp object combines a square and a circle, placing the circle on
top of the square. Now look at these definitions:

CartPt cp1 = new CartPt(100, 200);
CartPt cp2 = new CartPt(20, 50);
CartPt cp3 = new CartPt(0, 0);

IShape s1 = new Square(cp1, 40);
IShape s2 = new Square(cp2, 30);
IShape c1 = new Circle(cp3, 20);

IShape sh1 = new SuperImp(c1, s1);
IShape sh1 = new SuperImp(s2, new Square(cp1, 300));
IShape sh3 = new SuperImp(s1, sh2);

To understand the purpose of these classes and the meaning of these spe-
cific objects, interpret sh1, sh2, and sh3 as figures on a grid.

The need for self-referential data definitions, like those of reading lists
and restaurant listings, also comes about naturally for data such as family
trees and river systems:

t
s /
\ tributary [2]

main [3] /
\ /
\/
b u
\ /

main [3] tributary [1]
\ /
\ /
a
|
main [4]
|
m

. . . The environmental protection
agency monitors the water qual-
ity of river systems. A river sys-
tem consists of a river, its tribu-
taries, the tributaries of the tribu-
taries, and so on. The place where
a tributary flows into a river is
called a confluence. The river’s
end—the segment that ends in
the sea or perhaps another river—
is called its mouth; the initial
river segment is its source. . . .

Even a cursory look confirms that this is by far the most complex form
of information that we have encountered so far. When we are confronted
with something like that, it is best to make up at least one small example
and to study it in depth, which is why the problem comes with an artificial
map of a made-up river system. The example has three sources—s, t, and
u—and two confluences—at b and a. The mouth of the entire system is at
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m. The map depicts the system as if it had one main river, with two direct
tributaries. Each segment is labeled with a number, which represents its
name.

IRiver

Source

Location loc

Confluence

IRiver left
IRiver right
Location loc

Mouth

Location loc
IRiver river

Location

int x
int y
String name

Figure 25: A class diagram for river systems

If we were to take a trip up the river, we would first encounter the
mouth m of the river and the river proper. Here, the river proper comes
from a confluence of two rivers, namely a; in general, though, the river
may come straight from a source, too. Moving along main from a, we see
again that it comes from a confluence; this time the location is b. Of course,
it, too, could have come from a source.

Thus, our problem analysis suggests several classes of information or
data. First, the mouth of a river system is a combination of two things: a
location and a river (proper). A river is one of two things: a confluence of
two rivers or a source (segment). Finally, a confluence consists of a location
and two rivers. That is, the description for a confluence refers to river,
which in turn is related to confluence.

Figure 25 depicts the class diagram that captures all the elements of our
problem analysis. The Mouth class represents the entire river system. It
refers to the IRiver interface, which is the union of two concrete classes:
Source and Confluence. Like the mouth of a river system, these two classes
have a Location field; but Confluence also describes which two rivers are
flowing together at this location. The class at the bottom right describes a
location as a point on a grid with a name.
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// the end of a river
class Mouth{

Location loc;
IRiver river;

Mouth(Location loc, IRiver river){
this.loc = loc;
this.river = river;
}
}

// a location on a river
class Location{

int x;
int y;
String name;

Location(int x, int y, String name){
this.x = x;
this.y = y;
this.name = name;
}
}

// a river system
interface IRiver{ }

// the source of a river
class Source implements IRiver {

Location loc;

Source(Location loc){
this.loc = loc;
}
}

// a confluence of two rivers
class Confluence implements IRiver{

Location loc;
IRiver left;
IRiver right;

Confluence(Location loc,
IRiver left,
IRiver right){

this.loc = loc;
this.left = left;
this.right = right;
}
}

Figure 26: Classes for representing river systems

A translation of figure 25 into class and interface definitions appears in
figure 26. As with any complex data definition, this one also needs val-
idation via a transliteration of information into data. Figure 27 shows a
class that defines a series of data examples, which represent the informa-
tion from the problem statement (page 46), including mth, the entire river
system.



Unions, Self-References and Mutual References 49

class RiverSystemExample {
Location lm = new Location(7, 5, "m");
Location la = new Location(5, 5, "a");
Location lb = new Location(3, 3, "b");
Location ls = new Location(1, 1, "s");
Location lt = new Location(1, 5, "t");
Location lu = new Location(3, 7, "u");

IRiver s = new Source(ls);
IRiver t = new Source(lt);
IRiver u = new Source(lu);

IRiver b = new Confluence(lb,s,t);
IRiver a = new Confluence(la,cb,u);

Mouth mth = new Mouth(lm,ca);

RiverSystemExample() { }
}

Figure 27: A sample river system

5.3 Finger Exercises on Containment in Unions

Exercise 5.6 Consider the following problem:

Bob
??? ??? ??? ??? ??? 1917
| | | | | |
+--+--+ +--+--+ +--+--+

| | |
Angela Robert Annie
1936 1935 1938 ???

| | | |
+----+----+ +----+----+

| |
Janet Paul
1958 1956
| |
+----------+----------+

|
Peter
1980

. . . Develop a program that helps
with recording a person’s ances-
tor tree. Specifically, for each per-
son we wish to remember the per-
son’s name and year of birth, in
addition to the ancestry on the fa-
ther’s and the mother’s side, if
it is available. The tree on the
left is an example; the nodes with
“???” indicate where the geneal-
ogist couldn’t find any informa-
tion. . . .

Develop the class diagram (by hand) and the class definitions to represent
ancestor family trees. Then translate the sample tree into an object. Also
draw your family’s ancestor tree as far as known and represent it as an
object. Hint: Represent “???” with a class called Unknown.
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Exercise 5.7 Research the tributaries of your favorite river. Create a data
representation of the river and its tributaries. Draw the river system as a
schematic diagram.

Exercise 5.8 Modify the classes that represent river segments, mouths, and
sources so that you can add the names of these pieces to your data repre-
sentation. Can you think of a river system that needs names for all three
segments involved in a confluence? Represent such a confluence with the
revised classes.

IPT

MTTeam PhoneTree

IPT call1
IPT call2
Player p

Coach

IPT team

Player

String name
int phone

Figure 28: A class diagram for a phone tree

Exercise 5.9 Soccer leagues arrange its soccer teams into phone trees so
that they can quickly inform all parents about rain-outs. The league calls
the coach, who in turn calls the parents of the team captain. Each parent
then calls at most two other parents.

The class diagram in figure 28 contains the data definition for a program
that manages phone trees. Given these classes, one could create the data in
figure 29. Draw the phone tree there as a circle-and-arrow diagram. Each
circle corresponds to a player or coach. An arrow means that a player calls
some other player; it goes from the caller to the callee. Then develop the
class definitions that correspond to the given data definition.

6 Designing Class Hierarchies

In the preceding sections we have discussed more and more complex ex-
amples of class hierarchies. Designing a class hierarchy is the first and the
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Player
cpt = new Player("Bob", 5432345);

Player
p1 = new Player("Jan", 5432356);

Player
p2 = new Player("Kerry", 5435421);

Player
p3 = new Player("Ryan", 5436571);

Player
p4 = new Player("Erin", 5437762);

Player
p5 = new Player("Pat", 5437789);

IPT mt = new MTTeam();

IPT pt =
new PhoneTree(

cpt,
new PhoneTree(

p1,
new PhoneTree(p2,mt,mt),
new PhoneTree(p3,mt,mt)),

new PhoneTree(
p4,
new PhoneTree(p5,mt,mt),
mt));

Coach ch = new Coach(pt);

Figure 29: A phone tree for a soccer team

most important step in the design of an object-oriented program. Getting
it right often avoids big hassles later when you (or your successor) need
to improve or extend or revise the program. To help with this process, we
offer a reasonably general design recipe here.

The purpose of a class is to represent collections of related pieces of in-
formation from our domain of interest. Recall from How to Design Programs
that a piece of information is a statement about the problem world, also
known as the DOMAIN OF INTEREST. Once we have the information repre-
sented as data, our programs can compute new data and we can interpret
this data as information. One way to think about this process is that the
original data represents a problem and that the newly computed data repre-
sents a solution to the problem. Since the point of involving a computer is
to solve many problems, not just a single problem, it is natural to speak of
classes of information and thus classes of data.

To discover a good data representation, we recommend that you pro-
ceed in four steps:

problem analysis The problem statement is all you have. You must there-
fore analyze the problem statement closely and determine with what
kind of information your program must cope. It is important to iden-
tify classes of information, not specific pieces of information at this
stage. The outcome of this step is a list of names for the relevant classes
of information and a brief description of each class.
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People who solve problems need examples. You should therefore
supplement the description of classes of information with examples.
This is particularly important when the problem statement is com-
plex and involves many distinct forms of information.

class diagrams (data definition) The key step is to translate the informal
class descriptions into a rigorous class diagram that exposes all the
relationships between classes and interfaces. The diagram consists
of boxes and two kinds of arrows that connect the boxes. Each box
names an interface or a class of data; a class box also describes the
properties that all instances of this class share. When a property of a
class refers to some other class, you indicate this with a containment
arrow, which indicates that an instance of this class contains an in-
stance of the other class. When a class is a part of a union of classes,
you add an refinement arrow from the class to the interface.

For simple problems, like those in this chapter, coming up with a di-
agram is a matter of practice. It requires recognizing five situations
and translating them properly into boxes and arrows.

1. Use a primitive type if there is an obvious correspondence be-
tween the information and an atomic type that the language al-
ways supports.

Examples: numeric measurements, names, on/off switches

2. Introduce a new class if you need to represent some information
that consists of several other pieces of information. This is typ-
ically the case with things that have several properties. Each
property becomes a field in the class.

Examples: positions in space, addresses

3. Have a class A refer to another class B if some component of a
piece of information is itself the composition of several pieces of
information. When you create an instance of class A, it contains
an instance of class B.

Examples: a log entry contains a date; a train refers to a schedule

4. Use a union of classes if a collection of information consists of
several distinct subclasses. The union represents the entire col-
lection of objects to the rest of the program (as a type).

Examples: local and express trains, geometric shapes

5. The class diagram is self-referential if you need to represent pieces
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of information that consists of an unknown and unlimited num-
ber of other pieces.

Examples: reading lists, family trees, river systems, file folders

Warning: The example of river systems shows the importance of
distinguishing between the boundary of a self-referential union
and the union itself. We decided that a river system has a sin-
gle mouth and many confluences and sources. Hence, the Mouth
class referred to IRiver but it wasn’t a part of the union itself. Get-
ting this distinction right takes practice; indeed, sometimes both
solutions work and only further exploration reveals whether one
is better than the other.

As problems become more and more complex, you shouldn’t expect
that your first data representation is the best possible representation.
Instead, you should test the representation with some simple explo-
rative programming. These tests often suggest small refinements and
occasionally radical revisions. In short, you must expect to use the
process of iterative refinement and revision from How to Design Pro-
grams to get the data representation right.

class definitions, purpose statements Obtaining classes from the class di-
agram is an almost mechanical affair. Each box is translated accord-
ing to a standard recipe. Containment arrows correspond to the type
specifications of fields; refinement arrows become implements spec-
ifications; and all boxes, except for those of interfaces, are equipped
with a constructor. You must add a one-line purpose statement to
each class that explains which information the class represents or a
short paragraph that explains the entire collection of classes. As rep-
resentations become complex, these explanations should provide de-
tailed explanations for the move from information to data (and back).

Only one part in his step needs your full attention: whether a field
should have the same value for all instances of this class. If so, use
an initialization equation with the field; otherwise, add the field as a
parameter to the constructor and add an equation of the shape this.
field = field to the constructor.

examples (representation and interpretation) After you have formulated
the classes, you must translate the informal examples from the sec-
ond step into objects. Doing so validates that you have built a class
hierarchy that can represent the relevant information.
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Furthermore, you should make up examples of objects and interpret
them in the problem domain. This step ensures that you understand
the results that you get back from the computations. After all, the
computation produces either a primitive type or an instance of one of
your classes.

Warning: In general, a data representation is too liberal. That is, there
are often objects without any meaning in the problem domain. For
example, you could create a Date object (page 20) such as this

new Date(45, 77, 2003)

and attempt to interpret it in the real world. Of course, this object
does not correspond to a date in your world; there is no 77th month
and no month has 45 days. Warn people of such problems, if needed.

Many problem statements suggest well-known data representations: fixed
hierarchies of objects, lists, trees, and so on. For those cases, the design
recipe often explains why you want to use a certain data representation. In
other cases, however, you will find an unusual form of information, and
then you should follow the design recipe as much as possible.

6.1 Exercises

Exercise 6.1 Design the data representation for a program that assists with
shipping packages for a commercial shipper. For each package the pro-
gram needs to record the box size, its weight, information about the sender
and the recipient, and a URL for the customer so that the package can be
tracked. Hint: Use a String to represent a URL.

Exercise 6.2 Revise the data representation for a program that assists vis-
itors in Manhattan (see page 21). Assume that a visitor is interested in
restaurants, museums, and shops. We have already studied what the pro-
gram needs to represent about restaurants. Concerning museums, visitors
typically want to know the name of the museum, the price of admission,
and its hours. For shops, they also want to see its hours (assume the same
hours for every day), but also what kind of items they sell. Of course, visi-
tors also need to find the restaurants, museums, and shops; that is, the data
representation needs to contain locations.

Exercise 6.3 Design the data representation for a program that manages
the schedule for one route of a train. A schedule records the departure
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station and time; the destination station and estimated arrival time; and all
the stops in between. For now, identify a stop on the route with its name.

Exercise 6.4 Design the data representation for a program that assists a
real-estate agent. A real estate agent sells several different kinds of prop-
erties: single family houses (see problem 3.1), condominiums, and town
houses. A typical customer needs to know the address of the property, the
living area (in square feet), and the asking price (in dollars). For a single
family house, the customer also wants to know the land area and number
of rooms. For a condominium, the customer wants to know the number
of rooms and whether it is accessible without climbing stairs. For a town
house, the client is often interested in how much garden area town houses
have.

Exercise 6.5 Design the data representation for a program that creates gra-
phical user interfaces (GUIs). The basic component of a GUI is one of the
following:

• BooleanView

• TextFieldView

• OptionsView

• ColorView

Each of these kinds of components contains a label and some additional
data, which for now doesn’t play a role.

To arrange basic GUI components in a grid, GUI software systems pro-
vide some form of table. A table consists of several rows; each row is a
series of GUI components. Naturally, tables can be nested to allow for com-
plex layouts; that is, they must also be GUI components (though without
label).

Exercise 6.6 Design the data representation for a program that tracks li-
brary checkouts. The library has books, CDs, and DVDs. Each item has a
catalog number and a title. For each book the librarian also needs to record
the name of the author, and the year the book was published. For CDs, the
librarian also records the artist, and the number of tracks. For DVDs, the
record indicates the kind of DVD (comedy, drama) and the length of play.
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Exercise 6.7 Design the data representation for a company’s organizational
chart. Each employee is identified by an id number, a name, and a title. If
an employee supervises some other employees, the representation of this
employee in the chart also points to these other employees.

Exercise 6.8 A player in a board game keeps a wallet of pebbles. There are
five kinds of pebbles, each represents a unique color. The player’s wallet
consists of an arbitrary number of pebbles. Design the data representation
for a player’s wallet.

The game administrator keeps track of a deck of cards. Each card is
identified by five pebbles of arbitrary color and exactly one of the following
three designation: normal, high, super. Design the data representation for
decks of cards.

Exercise 6.9 Consider the following puzzle:

. . . A number of people want to cross a dilapidated bridge at
night. Each person requires a different amount of time to cross
the bridge. Together they have one battery-powered flashlight.
Only two people can be on the bridge at any given time, due to
its bad state of repair.

Given the composition of the group and the life-time of the bat-
tery, the problem is to determine whether and how the entire
group can cross the bridge. . . .

Solving the puzzle (manually or with a program) requires a recording of
what happens as members of the group moves back and forth across the
river. Let’s call the status of the “puzzle world” after each individual cross-
ing a state.

Design a data representation for the states of the puzzle. Which ele-
ments does a state have to record? What is the initial state for this problem?
What is the final state for this problem? Express them in your representa-
tion.

6.2 Case Study: Fighting UFOs

Let’s study the design recipe in the context of a reasonably interesting and
complex problem. Imagine you have become a game developer and your
manager poses the problem of developing the first version of a game:9

9Your manager imagines a game freely named after H. G. Wells’s science fiction novel.
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. . . Develop a “War of the Worlds” game. A UFO

descends from the sky. The player owns an anti-
UFO platform (AUP), which can move left and
right on the ground. It can also fire shots, straight
up from the middle of the platform. If any of the
shots hit the UFO, the player wins. Otherwise,
the UFO lands and destroys the earth.

For good measure, your manager has asked an
artist to draw a mock-up of the game world:
see the picture on the left. It displays a screen
shot of a single scene in this game, though your
manager understands that you want consider-
able artistic freedom for your work. . . .

lighter background ← check

Recall that your first step is to read the problem statement until you un-
derstand what kind of information the program must represent as data. As
you can see in this problem statement and the accompanying screen shot,
this world of UFOs obviously contains three kinds of physical objects: UFOs,
which are drawn as green flying saucers; AUPs, which appear as a red flat
rectangle with a second rectangle sticking out in the middle; and shots,
which look like long yellow stripes. Of course, while one specific world
contains just one UFO and one AUP, it will almost always going to con-
tain several shots. Indeed, since shots presumably appear when the player
hits a button and disappear when they reach the edge of the window, the
number of shots keeps growing and shrinking. In order to represent the
entirety of shots and include it in the world, you need a flexible compound
data object; a list of shots is the natural choice.

Now is the time to turn all these first notes into an enumeration of de-
scriptions, adding some first imaginary details concerning the properties
of the various objects, including color, size, movement, etc. For each item
on the list, you should also make up an informal example:

1. The most important object is the world itself. It contains all the other
objects. Including the world itself as an object gives us a way of refer-
ring to everything at once. Visually, the artist had rendered the world
as a lightblue rectangle with the other objects embedded. To be con-
crete, let’s assume that a world is represented with a canvas of 200
pixels by 500 pixels.
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Example 1: The simplest world consists of just a UFO and an AUP,
with the former appearing near the top of the world and the AUP
appearing at the bottom.

Example 2: Let’s add two shots to this simplest world. Since the AUP
can fire only one shot at a time, one of the shots is higher up in the
world than the other.

2. A UFO is a green flying saucer that appears at a random place at the
top of the world and descends from there to the ground. Visually,
it consists of a green rectangle with a green disk at its center. For a
simulation of its physical movement, we need the x and the y coordi-
nate of the object and the speed at which it descends. If the UFO is
also supposed to move left or right, its representation should include
a value for the horizontal speed, too.

Example: a UFO that appears at (100,10) should show in the center of
the world near its top. If it moves downward at, say, two pixels per
clock tick without horizontal speed, it should show up at (100,12),
(100,14), and so on over the next two steps.

3. An AUP is a self-propelled gunship that reacts to keystrokes on the
keyboard. A left arrow key moves it some number of pixels to the
left, and a stroke on the right arrow key moves it the same distance
to the right. Visually, it is represented as two red rectangles, one flat
on the ground and the other, short one vertically pointing upwards.
All we need to record in the object is the position of the AUP, i.e.,
its x coordinate. Since it is always on the ground, the y coordinate is
always the bottom of the world.

Example: an AUP with the x coordinate 100 should appear at the
center of the world, near the bottom. If the player hits a left key, it
should appear at 97 next, assuming the horizontal moves are three
pixels wide.

4. The list of shots is either

(a) empty, because the player hasn’t fired yet, or

(b) it consists of at least one shot and possibly some others.

Example 1: The empty list of shots is a legitimate example.

Example 2: Another example is a pair of shots, one fired after another,
without moving the AUP in between the shots. In that case, the vi-
sual world should contain two yellow rectangles, one above the other,
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both above the upright rectangle on the AUP, separated by a narrow
stripe of the blue background.

5. A shot is a small bullet flying upwards. Visually, it is just a long,
yellow rectangle. Its representation requires the coordinates for a po-
sition; the speed at which it is moving upwards remains constant.10

UFO

Color colorUFO
Posn location

AUP

Color aupColor
int location

UFOWorld

int WIDTH
int HEIGHT
Color BACKG
UFO ufo
AUP aup
IShots shots

Shot

Color shotClr
Posn location

IShots

MTShots ConsShots

Shot first
IShots rest

Figure 30: The World of UFOs: Class diagrams

In addition to these immediately relevant classes, we also need colors to
describe objects and positions to specify their coordinates. As we have seen
over the course of this first chapter, positions show up everywhere, and we
have repeatedly designed similar classes. A better approach is to put such
frequently used classes in a LIBRARY,11 dubbed a PACKAGE in Java. Once
these classes are in a library you can re-use them time and again, often with
just one or two lines at the beginning of your program.

The specific libraries that we need here are called geometry and colors.
The former defines a Posn class for representing positions. To include it
with any of your programs, just add the line

import geometry.∗;
10This is a simplification of the true physics perspective. Think science fiction!
11Every programming language comes with a number of helpful pieces of code. Pro-

grammers have dubbed this kind of a code “library” in analogy to the physical buildings
that store books of common interest to a community.
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IColor

Blue Green Red White Yellow Black

Posn

int x
int y

Figure 31: The colors and geometry libraries of ProfessorJ

at the top. The latter defines an interface dubbed IColor with classes imple-
menting Red, Green, Yellow, and Blue (among others). To get access to these
classes, use

import colors.∗;
Figure 31 provides a diagram of the two libraries.

The second step is to draw a diagram that reflects what we know about
the various kinds of information. Figure 30 contains the result of this effort.
There are seven boxes: one for an interface (IShots) and six for classes. Three
of the latter directly correspond to physical objects: UFO, AUP, and Shot;
the other four are: IShots, MtShots, ConsShots, and UFOWorld. Roughly
speaking, these four classes exist so that we can keep track of compounds
of information. For example, the UFOWorld class contains all the pieces
that play a role in the game. Similarly, IShots is an interface that represents
all classes of list of shots. Note how the diagram treats classes from libraries
just like int and String.

Third, you must translate the class diagram into classes and interfaces.
Most of this translation is a mechanical step but remember that it also de-
mands a decision as to which properties of objects are constant and which
ones are unique and initialized during the construction of the object. To
see how this decision making works, take a look at the UFOWorld class in
figure 32. The values of the first three fields are objects whose appearance
varies over time. The nature of the remaining three fields in UFOWorld is
radically different, however. They describe aspects of the world that al-
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// the world of UFOs, AUPs, and Shots
class UFOWorld {

UFO ufo;
AUP aup;
IShots shots;
IColor BACKG = new Blue();
int HEIGHT = 500;
int WIDTH = 200;

UFOWorld(UFO ufo, AUP aup, IShots shots) {
this.ufo = ufo;
this.aup = aup;
this.shots = shots;

}
}

// an AUP: a rectangle, whose upper
// left corner is located at
// (location, bottom of the world)
class AUP {

int location;
IColor aupColor = new Red();

AUP(int location) {
this.location = location;

}
}

// a UFO, whose center is
// located at location

class UFO {
Posn location;
IColor colorUFO = new Green();

UFO(Posn location) {
this.location = location;

}
}

Figure 32: Representing UFOs and AUPs

ways remain the same; they are constants and we know their values. We
therefore add initializations to the fields and omit corresponding parame-
ters and “equations” from the constructor.

Translating the diagrams for AUP and UFO into actual classes shows
that all of them have a constant color field and all other fields are object-
specific: see the bottom of figure 32.

Finally, given your experience, the creation of interfaces and classes for
Shot and list of Shots are routine. They follow the pattern that we have seen
several times now, without any deviation. See figure 33 for details.
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// managing a number of shots
interface IShots {}

// the empty list of shots
class MtShots implements IShots {

MtShots() { }
}

// a list with at least one shot
class ConsShots implements IShots {

Shot first;
IShots rest;

ConsShots(Shot first, IShots rest) {
this.first = first;
this.rest = rest;

}
}

// a shot in flight, whose upper
// left corner is located at location
class Shot {

Posn location;
Color shotColor = new Yellow();

Shot(Posn location) {
this.location = location;

}
}

Figure 33: Representing Shots and Lists of Shots

Our last and very final step is to create examples for each class. As sug-
gested by the recipe, this process proceeds bottom up, meaning we first
create instances of those classes that don’t contain any instance of the other
(relevant) classes. Here we start with AUP and end with UFOWorld, which
contains all kinds of objects: see figure 34. The figure shows how in a
project of any size examples are collected in a separate class. Also, each
example should come with a short explanation of what it represents. As we
gain programming experience, we may omit such explanations from sim-
ple examples and expand those for complex examples. Still, having such
explanations around strongly increases the likelihood that we can read, un-
derstand, and use these examples later when it is time to create examples
of a program’s inputs and outputs.

Exercises

Exercise 6.10 Collect the class definitions in this section and evaluate them
in ProfessorJ. Inspect the default instance of WoWExamples.
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class WoWExamples {
// an anti-UFO platform placed in the center:
AUP a = new AUP(100);

// a UFO placed in the center, near the top of the world
UFO u = new UFO(new Posn(100,5));

// a UFO placed in the center, somewhat below u
UFO u2 = new UFO(new Posn(100,8));

// a Shot, right after being fired from a
Shot s = new Shot(new Posn(110,490));

// another Shot, above s
Shot s2 = new Shot(new Posn(110,485));

// an empty list of shots
IShots le = new MtShots();

// a list of one shot
IShots ls = new ConsShots(s,new MtShots());

// a list of two shots, one above the other
IShots ls2 = new ConsShots(s2,new ConsShots(s,new MtShots()));

// a complete world, with an empty list of shots
UFOWorld w = new UFOWorld(u,a,le);

// a complete world, with two shots
UFOWorld w2 = new UFOWorld(u,a,ls2);

WoWExamples() { }
}

Figure 34: Some Sample Objects in the World of UFOs

Exercise 6.11 Take a look at w in figure 34. It is an instance of UFOWorld
without any shots. Think of it as a brand new world that has just been
created. Write down a new world like w assuming that the UFO in w has
dropped by 3 pixels, that the AUP has remained at the same place, and that
the player has fired one shot. A new shot is located 5 pixels above the AUP
right in the middle. The width of an AUP is 20 pixels.
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Intermezzo 1: Classes and Interfaces

The purpose of this intermezzo is to introduce the elements of the program-
ming language of part I. Specifically, it describes the grammar (syntax), the
meaning (semantics), and the errors of the Beginner language in ProfessorJ.

Vocabulary and Grammar

The vocabulary of a language comprises the currently recognized words;
its grammar governs how these words are used to form complete phrases.
The following enumeration covers the phrases of Beginner that we have
encountered, implicitly listing the legal words, too:

1. A program consists of import specifications followed by a sequence
of class and interface definitions.

Constraint: A program must not contain two class or interface def-
initions that use the same name. A program must not re-define an
imported class or interface.

2. An interface definition introduces the name of an interface:

interface InterfaceName {}

By convention, the name of an interface starts with I followed by a
capital letter.

3. The definition of a class starts with a class header:

class ClassName [ implements InterfaceName ] {
. . .
}

By convention, the name of a class starts with a capital letter. A class
may optionally specify that it implements an interface.

4. The declaration of fields follows the class header:

class ClassName {
Type fieldName [= Expr];
. . .
}
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Each field declaration must come with a type and a name, followed
by an optional initialization. The fieldName always starts with a low-
ercase letter; all other words in the name start with an uppercase,
yielding a camel-back shape for such names.

Constraint: Each field declaration introduces a name that is unique
inside the class.

5. The last element of a class is a constructor definition:

class ClassName {
Type fieldName [= Expr];
. . .
ClassName(Type fieldName, . . . ) {

this.fieldName = fieldName;
. . .
}
}

All fields without initialization are listed in the parameter part; for
each parameter, the constructor body contains one “equation”.

6. A Type is one of:

(a) int, double, boolean, char

(b) Object, String,

(c) ClassName,

(d) InterfaceName.

7. An Expr is one of:

(a) a constant such as 5 or true;

(b) a this.fieldName; or

(c) a constructor call.

8. Constructor calls are expressions that create instances of a class:

new ClassName(Expr,. . . )

The sequence of expressions is as long as the sequence of constructor
parameters. The first expression is for the first field parameter, the
second expression is for the second field parameter, and so on.



66 Intermezzo 1

→ a DEFINITION is one of:

– ImportSpec

– InterfaceDefinition

– ClassDefinition

→ an IMPORTSPEC is

import LibN.∗;
→ an INTERFACEDEFINITION is

interface InterfaceN {}
→ a CLASSDEFINTION is:

class ClassN [ implements InterfaceN ] {
Type FieldN [ = Expr ];
. . .
ClassN(Type FieldN, . . . ) {

this.FieldN = FieldN;
. . .
}

}

→ LibN is one of:

– colors

– draw

– geometry

→ a TYPE is one of:

– int

– double

– boolean

– Object

– String

– ClassN

– InterfaceN

→ an EXPR is one of:

– constant (e.g., 5, true)

– this.FieldN

– ConstructorCall

→ a CONSTRUCTORCALL is

new ClassN(Expr, . . . )

→ INTERFACEN, CLASSN, FIELDN
are alphanumeric sequences

Notes:

1. The dots (. . . ) indicate a possibly empty repetition of the preceding pattern
(line, expression, etc).

2. Every piece between bold face brackets is an optional part of the phrase.

3. A field declaration may not use a FieldName that is used for some other
field declaration in the same class definition.

4. A FieldName whose declaration comes with an initialization “equation”
may not be used as a parameter in a constructor or in an “equation” in the
constructor body.

Figure 35: The grammar of ProfessorJ: Beginner
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Figure 35 summarizes the grammar of ProfessorJ’s Beginner language in
the familiar style of informal data definitions.

Lastly, Java supports two styles of comments though we use only so-
called end-of-line comments:

// two slashes turn the rest of a line into a comment

Look up “block comments” for Java on-line.

Meaning

You can specify only one form of computation in the Beginner language of
ProfessorJ: the creation of objects. Specifically, a constructor call creates an
instance of a class. Such an instance is a single piece of data that possibly
consists of many different pieces of data. To be precise, an instance consists
of as many pieces of data as there are fields in the class. Each field con-
tains a value, which is either computed directly next to the field or in the
constructor.

Consider the following program, which consists of one class definition:

class Posn {
int x;
int y;

Posn(int x, int y) {
this.x = x;
this.y = y;

}
}

In this context, you can evaluate a constructor call such as this one:

new Posn(3,4)

This creates an instance of Posn whose x and y fields contain the values 3
and 4, respectively. If you enter the expression at the prompt of ProfessorJ’s
interactions window, you see this response:

Posn(x = 3, y = 4)

In other words, the interactions window shows you the pieces of data that
make up an object.

Contrast the first example with this second program:
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class Ball {
int radius = 3; // pixels
int x;
int y;
Ball(int x, int y) {

this.x = x;
this.y = y;
}
}

Creating an instance of Ball uses just two ints: one for the x field and one for
y. The resulting instance, however, has three fields, that is, the interactions
window displays a constructor call such as

new Ball(1,2)

as an object with three fields:

Ball(radius = 3,
x = 1,
y = 2)

Next, if your program contains the above definition of Posn and the
following UFO class definition

class UFO {
Posn location;
int WIDTH = 20
int HEIGHT = 2;
int RADIUS = 6;

UFO(Posn location) {
this.location = location;

}
}

then the constructor call

new UFO(new Posn(3,4))

creates an instance of UFO whose four fields contain new Posn(3,4), 20, 2,
and 6, respectively. ProfessorJ displays such an instance as follows:

UFO(location = Posn(x = 3,
y = 4),
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WIDTH = 20,
HEIGHT = 2,
RADIUS = 6)

Syntax Errors, Type Errors, and Run-time Errors

Errors in ProfessorJ come in four flavors, one more than in Scheme: syntax
errors, type errors, run-time errors, and logical errors. For now, we ignore
the last and focus on the first three. Your program suffers from a SYNTAX

ERROR if its composition violates a grammar rule. Even if the program is
grammatically well-formed, ProfessorJ may still reject it and signal a TYPE

ERROR, meaning the type specification of a field or a constructor parameter
conflict with the kind of value that the corresponding expression produces.

If your program satisfies both the grammatical rules and the typing
rules, ProfessorJ executes your program. You may then evaluate expres-
sions in this context in the interactions window. All of these expressions
just end up creating an object. Soon you will see, however, that expressions
may also employ arithmetic, including division. Thus, they may attempt to
divide a number by 0, in which case, ProfessorJ signals a RUN-TIME error.

Of the three errors mentioned in the section title, you are most familiar
with the run-time errors of ProfessorJ’s Beginner language because the se-
mantics of this language is closely related to Scheme’s. For that reason and
because Beginner is too small to allow any run-time errors, the rest of this
section focuses on syntax errors, which are different from those in Scheme,
and type errors, which How to Design Programs doesn’t cover at all.

Syntax or grammatical errors are usually easy to spot once they are
high-lighted. For practice, let’s consider a couple of grammatically ill-
formed Java phrases, starting with this:

class Ball {
int x = 3;
Ball() {}
}

class Ball {
int y;
Ball(int y) {

this.y = y;
}
}
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This sequence of definitions consists of two class definitions, both using the
name Ball, which violates a basic constraint about programs. The following
single class definition violates a similar constraint for fields, using x twice:

class Ball {
int x;
int x;
Ball(int x, int y) {

this.x = x;
this.y = y;
}
}

In addition, the constructor refers to the field y, which isn’t declared.

Exercises

Exercise 7.1 Identify the grammatical correct programs and class defini-
tions from the following list; for incorrect ones, explain the error message
that ProfessorJ produces:

1. a program that consists of an interface and a class:

interface Automobile { }

class Automobile {
int consumption; // miles per gallon
Automobile( int consumption) {

this.consumption = consumption;
}
}

2. another program that consists of an interface and a class:

interface IVehicle { }

class automobile implements IVehicle {
int Consumption; // miles per gallon
automobile(int Consumption) {

this.Consumption = Consumption;
}
}
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3. a program that consists of a single class definition:

class Automobile {
int consumption; // miles per gallon
Automobile(int x) {

this.consumption = consumption;
}
}

4. a second program that consists of one class:

class Door {
int width;
int height;
String color = "yellow";
Door(int width, int height, String color) {

this.width = width;
this.height = height;
this.color = color;
}
}

5. and a last program that consists of one class:

class Window {
int width;
int height;
Window(int width) {

this.width = width;
}
}

Is there a grammatically correct program that violates a convention?

Exercise 7.2 Suppose the definitions window contains one definition:

class Ball {
int x;
Ball(int x) {

this.x = x;
}
}
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After clicking RUN, evaluate the following three expressions in the inter-
actions window:

1. new Ball(3,4)

2. new Ball(new Posn(3,4))

3. new Ball(3)

Predict what happens. For incorrect ones, explain the error message.

Exercise 7.3 Can you spot any grammatical mistakes in these definitions:

1.

class Ball {
int x;
Ball(int x, int x) {

this.x = x;
}
}

2.

class Ball {
int x;
int y;
int x;
Ball(int x, int y) {

this.x = x;
this.y = y;
}
}

3.

class Ball {
int x;
int y;
Ball(int x, int y) {

this.x = x;
this.y = y;
this.x = x;
}
}
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For incorrect ones, explain the error message that ProfessorJ produces.

Since type errors aren’t covered in How to Design Programs, let’s study
a couple of examples before we discuss their general nature. Suppose you
define a class like this:

class Weight {
int p = false;
Weight() {}
}

Although this definition is grammatically correct, its field declaration is
wrong anyway. Specifically, while the field declaration specifies that p is an
int, the initialization “equation” has false on the right-hand side, which is a
boolean value not an int.

Similarly, if you enter

new Weight(false)

at the prompt of the interactions window in the context of this definition:

class Weight {
int p; // pounds
Weight(int p) {

this.p = p;
}
}

ProfessorJ signals an error with the message

Constructor for Weight expects arguments with
type int, but given a boolean ...

and highlights the constructor call. The reason is that the constructor defi-
nition specifies that the constructor consumes an int but the constructor call
supplies a boolean instead.

In general, type errors are mismatches between a specified (or expected)
type for an expression and the type that the expression actually has. For the
first example, the difference between expected type and actual type was im-
mediately apparent. For the second example, the specified type is attached
to a parameter of the constructor; the actual type of false is boolean.

To generalize properly, we need to understand what it means to deter-
mine an expression’s ACTUAL TYPE. Every primitive value has an obvious
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actual type. For example, 5’s actual type is int; false’s type is boolean; 4.27
is a double; and "four" belongs to String. A constructor call of the shape

new ClassName(Expr, . . . )

has the actual type ClassName. Finally, the last kind of expression in our
grammar is the name of a field. When a field name occurs as an expression,
its actual type is the type that comes with the field declaration.

Sadly, determining the actual type of an expression isn’t quite enough;
we must also discuss SUBTYPing. If the class ClassName implements the
interface InterfaceName, then the latter is a SUBTYPE of the former. Alter-
natively, people say ClassName is below InterfaceName. When Java matches
types, it often allows an expression with a subtype of the expected type.

Now that we understand what an actual type is and what subtyping
is, understanding a type mismatch is relatively straightforward. Here are
some canonical examples of the mismatches that can happen in ProfessorJ’s
Beginner language:

1. if a field declaration comes with an initialization “equation” then the
field type may not match the actual type of the expression on the
right-hand side of the = sign.

Example:

class Ball {
int radius = 4.2; // int doesn’t match double
. . .

The problem shows up in other guises, too. Consider the following
(partial) union:

Example:

interface IVehicle { }

class Boat implements IVehicle {
Boat() { }
}

If the program also contains this definition,

class SUV {
SUV() { }
}
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then the following example class contains one correct and one incor-
rect field declaration:

class ExamplesOfVehicles {
IVehicle one = new Boat();
IVehicle two = new SUV(); // SUV is unrelated to IVehicle
ExamplesOfVehicles() { }
}

Specifically, the second field declaration in ExamplesOfVehicles spec-
ifies on the left-hand side that two should always stand for objects
of type IVehicle. The right-hand side, however, creates an instance of
SUV, which doesn’t implement IVehicle and is therefore unrelated to
the interface as a type.

2. if a field declaration (without initialization) specifies one type and
the corresponding parameter of the constructor has a different type,
then the field type doesn’t match the type of the expression in the
corresponding constructor “equation:”

Example:

class Ball {
int radius;
Ball(double radius) {

this.radius = radius;
}
. . .
}

3. if a constructor declaration specifies the type some parameter as one
type, then the corresponding argument in a constructor call for this
class must have an actual type that is below the expected type:

Example:

class Weight {
int p;
Weight(int p) {

this.p = p;
}
}
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new Weight("three") // Weight expects an int, not a String

Here is a second type error of this kind: Example:

class Location {
int x;
int y;
Location(int x, int y) {

this.x = x;
this.y = y;
}
}

class Ball {
double r = 3.0;
Location p = new Location(1,this.r) ;

Ball() { }
. . .
}

In this case, r has type double and is used as the second argument in
the gray-shaded constructor call but Location’s constructor expects an
int in this position.

4. if a constructor declaration specifies n parameters and a constructor
for this call has a different number of arguments, the type of the con-
structor call doesn’t match the type of the constructor.

Example:

class Point1 {
int x;
Point1(int x) {

this.x = x;
}
}

new Point1(3,4) // Point1 is applied to two arguments

While four kinds of type mismatches or type errors doesn’t look like a lot,
keep in mind that our language is growing and that every time you find
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out about a new construct of a language, it may also introduce new kinds
of type errors.

Exercises

Exercise 7.4 Identify what kind of type errors the following programs con-
tain:

1.

class Employee {
String fst;
String lst;
Employee(String fst, int lst) {

this.fst = fst;
this.lst = lst;
}
}

2.

class Employee {
String fst;
String lst;
Employee(String fst, String lst) {

this.fst = fst;
this.lst = lst;
}
}

new Employee("Matthias", 1)

3.

class Customer {
String name;
Customer(String name) {

this.name = name;
}
}
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new Employee("Matthias", 1)

4.

interface IPerson {}

class Employee implements IPerson {
String fst;
String lst;
Employee(String fst, int lst) {

this.fst = fst;
this.lst = lst;
}
}

class Customer {
String name;
Customer(String name) {

this.name = name;
}
}

class Transaction {
IPerson c = new Customer("Kathy Gray");
IPerson e = new Employee("Matthew", "Flatt");
Transaction() { }
}

Explain them in terms of the enumeration of type errors in this section.

Exercise 7.5 Consider the following program:

interface IRoomInMUD { }

class TowerRoom implements IRoomInMUD { . . . }

class WidowsWalk { . . . }
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class SetUp {
IRoomInMUD room;
SetUp(IRoomInMUD room) {

this.room = room;
}
}

If you hit RUN and evaluate the following two constructor calls, which one
creates an object and which one signals a type error:

1. new SetUp(new WidowsWalk(. . . ))

2. new SetUp(new TowerRoom(. . . ))

What kind of type error is signaled?
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Purpose and Background

The objective of this chapter is to develop the basic skills for designing
methods.

We assume that students understand the design of structurally recur-
sive functions in the spirit of Parts I, II, and III of How to Design Programs
plus simple accumulator-style functions from Part VI. Our methods with
accumulators are relatively simple; students may understand them with-
out the necessary background from Part VI, if they have a strong under-
standing of function design in general.

By the end, students should be able to add methods to a system of
classes in a systematic manner. This includes conditional methods, method
composition, and wish lists of methods. Adding a method systematically
means designing it according to the structure of the class definition and
using five steps: purpose statements and signatures; examples; templates;
full definitions; and tests.
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TODO

– make sure to introduce import draw.* in chapter 2 properly
– does the code need import hints?
– introduce and explain String.valueOf early
– structural (visual) clues for the examples of section 12 (shapes)?
– somewhere in the abstraction chapter we need to place a warning that

lifting textually identical methods isn’t always possible.
– introduce error properly
– should we encourage students to develop stubs instead of just head-

ers?



II Functional Methods

Once you have designed a data representation for the information in your
problem domain, you can turn your attention to the design of functions
on this data. In an object-oriented language, functions are implemented
as methods. In this chapter, you will learn to design methods following
the same systematic discipline that you already know from How to Design
Programs. It starts with a brief introduction to expressions, in general, and
method calls, in particular, and then explains how to add methods to more
and more complex forms of class hierarchies. The organization of this chap-
ter is parallel to that of chapter I.

8 Expressions 1, Computing with Primitive Types

For the primitive types int, double, and boolean, Java supports a notation for
expressions that appeals to the one that we use in arithmetic and algebra
courses. Thus, for example, we can write

. . . 10 ∗ 12.50 . . .

or
ProfessorJ:

Interactions Window. . . width ∗ height . . .

if width and height are method parameters of type int, or

. . . Math.PI ∗ radius . . .

if radius is a method parameter of type int or double. For now, think of
Math.PI as a name with a dot that has the expected meaning, i.e., the best
possible approximation of π in Java.

The && operator computes the conjunction of two boolean expressions
(are both true?); || is for the disjunction of two boolean expressions (is one
of them true?); and ! is for the logical negation (is the opposite true?). For
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symbol arity parameter types result example
! unary boolean boolean !(x < 0) logical negation

&& binary boolean, boolean boolean a && b logical and
|| binary boolean, boolean boolean a || b logical or

+ binary numeric, numeric numeric x + 2 addition
− binary numeric, numeric numeric x − 2 subtraction
∗ binary numeric, numeric numeric x ∗ 2 multiplication
/ binary numeric, numeric numeric x / 2 division

< binary numeric, numeric boolean x < 2 less than
<= binary numeric, numeric boolean x <= 2 less or equal
> binary numeric, numeric boolean x > 2 greater than
>= binary numeric, numeric boolean x >= 2 greater or equal
== binary numeric, numeric boolean x == 2 equal

Figure 36: Some operators for numbers and booleans

example: . . . (0 < x) && (x < 10) . . . determines whether 0 is less than x (int
or double) and x is less than 10.

Like mathematics (and unlike Scheme), Java comes with precedence
rules so that 0 < x && x < 10 also works as expected. If you recall all these
precedence rules, and if you have the courage to guess at precedences when
you see new and unfamiliar operators, drop the parentheses; it you’re like
us, you will use parentheses anyway, because you never know who’s going
to read your program.

Figure 36 introduces some basic arithmetic, relational, and boolean op-
erators for int, double, and boolean. Take a quick look now, mark the page,
and consult the table when a need for these operators shows up in the fol-
lowing sections and exercises; it’s also okay to guess on such occasions and
to check your guess in ProfessorJ’s interactions window.

For Java, the primitive type String is a class just like those we have de-
fined in the first chapter. Each specific string is an instance of this class. The
String class is a bit unusual in that Java doesn’t require us to write

new String("hello world")
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if we wish to create a new instance of a string. Just putting a sequence of
keyboard characters between quotation marks turns them into a string.12

Java provides some operators for processing Strings—try "hello"+"world"
at the prompt of the interaction window when you have become an Ad-
vanced ProfessorJ programmer—but in general, you really need to under-
stand method calls to process Strings.

9 Expressions 2, Method Calls

A method is roughly like a function. Like a function, a method consumes
data and produces data. Unlike a function, however, a METHOD is associ-
ated with a class. When the method is called, it always receives at least one
argument: an instance of the class with which the method is associated; we
call it the method’s “main” argument. Because of that, a Java programmer
does not speak of calling functions for some arguments, but instead speaks
of INVOKING a method on an instance or object.

Let’s make this analogy concrete. Consider the Scheme function call

(string-length "hello world")

The function name is string-length, which is a primitive function for strings.
Its result is the number of characters in the given string, i.e., 11 in this ex-
ample.

ProfessorJ:
Interactions Window

To compute the length of the same string in Java, we use the length
method from the String class like this:

"hello world" . length()

That is, we write down the object first, followed by a dot, the name of the
method, and a possibly empty sequence of arguments enclosed in paren-
theses. For emphasis, we have added optional spaces around the dot. De-
spite the radically different looks, the meaning of this method call is the
same as that of the function call. Just like the Scheme function call to string-
length, the Java method invocation of length consumes one string—"hello
world"—and computes its length—11.

Like Scheme function calls, method calls can consume several argu-
ments. For example,

"hello".concat("world")

12While new String("hello") is an expression that produces a string, its result is not the
same as "hello" but we ignore the difference for now.
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is a method invocation of concat for the String object "hello" with a second
argument: "world". The purpose is to compute the string that results from
concatenating "world" to the end of the primary argument, just like (string-
append "hello" "world") would. Of course, the result is "helloworld".

In general, a method call has this shape:

eObject.methodName(expression, . . . )

Here eObject is any expression that evaluates to an object and methodName
is a method defined in the class of which the object is an instance. As this
chapter shows, this could be the name of a field, the parameter of a method,
or an expression that computes an object:

"hello".concat(" ") .length()

In this example, the gray-shaded part is an expression that evaluates to a
String object, via a call to concat. Once the expression is evaluated (to "hello
"), the length method is called and produces 6.

method additional parameters result example
length int "abc".length()

computes the length of this string
concat String String "abc".concat("def")

juxtaposes this string and the given string
trim String "abc".trim()

removes white space from both ends of this

toLowerCase String "aBC".toLowerCase()
constructs a string with lowercase letters from this

toUpperCase String "aBC".toUpperCase()
constructs a string with uppercase letters from this

equals String boolean "abc".equals("bc")
is this string equal to the given one?

endsWith String boolean "abc".endsWith("bc")
does this string end with the give suffix?

startsWith String boolean "abc".startsWith("ab")
does this string start with the give suffix?

Figure 37: Some methods for String

In general, the String class provides many useful methods in addition
to the ones we encountered so far. The table in figure 37 lists and explains
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some basic String methods. Their names and purpose statements suggest
what they compute; explore their behavior in the Interactions window.

10 Methods for Classes

In How to Design Programs, function bodies are expressions, involving the
function parameters. If the given values are structures, function bodies
also use structure selectors; if the given values fall into distinct cases, a
conditional is used to distinguish the cases. The same is true for methods,
and this section shows how to design methods for basic classes.

10.1 Designs through Templates

Take a look at this revised version of our very first problem:

. . . Design a method that computes the cost of selling bulk
coffee at a specialty coffee seller from a receipt that includes
the kind of coffee, the unit price, and the total amount (weight)
sold. . . .

In section 2, we designed the Coffee class to represent the information about
a coffee sale. It is now time to design the method that actually computes
the cost of such a transaction.

Instead of plunging directly into the programming activity, let us recall
how we would design this function using the recipes from How to Design
Programs. The first step of our generic design recipe calls for the design of
a data representation; we already have that:

(define-struct coffee (kind price weight))
;; Coffee (sale) is:
;; — (make-coffee String Number Number)

The goal of the second step is to write down a contract, concise purpose
statement, and a function header:

;; cost : Coffee → String
;; to compute the total cost of a coffee purchase
(define (cost a-coffee) . . . )

Here a-coffee is the function parameter that stands for the instance of coffee
structure supplied with applications of cost.



88 Section 10

Next we must make up some examples, that is, function calls for cost
that illustrate what it should produce when given certain arguments. Nat-
urally, we use the examples from the problem statement (page 9):

(cost (make-coffee "Kona" 2095 100)) ; should produce
209500

Turn the other two data examples into functional examples, too.

The fourth step is the crucial one for most function designs. It requests
that we refine the function header to a function template by making all
the knowledge about the structure of the arguments explicit. After all, the
function computes the outputs from the given information. Since cost con-
sumes a structure—an instance of coffee—you have the structure itself and
all of its field values:

(define (cost a-coffee)
. . . (coffee-kind a-coffee) . . .
. . . (coffee-price a-coffee) . . .
. . . (coffee-weight a-coffee) . . . )

The template contains three (selector) expressions, because the coffee struc-
ture has three fields. Each expression extracts one value from a-coffee, the
parameter.

The transition from the template to the full function definition—the fifth
step—starts with an examination of the data that the function consumes.
The function must be able to compute the result from just these pieces of
data. Here we need only two of the pieces, of course:

(define (cost a-coffee)
(∗ (coffee-price a-coffee) (coffee-weight a-coffee)))

The sixth and final step is to test the examples that we worked out above.

In Java, we don’t design independent functions. As we already know
from section 9, we instead design methods that are a part of a class. Later
we invoke the method on an instance of this class, and this instance is the
method’s primary argument. Thus, if the Coffee class already had a cost
method, we could write in the example section

new Coffee("Kona", 2095, 100).cost()

and expect this method call to produce 209500.

Let’s try to develop this method systematically, following our well-
known design recipe. First we add a contract, a purpose statement, and
a header for cost to the Coffee class:
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// the bill for a coffee sale
class Coffee {

String kind;
int price; // in cents per pound
int weight; // in pounds

Coffee(String kind, int price, int weight) // intentionally omitted

// to compute the total cost of this coffee purchase [in cents]
int cost() { . . . }
}

The purpose statement for the method is a comment just like the purpose
statement for the class. The contract is no longer a comment, however.
It is an integral part of a Java method. In the terminology of Java, it is
a METHOD SIGNATURE. The int to the left of cost says that we expect the
method to produce an integer; the purpose statement reminds us that it is
the number of cents.

At first glance, the signature also seems to say that cost doesn’t con-
sume anything, but remember that cost is always invoked on some specific
instance of Coffee (and one could say it consumes an instance of Coffee).
Furthermore, this instance is the primary argument to the method, and it
therefore has a standard (parameter) name, this, which you never need to
include in the parameter list explicitly. We can thus use this in the pur-
pose statement—reminding readers of the role of the special argument—
and method body to refer to the instance of Coffee on which cost is invoked:

inside of Coffee :
// to compute the total cost of this coffee purchase [in cents]
int cost() { . . . this . . . }

Note: To avoid wasting space, we show only the modified parts of a class.
The underlined phrase is there to remind you where the fragment belongs.

Now that we have clarified the basic nature of the method, let’s refor-
mulate the functional examples in Java:

ProfessorJ:
Examples & TestsCoffee c = new Coffee("Kona", 2095, 100)

. . .
check c.cost() expect 209500

That is, in the context of an existing example, we invoke the cost method.
Reformulate the other examples from the Scheme approach in Java.

The next step is to formulate the template. Recall that the template ex-
presses what we know about the argument(s). In our running example, the
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“input” is this instance of the class. Each instance consists of three pieces
of data: the kind, the price, and the weight. In Scheme, we use special func-
tions, the selectors, to extract the relevant pieces. In Java, we access an
object’s fields with the dot notation. In general, we write:

object . field

Since we wish to access the fields of this object, we write this.kind, this.
price, and this.weight in the method body to create the template:

inside of Coffee :
// to compute the total cost of this coffee purchase
int cost() {

. . . this.kind . . . this.price . . . this.weight . . .
}

The rest is easy. We must decide which pieces of the template are rele-
vant and how to use them. In our running example, the two relevant pieces
are this.price and this.weight. If we multiply them, we get the result that we
want:

inside of Coffee :
// to compute the total cost of this coffee purchase
int cost() {

return this.price ∗ this.weight;
}

The return keyword points the reader to the expression in a method body
that produces the result of a method call. While it is obvious here because
there is just one way to compute the result, you may already be able to
imagine that such a hint can be useful for conditional expressions. The
complete class definition including the method is shown in figure 38.

The figure also contains an extended class diagram. In this new dia-
gram, the box for Coffee consists of three compartments. The first still names
the class, and the second still lists the fields that each instance has. The
third and new compartment is reserved for the method signatures. If the
method’s name doesn’t sufficiently explain the computation of the method,
we can also add the purpose statement to the box so that the diagram can
tell the story of the class by itself.

ProfessorJ:
Automatic Tests

Finally, the figure extends the examples class from chapter I (page 15).
In addition to the sample instances of Coffee, it also contains three test fields:
testKona, testEthi, and testColo. Like the example fields, these test fields are
also initialized. The right-hand side of their initialization “equation” is a
check . . . expect . . . expression, which compares the result of a method call
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// represent a coffee sale:
// at which price, how much
// coffee was sold
class Coffee {

String kind;
int price;
int weight;

Coffee(String kind,
int price,
int weight) {

this.kind = kind;
this.price = price;
this.weight = weight;
}

// to compute the total cost
// of this coffee purchase
int cost() {

return this.price ∗ this.weight;
}
}

Coffee

String kind
int price [in cents per pound]
int weight [in pounds]

int cost()

// collect examples of coffee sales
class CoffeeExamples {

Coffee kona =
new Coffee("Kona",2095,100);

Coffee ethi =
new Coffee("Ethiopian", 800, 1000);

Coffee colo =
new Coffee("Colombian", 950, 20);

boolean testKona =
check this.kona.cost() expect 209500;

boolean testEthi =
check this.ethi.cost() expect 800000;

boolean testColo =
check this.colo.cost() expect 19000;

CoffeeExamples() { }
}

Figure 38: The cost method for the Coffee class

with an expected value and produces true or false. When you place the two
classes into the definitions window and run the program, ProfessorJ creates
an instance of CoffeeExamples and determines how many of the fields with
test in their name are true.

Some methods must consume more data than just this. Let us see how
the design recipe applies to such problems:

. . . The coffee shop owner may wish to find out whether a
coffee sale involved a price over a certain amount. . . .

Clearly, a method that can answer this question about any given instance
of coffee must consume a second argument, namely, the number of cents
with which it is to compare the price of the sale’s record.

First we write down the purpose statement and the signature:
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inside of Coffee :
// to determine whether this coffee’s price is more than amt
boolean moreCents(int amt) { . . . }

The purpose statement again reminds us that moreCents consumes two ar-
guments: this and amt. Second, we make a couple of examples:

check new Coffee("Kona", 2095, 100).moreCents(1200) expect true
check new Coffee("Columbian", 950, 200).moreCents(1000) expect false

To practice your design skills, explain the expected results.
The template for this method is exactly that for cost:

inside of Coffee :
// to determine whether this coffee’s price is more than amt
boolean moreCents(int amt) {

. . . this.kind . . . this.price . . . this.weight
}

We do not have to include anything about the second argument, amt, be-
cause it is a part of the signature and its type is just int, i.e., atomic data.

The only relevant pieces of data in the template are amt and this.price:

inside of Coffee :
// to determine whether this coffee’s price is more than amt
boolean moreCents(int amt) {

return this.price > amt;
}

Don’t forget that the last step of the design recipe is to run the examples
and to check that the method produces the expected results. So, turn the
examples into additional test fields in CoffeeExamples (from figure 38).

Lastly, methods may also have to consume instances of classes, not just
primitive values, as their secondary arguments. Take a look at this problem:

. . . The coffee shop owner may also wish to find out whether
some coffee sale involved more weight than some given coffee
sale. . . .

Naturally, a method that compares the weight for two kinds of coffee con-
sumes two instances of Coffee. We call them this and, by convention, that in
the purpose statement:

inside of Coffee :
// to determine whether this coffee sale is lighter than that coffee sale
boolean lighterThan(Coffee that) { . . . }
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Let’s make up some examples:

check new Coffee("Kona", 2095, 100)

.lighterThan( new Coffee("Columbian", 950, 200) ) expect true

check new Coffee("Ethiopian", 800, 1000)

.lighterThan( new Coffee("Columbian", 950, 200) ) expect false

The gray-shaded boxes represent that, the second argument to lighterThan.
For both cases, the answers are obvious because in order to determine
whether one coffee sale involves less weight than the other, we just com-
pare the weights in each.

In the template for a method such as lighterThan, we write down the
fields for this and the fields for the instance of the other argument. Re-
member that that.kind extracts the value from the kind field of the object
that:

inside of Coffee :
// to determine whether this coffee sale is lighter than that coffee sale
boolean lighterThan(Coffee that) {

. . . this.kind . . . that.kind . . . // String

. . . this.price . . . that.price . . . // int

. . . this.weight . . . that.weight . . . // int
}

Note how we have added comments about the types of the fields in this
template. Adding type annotations is useful when you move from the tem-
plate step to the method definition step.

Of course, the only relevant fields are the weight fields, and so we get
this complete and simple definition:

inside of Coffee :
// to determine whether this coffee sale is lighter than that coffee sale
boolean lighterThan(Coffee that) {

return this.weight < that.weight;
}

Now test the method to validate the examples that we made up. The com-
plete code for the Coffee class is displayed in figure 39.

10.2 Finger Exercises

Exercise 10.1 Recall the class Image from exercise 2.3. Design the following
methods for this class:



94 Section 10

// represent a coffee sale:
// at which price how much coffee was sold
class Coffee {

String kind;
int price;
int weight;

Coffee(String kind, int price, int weight) {
this.kind = kind;
this.price = price;
this.weight = weight;
}

// to compute the total cost
// of this coffee purchase
int cost() {

return this.price ∗ this.weight;
}

// to determine whether this
// coffee’s price is more than amt

boolean moreCents(int amt) {
return this.price > amt;
}

// to determine whether this coffee sale
// involves less weight than that coffee sale
boolean lighterThan(Coffee that) {

return this.weight < that.weight;
}
}

Coffee

String kind
int price [in cents per pound]
int weight [in pounds]

int cost()
boolean moreCents(int amt)
boolean lighterThan(Coffee that)

Figure 39: The Coffee class with methods

1. isPortrait, which determines whether the image’s height is larger than
its width;

2. size, which computes how many pixels the image contains;

3. isLarger, which determines whether one image contains more pixels
than some other image; and
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4. same, which determines whether this image is the same as a given
one.

Also draw a complete class diagram (by hand).

Exercise 10.2 Develop the following methods for the class House from ex-
ercise 3.1:

1. isBigger, which determines whether one house has more rooms than
some other house;

2. thisCity, which checks whether the advertised house is in some given
city (assume we give the method a city name);

3. sameCity, which determines whether one house is in the same city as
some other house.

Before you design the method, draw a complete class diagram for House
(by hand).

Exercise 10.3 Here is a revision of the problem of managing a runner’s log
(see figure 7, page 20):

. . . Develop a program that manages a runner’s training log.
Every day the runner enters one entry concerning the day’s run.
. . . For each entry, the program should compute how fast the
runner ran in minutes per mile.13 . . .

Develop a method that computes the pace for a daily entry.

Exercise 10.4 A natural question concerning Dates (see figure 7, page 20) is
whether one occurs earlier than another. Develop the method earlierThan.

Hint: The first possibility is that year of the first date is smaller than the
year of the second. Next, what do you do if the years are the same?

10.3 Designing Methods for Classes

The examples in this section validate the design recipe from How to Design
Programs again. Specifically, steps 2 through 6 of the design recipe for func-
tions on structures work for methods in basic classes (i.e., classes without
references to other classes), too. So from now on, when you are to design a
method for a basic class,

13Although speed is usually measured in “miles per minute,” i.e., distance over time,
runners usually care more about how many minutes and seconds they need per mile than
speed per se.
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1. formulate a purpose statement and a method header;

2. illustrate the purpose statement with functional examples;

3. lay out what you know about the method’s argument(s) in a template;

In the case of basic classes, the template consists of the parameters,
this, and all the fields of the class written as this.fieldname. Typically
we just write down the latter.

4. define the method; and

5. run the examples as tests.

Keep these steps in mind as you encounter more complex forms of data
than plain classes.

10.4 Conditional Computations

Like functions, methods must sometimes distinguish different situations
and compute results according to the given situation. How to Design Pro-
grams poses a simple example with the problem of computing the interest
earned for a bank certificate of deposit:

. . . Develop a method that computes the yearly interest for cer-
tificates of deposit (CD) for banks. The interest rate for a CD de-
pends on the amount of deposited money. Currently, the bank
pays 2% for amounts up to $5,000, 2.25% for amounts between
$5,000 and $10,000, and 2.5% for everything beyond that. . . .

Since the problem statement contains descriptions of intervals, the problem
analysis includes a graphical rendering of these intervals:

0 5000 10000

[ )[ )[ -------------------------

This picture is a good foundation for the construction of both the example
step as well as the template step later.

First, however, we must represent the major problem information—
bank certificates of deposit—in our chosen language, i.e., as a class:

// represent a certificate of deposit
class CD {

String owner;
int amount; // cents
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CD(String owner, int amount) {
this.owner = owner;
this.amount = amount;

}
}

In reality, an account would contain many fields representing the owner(s),
tax information about the owner(s), account type, and many other details.
For our little problem, we use just two fields: the owner’s name and the
deposited amount.

Translating the intervals from the problem analysis into tests yields
three “interior” examples:

check new CD("Kathy", 250000).interest() expect 5000.0
check new CD("Matthew", 510000).interest() expect 11475.0
check new CD("Shriram", 1100000).interest() expect 27500.0

For each example, we multiply the percentage points with the amount and
divided by 100. (Why?) Add examples that determine how rate works for
borderline examples. If the problem statement isn’t clear to you, make up
your mind for the two borderline cases and proceed.

Working through the examples clarifies that this method needs to dis-
tinguish three situations. More precisely, the computations in the method
body depend on the deposited amount of money. To express this kind of
conditional computation, Java provides the so-called IF-STATEMENT, which
can distinguish two possibilities:

if (condition) {
statement1 }

else {
statement2 }

As the notation suggests, an if-statement tests a condition—an expression
that produces a boolean value—and selects one of two statements, depend-
ing on whether condition evaluates to true or false. The only statement you
know so far is a return statement, so the simplest if statement looks like
this:

if (condition) {
return expression1; }

else {
return expression2; }

Of course, as their name suggests if statements are also statements, so re-
placing statement1 or statement2 in the schematic if is legitimate:
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if (condition) {
return expression1; }

else {
if (condition2) {

return expression2; }
else {

return expression3; } }

Here we replaced statement2 with the gray-shaded if statement. The com-
plete statement thus distinguishes three situation:

1. if condition holds, the computation proceeds with return expression1;

2. if condition doesn’t hold but condition2 holds; then the computation
proceeds with return expression2;

3. and if neither condition1 nor condition2 evaluates to true, then the com-
putation proceeds with return expression3.

The analysis and the examples distinguish three situations so we do
need two if statements as shown above:

inside of CD :
// compute the interest rate for this account
double interest() {

if (0 <= this.amount && this.amount < 500000) {
. . . this.owner . . . this.amount . . . }

else { if (500000 <= this.amount && this.amount < 1000000) {
. . . this.owner . . . this.amount . . . }

else {
. . . this.owner . . . this.amount . . . }

}
}

From the first design recipe we know to use this.amount; the tests come
from the pictorial analysis of the problem.

The ownership data naturally plays no role for the computation of the
interest rate. So finishing the definition from the template is easy:
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inside of CD :
// compute the interest rate for this account
double interest() {

if (0 <= this.amount && this.amount < 500000) {
return 2.00 ∗ this.amount; }

else { if (500000 <= this.amount && this.amount < 1000000) {
return 2.25 ∗ this.amount; }

else {
return 2.50 ∗ this.amount; }

}
}

Your task now is to formulate an examples class and the method examples
as tests in the same class. When you are done you may also ponder the

ProfessorJ:
Testing with doubles

following challenge:

. . . The bank has decided that keeping track of fractional cents
no longer makes any sense. They would like for interest to re-
turn an int. . . .

Find the documentation for Java’s Math class and read up on Math.round.
Then modify the design of interest appropriately, including the tests.

Let’s look at a second example. Suppose your manager asks you for
some exploratory programming:

// represent a falling
// star on a 100 x 100 canvas
class Star {

int x = 20;
int y;
int DELTA = 5;

Star(int y) {
this.y = y;

}
}

. . . Develop a game based on the
Grimms brothers’ fairy tale called
“Star Thaler.” . . . Your first task is
to simulate the movement of the
falling stars. Experiment with a
single star that is falling straight
to the ground at a fixed number
of pixels per time unit on a 100×
100 canvas. Once the star has
landed on the ground, it doesn’t
move anymore. . . .

For good measure, your manager has already designed a data represen-
tation according to the design recipe. A falling star has a location, which
means x and y coordinates, and it moves downward at some fixed rate.
Hence the class has three fields. The x coordinate and the rate of descend
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DELTA are always the same for now; the y coordinate increases14 continu-
ously.

Your task is to develop the method drop, which creates a new star at a
different position. Following the design recipe you extract a concise pur-
pose statement for the method from the problem statement:

inside of Star :
// drop this Star by DELTA pixels,
// unless it is on (or close) to the ground
Star drop() {

. . . this.y . . . this.DELTA . . .
}

Here the purpose statement just reformulates two sentences from the prob-
lem statement. It naturally suggests that there are two distinct kinds of
stars: one that is falling and one that has landed. This, in turn, means that
we need at least two kinds of examples:

Star s = new Star(10)
Star t = new Star(100)

check s.drop() expect new Star(15)
check t.drop() expect new Star(100)

The first example, s, represents a free-falling star in the middle of the can-
vas. The second one, t, is a star on the ground; this kind of star doesn’t
move anymore. Of course, the two examples also point out that we don’t
know what happens when the star is close to the ground. Since the prob-
lem statement seems to imply that stars just land on the ground and then
stop, we should add one more test case that clarifies this behavior:

check new Star(98).drop() expect new Star(100)

That is, once the star is close enough, drop just creates a star that has landed.

Using an if-statement, we can finish the template for drop:

14Remember that on a computer, the origin of the Cartesian grid is in the upper left.
Going to the right increases the x value, going down increases the y value.
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// represent a falling star
// on a 100 x 100 canvas
class Star {

int x = 20;
int y;
int DELTA = 5;

Star(int y) {
this.y = y;

}

// drop this Star by DELTA pixels,
// unless it is on or close to the ground
Star drop() {

if (this.y + this.DELTA >= 100) {
return new Star(100); }

else {
return new Star(this.y + this.DELTA); }

}
}

Star

String kind
int x = 20
int y
int DELTA = 5

int drop()

Figure 40: A falling star

inside of Star :
// drop this Star by DELTA pixels, unless it is on or near the ground
Star drop() {

if (this.y + this.DELTA >= 100)
. . .

else // the star is in the middle of the canvas
. . .

}

Remember that if you can distinguish different intervals in a numeric type
or different cases in another atomic type of data, a template distinguishes
as many situations as there are sub-intervals (cases).

Now take a look at figure 40, which contains the full method definition
for drop. If the condition holds, the method returns a star at height 100 (the
ground level); otherwise, it actually creates a star that has dropped by a
few pixels.

A bit of reflection suggests that we could have easily decided to distin-
guish three different situations:
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0

t97

100

inside of Star :

// drop this Star by DELTA pixels,
// unless it is on or near the ground
Star drop() {

if (this.y + this.DELTA < 97) {
return . . . ; }

else { if (this.y + this.DELTA < 100) {
return . . . ; }

else { // this star has landed
return . . . ;
}
}

}

On the left you see a number line with the appropriate sub-intervals, just
like in How to Design Programs. There are three: from 0 to 97 (exclusive);
from 97 (inclusive) to 100 (exclusive); and 100. On the right, you see a
template that distinguishes the three situations. It uses two if statements,
one followed by another. In principle, you can chain together as many of
them as are necessary; the details are explained in the next intermezzo.

Exercises

Exercise 10.5 Modify the Coffee class from figure 38 so that cost takes into
account bulk discounts:

. . . Develop a program that computes the cost of selling bulk
coffee at a specialty coffee seller from a receipt that includes
the kind of coffee, the unit price, and the total amount (weight)
sold. If the sale is for less than 5,000 pounds, there is no dis-
count. For sales of 5,000 pounds to 20,000 pounds, the seller
grants a discount of 10%. For sales of 20,000 pounds or more,
the discount is 25%. . . .

Don’t forget to adapt the examples, too.

Exercise 10.6 Take a look at this following class:
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// represent information about an image
class Image {

int width; // in pixels
int height; // in pixels
String source;

Image(int width, int height, String source) {
this.width = width;
this.height = height;
this.source = source;

}
}

Design the method sizeString for this class. It produces one of three strings,
depending on the number of pixels in the image:

1. "small" for images with 10,000 pixels or fewer;

2. "medium" for images with between 10,001 and 1,000,000 pixels;

3. "large" for images that are even larger than that.

Remember that the number of pixels in an image is determined by the area
of the image.

Exercise 10.7 Your physics professor would like to simulate an experiment
involving bouncing balls. Design a class that represents a ball that is falling
on a 10 x 100 canvas at a rate of DELTA. That is, each time the clock ticks,
the ball drops by DELTA pixels.

When the ball reaches the bottom of the canvas, it bounces, i.e., it re-
verses course and travels upwards again. The bounce is perfect, meaning
the ball travels the full distance during the bounce. Put different, if the ball
is far enough away from a wall, it just travels DELTA pixels. If it is too close
for that, it drops by whatever pixels are left and then reverses course for
the remaining number of pixels. As it reverses course, it continues to travel
at the same speed.

Design the method move, which simulates one step in the movement of
the ball.

As you design conditional methods, don’t forget the design recipe from
How to Design Programsfor just this kind of function. If it is complex, draw a
number line to understand all the intervals (cases, enumerated items). Pick
examples from the interior of each interval and for all the borderline cases.
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// a certificate of deposit
class CD {

String owner;
int amount; // cents

CD(String owner, int amount) {
this.owner = owner;
this.amount = amount;

}

// compute the interest rate (in %) for this account
double rate() {

if (0 <= this.amount
&& this.amount < 500000) {
return 2.00; }

else { if (500000 <= this.amount
&& this.amount < 1000000) {

return 2.25; }
else {

return 2.50; }
}
}

// compute the interest to be paid for this account
double payInterest() {

return (this.rate() ∗ this.amount)/100;
}

}

CD

String owner
int amount

int  rate()
int payInterest()

Figure 41: A CD with interest payment

10.5 Composing methods

In How to Design Programs, we learned to create one function per task, espe-
cially if the tasks are complex. For example, a function for computing the
average of a series of numbers must compute their sum, count the numbers,
and divide the former by the latter. This means it involves two complex
tasks (adding, counting) that are best turned into separate functions.

The same guideline applies to the design of methods. When a method’s
task is complex, identify separate tasks and design a method for each task.
As you identify those auxiliary or helper tasks, create a wish list to keep
track of all the things to do.
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For a concrete example, consider figure 41. It displays a class for repre-
senting certificates of deposit that can also compute the amount of interest
that the bank must pay. The relevant method is called payInterest. It first
determines the appropriate interest rate with this.rate(), multiplies by the
deposit amount, and finally divides it by 100 because the rate is represented
as a percentage.

// information about an image
class Image {

int width;
int height;
String source;

Image(int width, int height, String source) {
this.width = width;
this.height = height;
this.source = source;

}

// is this image large?
String sizeString() {

if (this.area() <= 10000) {
return "small"; }

else { if (this.area() <= 1000000) {
return "medium"; }

else {
return "large"; }

}
}

// determine the (pixel) area of this image
int area() {

return this.width ∗ this.height;
}

}

Image

int width
int height
String source

String sizeString()
int area()

Figure 42: Images with area

A second example appears in figure 42. The Image class contains two
methods: sizeString and area. The former refers to the latter, because its re-
sult depends on the area that the image represents. Specifically, both condi-
tions in sizeString evaluate this.area() which computes the area of the image
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and then compare it to some given threshold.

In summary, the design of methods benefits from factoring tasks into
smaller, manageable units that you compose. Composing methods is as
natural as composing functions. As you do partition tasks, however, don’t
forget to design each of them systematically.

Exercises

Exercise 10.8 Study this class definition:

// the daily percipitation of three consecutive days
class Precipitation {

int day1;
int day2;
int day3;

Precipitation(int day1, int day2, int day3) {
this.day1 = day1;
this.day2 = day2;
this.day3 = day3;

}

// how much did it rain during these three days?
int cumulative() {

return this.day1 + this.day2 + this.day3;
}

}

Add the method average to this class definition. Follow the design recipe
and reuse existing methods, if possible.

Exercise 10.9 Design the class JetFuel, whose purpose it is to represent the
sale of some quantity of jet fuel. Each instance contains the quantity sold
(in integer gallons), the quality level (a string), and the current base price
of jet fuel (in integer cents per gallon). The class should come with two
methods: totalCost, which computes the cost of the sale, and discountPrice,
which computes the discounted price. The buyer gets a 10% discount if the
sale is for more than 100,000 gallons.
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11 Methods and Object Containment

Figure 43 displays a class diagram, two class definitions, and an examples
class in the lower left. The Rectangle class itself has three fields: two int
fields and one CartPt. The latter type is a reference to the second class,
which represents the Cartesian coordinates of a point.

Clearly the purpose of the two classes is to represent rectangles on the
Cartesian plane. Such rectangles have three characteristics: their width,
their height, and their location. If we assume that the rectangle’s sides are
parallel to the x and y axes, a single point in the plane determines the entire
rectangle. Let’s refer to this single point as the “anchor” point. Because we
are working with canvases on a computer monitor and because software
libraries place the origin in the top-left corner, we choose the rectangle’s
upper left corner as its anchor point.

Now consider this excerpt from a problem statement:

. . . Design a method that computes the distance of a Rectangle
to the origin of the canvas. . . .

Although a Rectangle has many points, your program should compute the
shortest distance between the rectangle and the top-left corner:

origin
canvasr

@
@
@R
distance0()

aRectangle
r

Even a cursory glance at this picture suggests that the shortest distance
between the Rectangle and the origin is the distance between its top-left
corner (anchor point) and the origin (see arrow).

The obvious conclusion from this problem analysis is that the problem
is really asking for the development of two methods: one for Rectangle and
one for CartPt. The second measures the distance of a CartPt to the origin
and the first measures the distance of a Rectangle to the origin:

inside of Rectangle :
// to compute the distance of
// this Rectangle to the origin
double distance0() { . . . }

inside of CartPt :
// to compute the distance of
// this CartPt to the origin
double distance0() { . . . }

The two purpose statements and method signatures just restate our inten-
tions with code. They also lead straight to the second step, the development
of examples for both methods:
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Rectangle

CartPt tlCorner
int width
int height

CartPt

int x
int y

class ShapeExamples {
CartPt p = new CartPt(3,4);
CartPt q = new CartPt(5,12);

Rectangle r = new Rectangle(p,5,17);
Rectangle s = new Rectangle(q,10,10);

ShapeExamples() { }
}

// a rectangle on a canvas, located
// at tlCorner, width pixels wide
// and height pixels high
class Rectangle {

CartPt tlCorner;
int width;
int height;

Rectangle(CartPt tlCorner,
int width,
int height) {

this.tlCorner = tlCorner;
this.width = width;
this.height = height;
}
}

// a Cartesian point on a canvas
// x pixels to the right of the upper
// left corner and y pixels down
class CartPt {

int x;
int y;

CartPt(int x, int y) {
this.x = x;
this.y = y;
}
}

Figure 43: A class of Rectangles

check p.distance0() expect 5
check q.distance0() expect 13

check r.distance0() expect 5
check s.distance0() expect 13

Make sure you understand the expected result for each example and that
you can associate it with the interpretation of the above sample picture.

Now it’s time to turn our attention to the template. According to the
basic design recipe, we first need to add one selector expression per field in
each method body:
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inside of Rectangle :

double distance0() {
. . . this.tlCorner . . .
. . . this.width . . .
. . . this.height . . .
}

inside of CartPt :
double distance0() {

. . . this.x . . .

. . . this.y . . .
}

The method template in Rectangle contains three expressions because the
class definition contains three fields; the same reasoning applies to the tem-
plate in CartPt. But, remember that the purpose of a template is to translate
the organization of the data definition into expressions. And given that we
use diagrams as data definitions, there is clearly something missing: the
arrow from Rectangle to CartPt.

A moment’s thought suggest that this containment arrow suggests the
natural connection between the two method templates:

inside of Rectangle :

double distance0() {
. . . this.tlCorner.distance0() . . .
. . . this.width . . .
. . . this.height . . .
}

inside of CartPt :
double distance0() {

. . . this.x . . .

. . . this.y . . .
}

The gray-shaded method call expresses this containment arrow. It reiter-
ates what we discovered through a careful analysis of the picture above. In
general terms, the arrow says that CartPt is a separate class; the method call
says that if we want to deal with properties of the tlCorner, we delegate this
computational task to the corresponding methods in its class.

From here, completing the method definitions is simple. The distance0
method in Rectangle invokes the distance0 method on the tlCorner object.
This replaces the task of computing the distance of the Rectangle to the ori-
gin with the task of computing the distance of a single point to the origin.
Whatever the latter produces is the result of the former, too—just like our
geometric reasoning suggested and the template development confirmed.

Do you remember the formula for computing the distance between two
points? If not, you will have to find (and pay) a geometry expert who
knows it:

√

x2 + y2

The complete method definitions are displayed in figure 44. The only un-
usual aspect of the figure is the name of the

√· operator: Math.sqrt. Like
Math.PI it contains a dot; again, just think of this name as strange for now.
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Rectangle

CartPt tlCorner
int width
int height

double distance0()

CartPt

int x
int y

double distance0()

class Rectangle {
CartPt tlCorner;
int width;
int height;

Rectangle(CartPt tlCorner, . . . )
int width,
int height) { . . . }

// to compute the distance of
// this Rectangle to the origin
double distance0() {

return
this.tlCorner.distance0();

}
}

class CartPt {
int x;
int y;

CartPt(int x, int y) { . . . }

// to compute the distance of
// this CartPt to the origin
double distance0() {

return
Math.sqrt(

this.x ∗ this.x
+
this.y ∗ this.y);

}
}

Figure 44: Rectangles and CartPts with methods

Let’s practice this design with the weather-record example from fig-
ure 11. A weather record consists of a date, three temperature ranges, and
the amount of today’s precipitation. The diagram contains three classes:
one for WeatherRecords, one for Dates, and one for TemperatureRanges. If
your company has contracts with meteorologists, you may one day en-
counter the following problem on your desk:
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WeatherRecord

Date d
TemperatureRange today
TemperatureRange normal
TemperatureRange record
double precipitation

Date

int day
int month
int year

TemperatureRange

int high
int low

. . . Design a method that
computes today’s
temperature differentials
from a weather record.
. . .

For good measure, the problem statement includes the old class diagram
for the problem. As you can tell, it contains not just one containment arrow,
like the previous example, but four of them.

Given the extra complication, let’s first make examples of these objects:
see figure 45, left-hand side. Interpret the examples in real world; try to
think of places that might have such weather records.

Now that you have a diagram and examples—it is easy to imagine the
actual class definitions by now—you can start with the design recipe for
methods. Figure 45 (right-hand side) contains a class diagram with proper
method signatures and a purpose statement for the main method. The
problem statement dictates the name and purpose statement for Weather-
Record; for the other two classes, the diagram contains only basic signa-
tures, because we don’t know yet what we need from them.

Using the class diagram, you can develop the method templates in a
straightforward manner:

// WeatherRecord
int differential() {

. . . this.date.lll() . . .

. . . this.today.nnn() . . .

. . . this.normal.nnn() . . .

. . . this.record.nnn() . . .

. . . this.precipitation . . .
}

// TemperatureRange

??? nnn() {
. . . this.low . . .
. . . this.high . . .
}

// Date
??? lll() {

. . . this.day . . .

. . . this.month . . .

. . . this.year . . .
}

The template in WeatherRecord contains five expressions because there are
five fields in the class definition. Due to the types of the first four fields, the
first four selectors are equipped with method calls to other method tem-
plates along the containment arrows. The other two method templates are
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class RangeExamples {
Date d1 =

new Date(2,9,1959);
Date d2 =

new Date(8,8,2004);
Date d3 =

new Date(12,12,1999);

TemperatureRange tr1 =
new TemperatureRange(66,88);

TemperatureRange tr2 =
new TemperatureRange(70,99);

TemperatureRange tr3 =
new TemperatureRange(28,31);

WeatherRecord r1 =
new(d1,tr1,tr2,tr3,0);

WeatherRecord r2 =
new(d2,tr2,tr3,tr1,10);

WeatherRecord r3 =
new(d3,tr3,tr1,tr2,9);

}

WeatherRecord

Date d
TemperatureRange today
TemperatureRange normal
TemperatureRange record
double precipitation

// compute the difference
// between today's high & low
int differential()

Date

int day
int month
int year

??? lll()

TemperatureRange

int high
int low

??? nnn()

Figure 45: Recording the weather

entirely routine.

A look at the template in WeatherRecord suffices to complete the defini-
tion:

inside of WeatherRecord :
int differential() {

return this.today.difference();
}

inside of TemperatureRange :

int difference() {
return this.high − this.low ;
}

The differential method requires only one field for its computation: today.
This field has a class type and therefore the method delegates a task to
the contained class. Here, it obviously delegates the task of computing the
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difference between the two temperature to the TemperatureRange class.
Obviously neither of the two examples is particularly complex, and you

could have programmed the method without any complex design recipe.
Keep in mind, however, that such examples must fit into the pages of a
book and real examples are much larger than that. Without a systematic
approach, it is easy to get lost.

11.1 Finger Exercises

Exercise 11.1 Recall the problem of designing a program that assists book-
store employees (see exercise 3.3). Add the following methods to the Book
class:

• currentBook, which checks whether the book appeared during a given
year;

• thisAuthor, which determines whether a book is written by the given
author;

• sameAuthor, which determines whether this book is written by the
same author as the given book.

Exercise 11.2 Exercise 3.2 provides the data definition for a weather record-
ing program. Design the following methods for the WeatherRecord class:

1. withinRange, which determines whether today’s high and low were
within the normal range;

2. rainyDay, which determines whether the precipitation is higher than
some given value;

3. recordDay, which determines whether the temperature broke either
the high or the low record.

11.2 Designing Methods for Classes that Contain Classes

Every time we encountered a new form of data in How to Design Programs,
we checked our design recipe and made sure it still worked. Usually we
added a step here or a detail there. For the design of classes, we need to do
the same.

In principle, the design recipe from section 10.3 applies to the case when
a class contains (or refers to) another class. Now, however, the wish list,
which we already know from How to Design Programs, begins to play a ma-
jor role:
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1. Formulate a method header and a purpose statement to the class to
which you need to add functionality; also add method headers to
those classes that you can reach from this class via containment ar-
rows. You may or may not need those auxiliary methods but doing
so, should remind you to delegate tasks when needed.

2. Illustrate the purpose statement with functional examples; you can
reuse the data examples from the design steps for the class.

3. Create the template for the method. Remember that the template con-
tains what you know about the method’s argument(s). This includes
schematic method calls on those selector expressions that refer to an-
other class in the diagram. In short, follow the (direction of the) con-
tainment arrow in the diagram.

4. Define the method. If the computation needs data from a contained
class, you will need to develop an appropriate method for this other
class, too. Formulate a purpose statement as you place the method
on the wish list.

5. Work on your wish list, step by step, until it is empty.

6. Run the functional examples for those classes that don’t refer to other
classes via containment arrows. Test the others afterwards.

12 Methods and Unions of Classes

The two preceding sections are reminders of the wish list and templates,
two central design concepts. As we know from How to Design Programs, the
former is essential when we design programs that consist of many func-
tions. We can’t do it all at once, so we need to keep track of what is left
to do. The template is the key to organizing programs. It reflects the data
organization; if the problem data changes, as it inevitably does, it is easy
to change a well-organized program in a similar manner. While creating a
template may seem superfluous for simple kinds of data, like those in the
first two sections of this chapter, we know from experience that as soon as
we work with unions of data, especially self-referential unions, templates
become essential. This section covers a number of union examples and
drives home once again how the data organization and the template mir-
ror each other. The first subsection demonstrates how easy it is to define
several methods once the template for a class configuration is worked out.
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12.1 Example: Plain Geometric Shapes

Figure 12 (page 28) displays a class hierarchy that represents basic geo-
metric shapes—dots, squares, and circles—for a drawing program. Recall
that it is the data representation for a program that deals with such shapes,
drawing them and allowing people to compute certain properties. A prob-
lem statement related to this program may include this fragment:

. . . Add the following four methods to the class hierarchy: (1)
one that computes the area of shapes; (2) one that produces the
distance of shapes to the origin; (3) another one that determines
whether some point is inside some shapes; (4) and a final one
creates the bounding box of shapes. . . .

These methods must work for all shapes, which means for all objects
that have type IShape. In an object-oriented language, we can express this
requirement with the addition of a method signature to the IShape interface.
The presence of a method header says that all classes that make up this
union must contain a matching method.

Naturally, the various methods may compute their results with dif-
ferent strategies. For example, a Dot has no area because it represents a
point;15 the area method can either return 0 as a result or it can signal an
error. In contrast, both Squares and Circles have proper areas but they are
computed with different formulas.

To improve your understanding of templates, let’s first create templates
for methods on shapes in general. We assume nothing about their return
type for now and also assume that they consume only one value: the shape
itself (this). Given these assumptions, take a look at the IShape interface
in figure 46. It contains a partial signature for just such a method mmm.

ProfessorJ:
implements is

not Java’s

Because we now know that a signature in an interface demands that each
implementing class must contain a concrete version of mmm, too, the figure
also contains signatures for mmm in Dot, Square, and Circle. Indeed, we can
go even further. Because of the containment arrow from these three classes
to CartPt (see figure 12 on page 28), we add a signature for a method nnn
to CartPt, too. Thus, if any of the other mmm methods need to compute
something about CartPt, we can refer to this template and, if needed, use it
to define an actual method.

As for the template themselves, the mmm method in Dot consumes an
instance of Dot and therefore has access to the one field of Dot: loc. The

15Its display is a small circle and thus has an area, but the point itself doesn’t.
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body of mmm therefore contains the selector expression this.loc. Following
the design recipe from section 11.2, the expression is this.loc.nnn() because
we need to textually express the containment arrow from Dot to CartPt in
the class diagram.

// the class of all geometric shapes
interface IShape {

??? mmm();
}

// a Cartesian point in the plane
class CartPt {

int x;
int y;

CartPt(int x, int y) {
// omitted
}

??? nnn() {
. . . this.x . . . this.y . . .

}
}

// a dot
class Dot

implements IShape {
CartPt loc;

Dot(CartPt loc) {
// omitted
}

??? mmm() {
. . . this.loc.nnn() . . .
}

}

// a square
class Square

implements IShape {
CartPt loc;
int size;

Square(CartPt loc,
int size) {

// omitted
}

??? mmm() {
. . . this.loc.nnn() . . .
. . . this.size . . .
}
}

// a circle
class Circle

implements IShape {
CartPt loc;
int radius;

Circle(CartPt loc,
int radius) {

// omitted
}

??? mmm() {
. . . this.loc.nnn() . . .
. . . this.radius . . .
}
}

Figure 46: Classes for geometric shapes with methods and templates

In Square, we have two different fields: loc and size. The former is dealt
with like loc in Dot; the latter, size, is just an int. Therefore we just add this.
size to the template, without any schematic method call. Convince yourself
that the design recipe suggests a similar treatment of mmm in Circle.
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Finally, we preemptively deal with nnn in CartPt. It is invoked on an
instance of CartPt. This class contains two fields, both of type int: x and y.
A method in that class is potentially going to use those two fields; so we
add this.x and this.y to remind ourselves of this possibility.

Before you read on, study the collected templates in figure 46. It con-
tains all the code fragments that we have just discussed. The rest of this
section shows how easy it is to produce actual methods from this template
with the four sample requirements from the problem statement.

The area problem: Following the design recipe, we formulate a purpose
statement and refine the signatures, starting with the one in IShape:

inside of IShape :
// to compute the area of this shape
double area();

As you read this purpose statement and the signature, keep in mind that
they are located in an interface, which is a prescription for all classes that
implement it. Together, the purpose statement and the signature thus de-
scribe what a method in an implementing class must compute. Of course, it
can’t say how the methods have to compute their results; that depends on
the variant in which they are located.

Next we create functional examples. For an interface, they must cover
all concrete classes that implement it. Currently there are three classes, so
here are three examples, immediately formulated as tests:

ProfessorJ:
Testing with doublesclass ShapeExamples {

IShape dot = new Dot(new CartPt(4, 3));
IShape squ = new Square(new CartPt(4, 3), 3);
IShape cir = new Circle(new CartPt(12, 5), 2);

boolean testDot = check dot.area() expect 0.0 within 0.1;
boolean testSqu = check squ.area() expect 9.0 within 0.1;
boolean testCir = check cir.area() expect 12.56 within 0.01;
ShapeExamples() { }
}

The result for Dot says that its area is 0.0. For Squares, we naturally just
square the size of the side, and for Circles we multiply the square of the
radius with π . Note how the checks are formulated with a tolerance.

Using the template from figure 46 and the examples, we easily obtain
the three concrete methods:
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inside of Dot :
double area() {

return 0;
}

inside of Square :

double area() {
return this.size ∗ this.size;
}

inside of Circle :
double area() {

return

(Math.PI ∗
this.radius ∗
this.radius);

}
Intuitively, the location of each shape plays no role when you compute their
area, and dropping the selector expressions (this. loc.nnn()) confirms this
intuition.

The only interesting aspect of testing these methods concerns the com-
parison of the expected value with the computed value. Recall that Java’s
type double represents a discrete collection of rational numbers on the num-
ber line, i.e., not all rational numbers, and that computations on these num-
bers is inherently inaccurate.

The distance problem: Except for Dots, shapes consist of many different
points, so just as for Rectangles in section 11, we take this problem to mean
that the method computes the distance between the origin and the closest
point. Furthermore, let’s assume that the entire shape is visible on the can-
vas.16 From this, we get a purpose statement and a signature:

inside of IShape :
// to compute the distance of this shape to the origin
double distTo0();

For the construction of examples, we re-use the “inputs” from the area prob-
lem because they have easy to compute distances:

check dot.distTo0() expect 5.0
check squ.distTo0() expect 5.0
check cir.distTo0() expect 11.0

The first two expected results are obvious. The distance between a Dot
and the origin is the distance between the Dot’s location and the origin; the
distance between the square and the origin is the distance between the top-
left corner of the Square and the origin. The third one is similar, but while we
still compute the distance between the center of the Circle and the origin,
we must also subtract the radius from this number. After all, the points on
the circle are closer to the origin than its center.

16Okay, we are not only reading the problem but also simplifying it. Can you figure out
what to do when we don’t make this assumption?
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Since all methods must compute the distance between their loc field
and the origin, it makes sense to refine the template in CartPt into a distTo0
method, too:

inside of CartPt :
// to compute the distance of this point to the origin
double distTo0() { . . . }
// Functional Examples:
check (new CartPt(4, 3)).distTo0() expect 5.0
check (new CartPt(12, 5)).distTo0() expect 13.0

The functional examples are naturally adapted from the previous ones.
At this point, you can either finish the method in CartPt or those in Dot,

Square, and Circle. We start with the method in CartPt:

inside of CartPt :
// to compute the distance of this point to the origin
double distTo0(){

return Math.sqrt((this.x ∗ this.x) + (this.y ∗ this.y));
}

The method computes the distance of a point to the origin in the usual
fashion (see page 11). Since this method doesn’t rely on any other method
in our classes, you can test it immediately. Do so.

Now that we have a distance method for Cartesian points, we can easily
complete the three methods in the shape classes:

inside of Dot :
double distTo0() {

return

this.loc.distTo0();
}

inside of Square :

double distTo0() {
return

this.loc.distTo0();
}

inside of Circle :
double distTo0() {

return

this.loc.distTo0()
− this.radius;

}
All three delegate the task of computing the distance to the origin to the
appropriate method for loc. The method in Circle performs an additional
computation; the others just pass on the result of the computation in CartPt.

The point location problem: The third problem requests a method that
can find out whether some point falls within the boundaries of a shape:

inside of IShape :
// is the given point within the bounds of this shape?
boolean in(CartPt p);
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A method like in is useful when, among other situations, you are designing
a program that must determine whether a mouse click is within a certain
region of a canvas.

Given that there are three classes that implement IShape and exactly two
distinct outcomes, there are three pairs of test cases:

1. Conceptually, a CartPt is within a Dot if the former is equal to the
latter’s location:

IShape dot = new Dot(new CartPt(100, 200));
check dot.in(new CartPt(100, 200)) expect true
check dot.in(new CartPt(80, 220)) expect false

2. Deciding whether a point is within Square is difficult if you are look-
ing at program text only. It is therefore good practice to translate
examples into graphical figures on grid paper and to check how the
dots relate to the shape. Take a look at these two examples:

check

new Square(new CartPt(100, 200), 40).in(new CartPt(120, 220))
expect true
check

new Square(new CartPt(100, 200), 40).in(new CartPt(80, 220))
expect false

Draw these two situations and confirm the expected results.

Note: This is, of course, one more situation where we suggest that
you interpret data as information.

3. For Circles the given point is inside the circle if distance between the
point and the center is less than the radius:

check new Circle(new CartPt(0, 0), 20).in(new CartPt(4, 3))
expect true
check new Circle(new CartPt(0, 0), 10).in(new CartPt(12, 5))
expect false

Recall that this kind of knowledge is domain knowledge. It is best to ac-
quire as much basic domain knowledge as you can from courses and books;
otherwise you have to find domain experts and work with them.

As usual, thinking through these examples provides hints on how to go
from the template to the full definition. Let’s look at Dot first:
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inside of Dot :
boolean in(CartPt p) {

. . . this.loc.nnn() . . .
}

The template reminds us that we may have to design a method for CartPt
to complete the definition of in. The examples suggest that the desired
method compares p and loc; if they are the same, the answer is true and
otherwise it is false. From these two ideas, it is natural to put a same method
for CartPt on the wish list and to define in:

inside of Dot :
boolean in(CartPt p) {

return this.loc.same(p);
}

Here are three drawings that represent the question whether a given
point is within a Square:

t(xtl , ytl)

t(x, y)

t(xtl , ytl)

?

size t(x, y)

t(xtl , ytl) -
sizet(x, y)

The leftmost picture depicts the actual question. Visually it is obvious that
the dot is within the square, which is determined by the top-left corner and
the size of the square. To do so via a computation, however, is complicated.
The basic insight is that to be inside of the square means to be between two
pairs of lines.

The picture in the middle and on the right show what this means graph-
ically. Specifically, in the middle we see the top and bottom line and a vec-
tor that indicates what the distance between them is. The dashed line from
the given point to the vector explains that its y coordinate has to be between
the y coordinate of the top-left corner and the y coordinate of the line of the
bottom; the latter is ytl + size. Similarly, the picture on the right indicates
how the x coordinate of the given point has to be between the x coordinate
of the top-left corner and the x coordinate of the rightmost line; again the
latter is size pixels to the right of the former.

Let’s look at the template and see how we can translate this analysis of
the examples into code:
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inside of Square :

boolean in(CartPt p) {
. . . this.loc.nnn() . . . this.size . . .
}

The adapted template on the left contains two selector expressions, remind-
ing us of loc and size. From the example we know that both play a role.
From the former we need the coordinates. From those and size, we get the
coordinates of the parallel lines, and the coordinates of p must be in be-
tween. Furthermore, because we need to check this “betweeness” twice,
the “one task, one function”guideline implies that we put between on our
wish list:

// is x in the interval [lft,lft+wdth]?
boolean between(int lft, int x, int wdth)

Assuming the wish is granted, finishing the definition of in is straightfor-
ward:

inside of Square :

boolean in(CartPt p) {
return this.between(this.loc.x,p.x,this.size)

&& this.between(this.loc.y,p.y,this.size);
}
This brings us to Circle:

inside of Circle :
boolean in(CartPt p) {

. . . this.loc.nnn() . . . this.radius . . .
}
Given the examples for Circle and the experience with the previous

cases, it is now almost easy to go from the template to the full definition.
As we agreed above, if the distance of the given point is less than or equal
to the radius, the point is within the circle. This statement and the template
suggest a last addition to the wish list, namely distanceTo for CartPt:

inside of Circle :
boolean in(CartPt p) {

return this.loc.distanceTo(p) <= this.radius;
}
Since we are proceeding in a top-down fashion this time, we can’t test

anything until we empty the wish list. It contains three methods: same for
CartPt; between for Square; and distanceTo also for CartPt.
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The between method checks a condition for three numbers:

inside of Square :
// is x in the interval [lft,lft+wdth]?
boolean between(int lft, int x, int wdth) {

return lft <= x && x <= lft + wdth;
}

As a helper method for the in method of Square it is located in this class.17

To design same and distanceTo we just follow the design recipe of sec-
tion 10. Both methods are given two points: this and p, which suggests the
following refinement of our template:

??? nnn(CartPt p){
return . . . this.x . . . p.x . . .

. . . this.y . . . p.y . . . ;
}

The rest is just an application of some geometric domain knowledge to pro-
gramming: when this and p are the same and what the distance is between
two points, given their coordinates. You can look this up in a geometry
book or you can look ahead to section 19.1.18

The bounding box problem: The bounding box of a shape is the small-
est rectangle that completely surrounds the given shape.19 To make this
concrete, let’s look at our three concrete kinds of shapes:

1. Just as Dots don’t have an area, they also don’t have a real bounding
box. One possibility is to signal an error. Another one is to pick the
smallest possible square as a representative.20

2. The bounding box for a Square is obviously the square itself.

3. For an instance of Circle finally, the bounding box is also a square:

17Note, however, that the method doesn’t use this and therefore doesn’t conceptually
belong into Square.

18Alternatively, if you recall the Pythagorean Theorem, you can (re)construct the formula
now with a little sketch on the back of an envelope. Developing this skill will serve you
well.

19Bounding boxes play an important role in graphics software but a thorough explanation
is beyond this book.

20Mathematicians deal with such special cases all the time. Their experience suggests
that the proper treatment of special cases depends on the problem and its context.
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More concretely, consider the circle on the left with radius r. On the
right, the same circle comes with its bounding box, whose width and
height are 2 ∗ r and whose top-left corner is one radius removed from
the center of the circle in both directions.

In short, the bounding box of any one of our shapes is a square.

Let’s use this problem analysis to refine the template from figure 46.
First we create a header and a purpose statement in IShape from mmm:

inside of IShape :
// compute the bounding box for this shape
Square bb();

It is somewhat unusual that the return type of the method is Square, one of
the classes implementing IShape, but this just reflects the observation that,
in our case, the bounding boxes are just squares.

Second, we make up some examples, one per concrete shape:

check dot.bb() expect new Square(new CartPt(100, 200),1)
check squ.bb() expect squ
check cir.bb() expect new Square(new CartPt(10,3), 4)

The first two cases are straightforward. For the last one, draw the given sit-
uation on grid paper and determine for yourself why the expected answer
is correct.

Our discussion of the problem and the examples make it easy to define
the methods in Dot and Square:

inside of Dot :
Square bb() {

return new Square(this.loc,1);
}

inside of Square :

Square bb() {
return this;
}

The difficult part is the definition of bb in Circle. It demands the creation
of a top-left corner for the new bounding box. From the problem analysis
and the examples we know that the top-left corner of the bounding box is
exactly this.radius to the top and the left of the center of the circle. A look
at the template suggests that the creation of this point is an operation on
CartPt:
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inside of Circle :
Square bb() {

. . . this.loc.nnn(. . . ) . . .

. . . this.radius . . .
}

inside of Circle :
Square bb() {

return

new Square(this.loc.translate(− this.radius),
2 ∗ this.radius);

}

In geometry, this operation on points (shapes actually) is called a transla-
tion. We therefore put translate on our wish list:

inside of CartPt :
// create a point that is delta pixels (up,left) from this

CartPt translate(int delta)

and wrap up the definition as if we had this new method.
Defining translate is actually easy:

inside of CartPt :
// create a point that is delta pixels (up,left) from this

CartPt translate(int delta) {
return new CartPt(this.x − delta, this.y − delta);
}

The method’s primary argument is a CartPt. Hence, its template contains
the usual ingredients: this.x and this.y, in addition to the parameter. Fur-
thermore, the purpose statement tells us exactly what to do: subtract delta
from this.x and this.y. Still, it would be best to follow the design recipe and
to create examples and tests now.

Figures 47 and 48 collect all the code fragments for IShape, Square, and
CartPt into complete class definitions.

Exercises

Exercise 12.1 Collect all fragments of Dot and Circle and complete the class
hierarchy in figures 47 and 48. Also collect the examples and build a work-
ing test suite for the hierarchy.

Exercise 12.2 Revise the class diagram in figure 12 so that it matches the
actual definitions in this section.

Exercise 12.3 Design an extension for the classes in figures 47 and 48 that
deals with isosceles right triangle. Assume the right angle is always in the
lower right corner and that the two sides adjacent to the right angle are
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interface IShape {
// to compute the area of this shape
double area();

// to compute the distance of
// this shape to the origin
double distTo0();

// is the given point within?
// the bounds of this shape
boolean in(CartPt p);

// compute the bounding box
// for this shape
Square bb();
}

class Square implements IShape {
int size;
CartPt loc;

Square(CartPt loc, int size) {
. . . // omitted
}

double area() {
return this.size ∗ this.size;
}

double distTo0() {
return this.loc.distTo0();
}

boolean in(CartPt p){
return

this.between(this.loc.x, p.x, this.size)
&&
this.between(this.loc.y, p.y, this.size);

}

Square bb() {
return this;

}

// is x in the interval [lft,lft+wdth]?
boolean between(int lft, int x, int wdth) {

return lft <= x && x <= lft + wdth;
}
}

Figure 47: Classes for geometric shapes with methods (part 1)

always parallel to the two axes. The extension should cope with all the
methods in IShape.

Remember your first design step is to develop a data representation for
these triangles. Two obvious representation come to mind: one just uses
the three points and the other one uses a representation similar to the one
for squares in this section. Explore both with examples before you design
the rest of the program. Use examples to justify your design choice.
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class CartPt {
int x;
int y;

CartPt(int x, int y) { . . . // omitted . . . }

// to compute the distance of this point to the origin
double distTo0(){

return Math.sqrt( (this.x ∗ this.x) + (this.y ∗ this.y));
}

// are this CartPt and p the same?
boolean same(CartPt p){

return (this.x == p.x) && (this.y == p.y);
}

// compute the distance between this CartPt and p
double distanceTo(CartPt p){

return
Math.sqrt((this.x− p.x) ∗ (this.x− p.x) + (this.y − p.y) ∗ (this.y− p.y));

}

// create a point that is delta pixels (up,left) from this
CartPt translate(int delta) {

return new CartPt(this.x− delta, this.y − delta);
}
}

Figure 48: Classes for geometric shapes with methods (part 2)

Exercise 12.4 Design an extension for the classes in figures 47 and 48 so
that a program can request the perimeter of a shape.

Exercise 12.5 Combine the extensions of exercises 12.3 and 12.4.

12.2 Signaling Errors

Twice we have suggested that your program could signal an error. First,
we said that new Date(45, 77, 2003) doesn’t represent a real date in our cal-
endar, with the implication being that it shouldn’t really produce an object.
Second, we also mentioned that a Dot doesn’t have an area and that we
may wish to define a method that signals an error instead.
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An error in Java is an exception. To make life simple, ProfessorJ pro-
vides a method with the name Util.error, which consumes a String and then
signals an error:

inside of Dot :
double area() {

return Util.error("end of the world");
}

Thus, if you were to evaluate new Dot(new CartPt(10,22)).area() for this
version of Dot, the evaluation would terminate, display "end of the world",
and highlight the above expression.

We will deal with signaling errors in constructors later.

13 Types, Classes, and How Method Calls Compute

Before we continue our exploration of the design of methods, we must un-
derstand how method calls really work. The answer to this question raises
a second, equally important question concerning the role of types.

13.1 Method Dispatch

Thus far we have dealt with methods as if they were functions. Specifically,
when we saw a method call, we imagined substituting the values of the ar-
guments for the respective parameters into the body of the function and
then we determined the value of this new expression. While this process
is a good approximation, it fails to explain how methods work for unions
of classes, i.e., once we have interfaces as types and classes as implementa-
tions of interfaces.

To improve our understanding, let us study a concrete example. Imag-
ine an interior designer who wishes to help customers create comfortable,
well-balanced rooms. Instead of playing with real furniture, an interior de-
signer is better off simulating the room, the furniture, and the layout with
a program. That is, we want to study a program that allows an interior de-
signer to create shapes (representing furniture and power outlets); to place
them into another shape (representing a room); and to determine some ba-
sic properties of this simulated interior design.

Even if we cannot understand all the details of the visual editing process
yet, it is easy to imagine that the following problem may come up:
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// tracking pieces of furniture
// in this room
class Room {

int width;
int height;

IShape a;
IShape b;
IShape c;

Room(int width, int height,
IShape a, IShape b, IShape c) {

this.width = width;
this.height = height;
this.a = a;
this.b = b;
this.c = c;

}

// the ratio of area covered
// by furniture in this room
double covered() {

return (this.a.area()
+ this.b.area()
+ this.c.area())

/
(this.width ∗ this.height);

}
}

IShape

Dot

CartPt loc

Square

CartPt loc
int size

Circle

CartPt loc
int radius

CartPt

int x
int y

Room

int x
int y
IShape a
IShape b
IShape c

Figure 49: Keeping track of furniture

. . . Design a class that represents a room. The purpose of the
class is to keep track of the furniture that is placed into the room.
. . . Among other things, the interior designer who uses the pro-
gram may wish to know the ratio of the area that the furniture
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covers. . . .

For simplicity, assume that the program deals with exactly three pieces of
furniture and with rectangular rooms. For the graphical presentation of the
model, assume that the furniture is represented as IShapes, i.e., a Dot (say, a
floor lamp), a Square (say, a chair), or a Circle (say, a coffee table).

The problem statement suggests a class with five fields: the room’s
width, its height, and its three pieces of furniture. Even though we can’t
know which three pieces of furniture the interior designers will place in
the room, we can use IShape as the type of the three fields because it is the
type of the union of these three classes.

Equipped with a data representation for a room, we can turn to the task
of designing the method that computes the ratio of the furniture’s area to
the room’s area:

inside of Room :
// the ratio of area covered by furniture in this room
double covered() {

. . . this.a . . . this.b . . . this.c . . . // all IShape

. . . this.width . . . // int

. . . this.height . . . // int
}

The template reminds us of the five fields. Making up examples is easy,
too: if the room is 10 by 10 feet and the three pieces of furniture each cover
20 square feet, the result of covered ought to be .6. The example and its
explanation suggest the following expression for the method body:

( this.a.area() + this.b.area() + this.c.area() )
/
(this.width ∗ this.height)

In other words, the method computes and adds up the three areas covered
by the furniture and then divides by the product of height and width, the
area of the room.

Each gray-shaded expression is a method invocation that calls area on
an object of type IShape. The method is specified in the interface and thus
all implementing classes must support it. The question is how an object-
oriented programming language evaluates expressions such as these or
how does it decide which area method to use.

Suppose you play interior designer and create this Room object:
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Room re = new Room(25,12, new Dot(. . . ),
new Square(. . . ,10),
new Circle(. . . ,5))

Then a stands for new Dot(. . . ), b for new Square(. . . ,10), and c for new Cir-
cle(. . . ,5). From that, our substitution model of computation says a method
call to covered proceeds like this:

this.a.area() + this.b.area() + this.c.area()
// evaluates to:
new Dot(. . . ).area() + this.b.area() + this.c.area()

// evaluates to:
0 + this.b.area() + this.c.area()
// evaluates to:
0 + new Square(. . . ,10).area() + this.c.area()

// evaluates to:
0 + 100 + this.c.area()
// evaluates to:
0 + 100 + new Circle(. . . ,5).area()
// evaluates to:
0 + (10 ∗ 10) + (5 ∗ 5 ∗Math.PI)

The gray-shaded fragments in each line are evaluated. The transition from
the first line to the second explains that types don’t matter during an eval-
uation. The shaded invocation of area of a is replaced with an invocation
to a concrete object: new Dot(. . . ). And at this point, it is completely clear
which area method is meant. The same is true in the transitions from line 3
to line 4 and line 5 to line 6, except that in those cases area from Square and
Circle are used, respectively.

Thus what really matters is how an object is created, i.e., which class
follows new. If the given IShape is an instance of Dot, the invocation of
area picks Dot’s area; if it is Square, it’s Square’s version of area; and if it is
Circle, the evaluation defers to the definition of area in Circle. Afterwards,
we continue to replace parameters (also called identifiers) by their values
and proceed with the evaluation of arithmetical expressions as we know it
from primary school or How to Design Programs.

The mechanism of picking a method out of several based on its class is
called POLYMORPHIC METHOD DISPATCH. In this context, the word “poly-
morphic” refers to the fact that any class that implements IShape supplies a
method called area but each of the method definitions is unique. No con-
ditionals or checks are written down in the program; instead the program-
ming language itself chooses.
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Compare this to Scheme where an area function would be defined with
a conditional expression:

(define (area a-shape)
(cond [(dot? a-shape) (dot-area a-shape)]

[(square? a-shape) (square-area a-shape)]
[(circle? a-shape) (circle-area a-shape)]))

When the function is applied to a shape, the cond expressions evaluates the
three conditions, one by one. When one of them evaluates to true, the right-
hand side expression of this cond line determines the answer for the entire
cond expression. In short, where Scheme relies on conditionals to distin-
guish different classes of data, object-oriented languages use polymorphic
method dispatch. From a computational perspective, this difference is the
most important one.

13.2 The Role of Types

The preceding sections shows that types don’t play any role during the
evaluation of programs. The part that matters is the class21 from which
an object was instantiated. Thus, you may wonder what good they are.
Let’s briefly look back at How to Design Programs, which assumes that you
produce code for yourself. The implication is that since you know what
you are doing, nobody ever violates the contracts of your programs. You
always apply your functions to exactly those kinds of data that the contract
specifies, and all of your functions use the results of functions they call in
the appropriate manner. As a matter of fact, the assumption is that you
even use functions according to their purpose statements.

If people really acted this way, no program would ever need any safe-
guards. You know from experience, however, that people do violate con-
tracts all the time. It is likely that you did, when you worked on some of
the exercises in How to Design Programs. You may have violated the con-
tracts of DrScheme’s library functions. Worse, you may have forgotten
about the contract of a function while you were turning its template into
a complete function body. Or, you may have abused a function when you
used it weeks after you first designed it. Now imagine working with other
people on the same program, each of you producing a fragment of such
as a class or a couple of classes, with the team eventually making these
fragments work together. Or imagine being told to change some program

21In Java, class plays both the role of a type and data label for method dispatch.These
two roles are related but they are not the same. Try not to confuse them.
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fragment weeks, months or years after you first wrote them. It is just natu-
ral that people fail to respect contracts in such situations.

One purpose of types is to help overcome this problem. You write them
down explicitly so that others can read them. In contrast to informal con-
tracts, types must obey the rules of the programming languages and they
are checked before you run the program. Indeed, you can’t run the pro-
gram if the type check fails. Other programmers (including an older “you”)
can then read these types with the knowledge that their use is consistent
with the language’s rules.

Consistency for types is similar to consistency of a program’s organi-
zation with the language’s grammar, something you know from How to
Design Programs. If you write down a define with four pieces, something is
wrong, and DrScheme signals a syntax error. In the same spirit, Java checks
a program’s use of types once it has checked that it obeys the grammar of
the language. Java’s type checker ensures that the uses of field identifiers
and method parameters match their declared types. From this information,
it computes a type for each expression and sub-expression in your program
and always matches specified types with actual types:22

int maxLength(String s) {
if ( s.length()

1
> 80 2) {

return s.length()
3
; }

else {
return 80; }

}

The gray-shaded expression with subscript 1 has type int, as does the gray-
shaded expression with subscript 2. Since the primitive operator < com-
pares two ints and then produces a boolean, it is acceptable to use the com-
parison expression as the test component of an if statement. The gray-
shaded expression labeled with 3 is the same as the expression labeled 1.
Thus, no matter which of the two returns is used, the if statement—and
thus the method body—always returns an int, just like the method signa-
ture claims. Hence the types match and the method signature correctly
describes the data that the method consumes and produces.

22In sound type systems, such as Java’s, type checking also implies that the result of an
int expression is always (a representation of) an integer in the computer’s hardware. In
unsound type systems, such as the one of C++, this is not the case. While such unsound
systems can still discover potential errors via type checking, you may not rely on the type
checker’s work when something goes wrong during your program’s evaluation.
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You can also ask in this context why expression 1 has type int. In this
case, we know that s has type String. According to figure 37, the length
method consumes a String and produces an int. In other words, the type
checker can use a method’s signature independently of its body to check
method calls.

As the type checker performs these checks for your program, it may
encounter inconsistencies. For example, if we write

int maxLength(String s) {
if (s > 80)

return s.length();
else

return 80;
}

s once again has type String. Its use with > (in the gray-shaded expression)
conflicts with the type specification for the operator, which says that the
operands have to be of type int. Your Java implementation therefore signals
a type error and asks you to take a closer look at your use of s. In this partic-
ular case, we know for sure that comparing a string to a number wouldn’t
work during the evaluation and trigger an error. (Try it in DrScheme.) In
general, you should think of a type checker as a spell checker in your word
processor; when it finds a spelling error, the spelling is wrong, inappro-
priate and leads to difficulties in understanding, or intended and the spell
checker is too simplistic to discover this rare scenario.

While spell checkers do find some basic mistakes, they also miss prob-
lems. Similarly, just because your program passed the type checker, you
should not assume that it is correct. Do you remember how often your
spell checker agreed that “there” was the correct spelling when you really
meant “their” in your essays? As you proceed, keep in mind that grammar-
and type-checking your programs eliminates errors at the level of typos
and ill-formed sentences.23 What they usually do not find are flaws that
are comparable to problems with your chain of reasoning, the inclusion of
unchecked statistics, etc. To avoid such problems, you must design your
programs systematically and stick to a rigorous design discipline.

23Type systems in conventional languages can’t even check some of our simple informal
contracts. For example, if a function consumes a number representing a width and pro-
duces an area, we may write “PositiveNumber → PositiveNumber.” Type systems usually
do not include such subsets of numbers.
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14 Methods and Unions of Classes (Continued)

14.1 How Libraries Work, Part 1: Drawing Geometric Shapes

The four problems concerning geometric shapes clearly call for a fifth one:
a method for drawing a shape into a canvas. Of course, drawing shapes
on a canvas is something the computer must do for us; it is not the task
of the programming language per se. Programming languages provides
libraries—such as the already mentioned geometry and colors libraries—
that bridge the gap between programs and the computer.

Java provides several drawing libraries. ProfessorJ provides a refined
version that matches our goal of learning to design classes systematically.
More precisely, ProfessorJ provides the Canvas class via the draw library,
which provides methods for drawing shapes (including circles, rectangles,
lines, and strings) onto a visible computer canvas. The relevant excerpts
from Canvas are displayed in figure 50.

You should note how the method signatures and purpose statements in
this figure tell you how to use an existing class and its methods, without
knowledge of the actual method definitions. To use the libraries, recall to
add the following lines to your definitions window and to run this “pro-
gram:”

import draw.∗;
import colors.∗;
import geometry.∗;

Then you can instantiate Canvas in the interactions window by just supply-
ing a width and a height:

Canvas c = new Canvas(100,100);

Think of this as a field declaration with an initialization equation. Follow-
ing this line, c is available in the interactions window and stands for a Can-
vas. In particular, you can invoke show on c:

c.show()

so that the Canvas becomes visible. If the computer can show the window,
the expression produces true; otherwise, you will encounter an error.

Once you have a canvas, you can easily place a String in it. Experiment
the following pair of field declarations and pair of expressions in Profes-
sorJ’s interactions window:

c.drawString(new Posn(10,50), "hello world")
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// controlling a computer canvas
class Canvas {

int width;
int height;
. . .
// show this a canvas
boolean show()

// draw a circle at p in this canvas
boolean drawCircle(Posn p, int r, IColor c)

// draw a solid disk at p in this canvas,
// fill with color c
boolean drawDisk(Posn p, int r, IColor c)

// draw a width x height rectangle
// at p in this canvas, fill with color c
boolean drawRect(Posn p,int width,int height, IColor c)

// draw s at position p in this canvas
boolean drawString(Posn p, String s)
. . .
}

Canvas

int width
int height

boolean show()
boolean close()
boolean drawCircle(Posn, int, IColor)
boolean drawDisk(Posn, int, IColor)
boolean drawLine(Posn, int, int, IColor)
boolean drawString(Posn, String)
...

Figure 50: The drawing methods in the Canvas class

Again, the expression produces true if the drawing action succeeds; if not,
the computer will signal an error.

Exercises
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Exercise 14.1 Use the libraries you have come to know (colors, draw, ge-

ometry) to draw (1) a box-and-circles car, (2) a match-stick man, and (3) a
house in ProfessorJ’s interactions window.

Exercise 14.2 Develop the class HouseDrawing. Its constructor should de-
termine the size of the house (width, height) and Canvas. Since you haven’t
encountered this dependence, we provide the basics:

class HouseDrawing {
int width;
int height;
Canvas c;
IColor roofColor = new Red();
IColor houseColor = new Blue();
IColor doorColor = new Yellow();

HouseDrawing(int width, int height) {
this.width = width;
this.height = height;
this.c = new Canvas(width, height);
}
. . .
}

As always, the constructor for HouseDrawing contains one “equation” per
field (without initialization “equation”) but it lacks a parameter for the
Canvas. Instead, the canvas is constructed with the help of the other pa-
rameters, width and height. This is one way in which defining your own
constructor is superior to having defined it automatically.

The class should also come with a draw method whose purpose it is to
draw an appropriately sized house onto the canvas. In other words, the
house’s measurements should depend on the width and height fields.

We suggest you start with a house that has a red, rectangular roof; a
somewhat smaller blue, rectangular frame; a yellow door, and a couple of
yellow windows. Once you can draw that much, experiment some more.

Now suppose you are to add a method show to the Room for drawing the
room. More precisely, the method should use a canvas to visually present
the room and the furniture inside the room. Since drawing should happen
on a canvas, the Room class needs a Canvas in addition to the show method:
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// to keep track of the pieces of furniture in this room
class Room {

. . .
Canvas c;

Room(int width, int height) {
. . .
this.c = new Canvas(this.width, this.height);
}
. . .
}

We have chosen to create a canvas that is as large as the room itself. Just
as in exercise 14.2, the Canvas is instantiated in the constructor because it
depends on the values of width and height, but it is not a parameter of the
constructor itself.

The design of show follows the design recipe, but requires one extra
thought. Before it can display the room, it must show the canvas, i.e., it
must invoke c’s show method:

inside of Room :
// show the world (the room) with its furniture
boolean show() {

return this.c.show()
&& this.a.draw(. . . ) && this.b.draw(. . . ) && this.c.draw(. . . );

}
Then it delegates the tasks of drawing the three pieces of furniture to an
imaginary method draw in IShape. As you can see, the second like of the
template strictly follows from the design recipe.

The “imaginary” part means, of course, that we are adding this method
to our wish list. In this case, the wish can go directly into the IShape inter-
face:

inside of IShape :
// draw this shape into canvas
boolean draw(Canvas c);

The Canvas parameter is needed because the draw method needs access to
it but the Canvas is only a part of the Room class. In other words, the show
method from Room must communicate c, the Canvas, to the draw methods
as an argument.

There is no true need for functional examples. We know that a draw
method in Square should draw a square at the appropriate position and of



Methods and Unions of Classes (Continued) 139

the appropriate proportions. The same is true for Circles. Of course, think-
ing about examples does reveal that drawing a Dot presents the special-case
problem again; let’s just settle for drawing a disk with radius 3 to make it
visible.

For the template step, we can reuse the template from figure 46.

inside of Dot :
boolean

draw(Canvas c) {
. . . this.loc.nnn() . . .

}

inside of Square :
boolean

draw(Canvas c) {
. . . this.loc.nnn() . . .
. . . this.size . . .

}

inside of Circle :
boolean

draw(Canvas c) {
. . . this.loc.nnn() . . .
. . . this.radius . . .

}

The first expression in each of these templates suggests that we can wish for
a new method for CartPt, which is where loc comes from. If loc were a Posn,
the template would translate itself into method bodies. All it would take is
an invocation of, say, drawCircle on the position, the radius, and some color.

Put differently, we have a choice with two alternatives. We can either
replace CartPt with Posn throughout our existing program or we can equip
CartPt with a method that creates instances of Posn from instances of CartPt.
Normally, the reuse of library classes is preferable; here we just provide the
method because it is so straightforward and because it demonstrates how
to bridge the small gap between the library and the rest of the code:

inside of Dot :
boolean

draw(Canvas c) {
return

c.drawDisk(
this.loc.toPosn(),
1,
new Green());

}

inside of Square :
boolean

draw(Canvas c) {
return

c.drawRect(
this.loc.toPosn(),
this.size,
this.size,
new Blue());

}

inside of Circle :
boolean

draw(Canvas c) {
return

c.drawCircle(
this.loc.toPosn(),
this.radius,
new Red());

}

What’s left to do is to design toPosn in CartPt:

inside of CartPt :
Posn toPosn() {

return new Posn(this.x, this.y);
}
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It is so simple that we provide the definition instead of going through the
process. All that you must do now is run some examples to ensure that
draw truly draws shapes at the expected positions. Remember these aren’t
tests because you can’t write statements that automatically compare the
expected outcome with the actual outcome.

Exercises

Exercise 14.3 Complete the definition of the Room class.

Exercise 14.4 Add isosceles right triangles to the collection of furniture
shapes (see also exercise 12.3).

Exercise 14.5 Modify show in Room so that it also draw a 20-point, black
margin.

14.2 Finger Exercises

Exercise 14.6 Recall exercise 4.5:

. . . Develop a program that creates an on-line gallery from three
different kinds of records: images (gif), texts (txt), and sounds
(mp3). All have names for source files and sizes (number of
bytes). Images also include information about the height, the
width, and the quality of the image. Texts specify the number of
lines needed for visual representation. Sounds include informa-
tion about the playing time of the recording, given in seconds.
. . .

Develop the following methods for this program:

1. timeToDownload, which computes how long it takes to download a file
at some given network connection speed (in bytes per second);

2. smallerThan, which determines whether the file is smaller than some
given maximum size;

3. sameName, which determines whether the name of a file is the same
as some given name.

Exercise 14.7 A software house that is working with a grocery chain re-
ceives this problem statement:
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. . . Develop a program that keeps track of the items in the
grocery store. For now, assume that the store deals only with
ice cream, coffee, and juice. Each of the items is specified by
its brand name (String), weight (grams) and price (cents). Each
coffee is also labeled as either regular or decaffeinated. Juice
items come in different flavors, and can be packaged as frozen,
fresh, bottled, or canned. Each package of ice cream specifies its
flavor. . . .

Design the following methods:

1. unitPrice, which computes the unit price (cents per gram) of a grocery
item;

2. lowerUnitPrice, which determines whether the unit price of a grocery
item is lower than some given amount;

3. cheaperThan, which determines whether a grocery item’s unit price is
less than some other (presumably) comparable item’s unit price.

Exercise 14.8 Consider this revision of our running example concerning
book stores:

. . . Develop a program that assists managers of discount book-
stores. The program should keep a record for each book. The
record must include its title, the author’s name, its price, and its
publication year. There are three kinds of books with different
pricing policy. Hardcover books are sold at 20% off. Books on
the sale table are 50% off. Paperbacks are sold at list price. . . .

Here are your tasks:

1. Develop a class hierarchy that represents books.

2. Draw a class diagram for the hierarchy.

3. Create five sample objects.

4. Design the following methods:

(a) salePrice, which computes the sale price of each book;

(b) sameAuthor, which determines whether a book is by a given au-
thor.
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14.3 Designing Methods for Unions of Classes

It is time again to reflect on our design recipe for methods (see sections 10.3
and 11.2). The five steps work well in principle, but clearly the organization
of some classes as a union suggests additional checkpoints:

1. Formulate a purpose statement and a method signature to the inter-
face; then add the method signature to each implementing class.

2. Illustrate the purpose statement with examples for each class of the
union, i.e., for each variant.

3. Lay out what you know about the method’s argument(s) in each con-
crete method. This includes references to the fields of the class.

Remember from section 11.2 that if any of the variants contain an
instance of another class, you should place appropriate schematic
method calls to methods in these other classes in the template. The
purpose of these schematic calls is to remind you of the wish list dur-
ing the next step. To this end, also add a tentative method header to
that other class.

4. Define the methods. The parameters and the expressions in the tem-
plate represent the information that may contribute to the result. Each
schematic method call means that you may need to design an auxil-
iary method in some other class. Use the wish list to keep track of
these auxiliary goals.

5. Turn the examples into tests and run them.

As this section showed, you can switch steps 1 and 3. That is, you can de-
velop the templates just based on the structure of the class hierarchy and
the classes themselves. The example in this section also showed how help-
ful the template-directed design is. Once you understand the template, the
rest of the design task is often straightforward.

15 Methods and Classes with Mutual References

15.1 Example: Managing a Runner’s Logs

Recall the problem of tracking a runner’s workouts:
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. . . Develop a program that manages a runner’s training log.
Every day the runner enters one entry concerning the day’s run.
. . .

interface ILog {
??? nnn();
}

class MTLog implements ILog {
MTLog() {}

??? nnn() {
. . .
}
}

class ConsLog implements ILog {
Entry fst;
ILog rst;

ConsLog(Entry fst, ILog rst) {
. . . // omitted . . .

}

??? nnn() {
. . . this.fst.mmm() . . .
. . . this.rst.nnn() . . .
}
}

class Entry {
Date d;
double distance; // miles
int duration; // minutes
String comment;

Entry(Date d,
double distance,
int duration,
String comment) {

. . . // omitted . . .
}

??? mmm() {
. . . this.d.lll() . . .
. . . this.distance . . .
. . . this.duration . . .
. . . this.comment . . .
}
}

class Date {
int day;
int month;
int year;

Date(int day, int month, int year) {
. . . // omitted . . .

}

??? lll() {
. . . this.day . . .
. . . this.month . . .
. . . this.year . . .
}
}

Figure 51: Classes for a runner’s log

Figure 18 (page 38) displays the class diagram for a data representation
of this problem. Figure 51 contains the matching class definitions. A log
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is either empty, which we represent with an instance of MTLog, or it is
constructed from an Entry and a log. An instance of Entry contains four
fields: a Date d, a double for the distance in miles, an int for the duration in
minutes, and a String for recording qualitative remarks.

In addition, figure 51 contains sketches of method templates: a signa-
ture for a method nnn in ILog and concrete templates for MTLog, ConsLog,
Entry, and Date. Later we must refine these templates with return types
and arguments.

The templates in MTLog, Entry, and Date are unremarkable; their design
strictly follows the design recipe, especially the ones for unions and classes
that refer to other classes. While this is also true for the template in ConsLog,
that template contains the expression

. . . this.rst.nnn() . . .

which refers to the method nnn in ILog. Since rst is a reference to some
other box in the class diagram, this basically follows from the design recipe
for classes that contains instances of other classes. ILog isn’t an ordinary
class, however, but an interface. Still, we know that if an interface specifies
a method, then all implementing classes define this method. Therefore it
is proper to reference nnn in this context. Indeed, by doing so, the method
template matches the class diagram in a perfect manner; the class hierarchy
has determined the shape of the program one more time.

From section 13 we also know what this means for the evaluation of
such expressions. The value in rst is going to be either an instance of MTLog
or ConsLog. In each case, the method call is directed to the concrete method
in the corresponding class. If rst is an instance of ConsLog, the method calls
itself; otherwise it calls nnn in MTLog.

Note: If you have experienced How to Design Programs properly, you know
not to look ahead. Just trust the design recipe and its claim that methods
work according to their purpose statement, both other methods (i.e., those
on the wish list) and the same method (recursively). If you haven’t worked
through How to Design Programs, we need to ask you to trust us for the
moment. Once you experience for yourself how smoothly the design works
out, you will know why we asked you to just plunge ahead.

Let’s see whether working out the template first works as well for self-
referential class diagrams as it did for unions. Here is a first problem:

. . . The runner will want to know the total number of miles
run. . . .

Here is an appropriate refinement of the method signature in ILog:
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class CompositeExamples {
Date d1 = new Date(5, 5, 2003);
Date d2 = new Date(6, 6, 2003);
Date d3 = new Date(23, 6, 2003);

Entry e1 = new Entry(d1, 5.0, 25, "Good");
Entry e2 = new Entry(d2, 3.0, 24, "Tired");
Entry e3 = new Entry(d3, 26.0, 156, "Great");

ILog l1 = new MTLog();
ILog l2 = new ConsLog(e1,l1);
ILog l3 = new ConsLog(e2,l2);
ILog l4 = new ConsLog(e3,l3);
CompositeExamples() { }
}

Figure 52: Examples for a runner’s log

inside of ILog :
// to compute the total number of miles recorded in this log
double miles();

In addition, you can now rename the methods in MTLog and ConsLog.
For the functional examples, we use the sample objects from our orig-

inal discussion of a runner’s log: see figure 52, where they are repeated.
Invoking the miles method on the ILogs produces the obvious results:

check l1.miles() expect 0.0 within .1
check l2.miles() expect 5.0 within .1
check l3.miles() expect 8.0 within .1
check l4.miles() expect 34.0 within .1

We use the examples to design each concrete method, case by case:

1. The examples show that in MTLog the method just returns 0.0. A log
with no entries represents zero miles.

2. The template for ConsLog contains two expressions. The first says that
we can compute with fst, which is an instance of Entry. The second
one computes this.rst.miles(). According to the purpose statement in
ILog, this expression returns the number of miles in the rst log that is
included in this instance of ConsLog. Put differently, we can just add
the number of miles in the fst Entry to those from rst.
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Using this problem analysis, it is easy to write down the two methods:

inside of MTLog :

double miles() {
return 0;
}

inside of ConsLog :

double miles() {
return this.fst.distance + this.rst.miles();
}

All that remains to be done is to test the methods with the examples.
In light of our discussion on the differences between Scheme-based

computations and a Java-based one, it is also important to see that this
method looks very much like the addition function for lists:

(define (add-lists-of-numbers alon)
(cond [(empty? alon) 0]

[else (+ (first alon) (add-lists-of-numbers rest alon))]))

The expression from the first conditional branch shows up in MTLog and
the one from the second branch is in the method for ConsLog, which is just
as it should be. The conditional itself is invisible in the object-oriented pro-
gram, just as described on page 13.1:

Often a runner doesn’t care about the entire log from the beginning of
time but a small portion of it. So it is natural to expect an extension of our
problem with a request like this:

. . . The runner will want to see his log for a specific month of
his training season. . . .

Such a portion of a log is of course itself a log, because it is also a sequence
of instances of Entry.

Put differently, the additional method consumes a runner’s log and two
integers, representing a month, and a year. It produces a runner’s log—of
one month’s worth of entries:

inside of ILog :
// to extract those entries in this log for the given month and year
ILog oneMonth(int month, int year);

check l1.oneMonth(6, 2003) expect l1
check l3.oneMonth(6, 2003) expect new ConsLog(e2, MTLog)
check l3.oneMonth(6, 2003)
expect new ConsLog(e3, new ConsLog(e2, MTLog()))

As before, the examples are based on the sample logs in figure 52. The first
one says that extracting anything from an empty log produces an empty
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log. The second one shows that extracting the June entries from l2 gives
us a log with exactly one entry. The last example confirms that we can get
back a log with several entries.

The examples suggest a natural solution for MTLog. The design of the
concrete method for ConsLog requires a look at the template to remind our-
selves of what data is available. The second method call in the template,

this.rst.oneMonth(month, year)

produces the list of entries made in the given month and year extracted
from the rest of the log. The other one,

this.fst.mmm(month, year)

deals with fst, i.e., instances of Entry. Specifically it suggests that we may
wish to design a separate method for computing some value about an in-
stance of Entry. In this case, Entry needs a method that determines whether
an instance belongs to some given month and year, because the oneMonth
method should include fst only if it belongs to the given month and year.

To avoid getting distracted, we add an entry on our wish list:

inside of Entry :
// was this entry made in the given month and year?
boolean sameMonthAndYear(int month, int year) { . . . };

But before we design this method, let’s finish oneMonth first.
Assuming that oneMonth is designed properly and works as requested,

we can finish the method in ConsLog easily:

inside of MTLog :

ILog oneMonth(int m, int y) {
return new MTLog();
}

inside of ConsLog :

ILog oneMonth(int m, int y) {
if (this.fst.sameMonthAndYear(m, y)) {

return

new

ConsLog(
this.fst,
this.rst.oneMonth(m, y)); }

else {
return this.rst.oneMonth(m, y); }

}

The method in ConsLog must distinguish two possibilities. If

this.fst.sameMonthAndYear(m, y)



148 Section 15

is false, the result is whatever oneMonth extracted from rst. If it is true, fst is
included in the result; specifically, the method creates a new ConsLog from
fst and whatever oneMonth extracts from rst.

With the methods for MTLog and ConsLog completed, we turn to our
wish list. So far it has one item on it: sameMonthAndYear in Entry. Its
method template (refined from figure 51) is:

inside of Entry :

boolean sameMonthAndYear(int month, int year) {
. . . this.d.lll() . . . this.distance . . . this.duration . . . this.comment . . .

}
This implies that the method should calculate with month, year, and d, the
Date in the given Entry. The suggestive method call this.d.lll() tells us that
we can delegate all the work to an appropriate method in Date. Of course,
this just means adding another item to the wish list:

inside of Date :
// is this date in the given month and year?
boolean sameMonthAndYear(int month, int year) { . . . }

Using “wishful thinking” gives us the full definition of sameMonthAndYear:

inside of Entry :

boolean sameMonthAndYear(int month, int year) {
return this.d.sameMonthAndYear(month, year);

The one thing left to do is to design sameMonthAndYear for Date. Natu-
rally, we start with a refinement of its template:

inside of Date :
boolean sameMonthAndYear(int month, int year) {

. . . this.day . . . this.month . . . this.year . . .
}

This template tells us that sameMonthAndYear has five numbers to work
with: month, year, this.day, this.month, and this.year. Given the purpose
statement, the goal is clear: the method must compare month with this.
month and year with this.year:

inside of Date :
// is this date in the given month and year?
boolean sameMonthAndYear(int month, int year) {

return (this.month == month) && (this.year == year);
}
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This finishes our wish list and thus the development of oneMonth. You
should realize that we again skipped making up examples for the two
“wishes.” While this is on occasion acceptable when you have a lot of ex-
perience, we recommend that you develop and test such examples now.

Exercises

Exercise 15.1 Collect all the pieces of oneMonth and insert the method defi-
nitions in the class hierarchy for logs. Develop examples and include them
with the test suite. Draw the class diagram for this hierarchy (by hand).

Exercise 15.2 Suppose the requirements for the program that tracks a run-
ner’s log includes this request:

. . . The runner wants to know the total distance run in a given
month. . . .

Design the method that computes this number and add it to the class hier-
archy of exercise 15.1.

Consider designing two different versions. The first should follow the
design recipe without prior considerations. The second should take into
account that methods can compose existing methods and that this partic-
ular task can be seen as consisting of two separate tasks. (The design of
each method should still follow the regular design recipe.) Where would
you put the second kind of method definition in this case? (See the next
chapter.)

Exercise 15.3 Suppose the requirements for the program that tracks a run-
ner’s log includes this request:

. . . A runner wishes to know the length of his longest run ever.
[He may eventually wish to restrict this inquiry into a particular
season or runs between two dates.] . . .

Design the method that computes this number and add it to the class hier-
archy. Assume that the method produces 0 if the log is empty.

Also consider this variation of the problem:

. . . A runner wishes to know whether all distances are shorter
than some number of miles. . . .

Does the template stay the same?
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15.2 Example: Sorting

Sorting logs is a natural idea, too, in a day and age when everything is
measured, and everything is ranked:

. . . The runner wishes to see the log ordered according to the
distance of each run, starting with the longest. . . .

As usual, we start with a choice of name, signature and purpose statement
for the problem:

inside of ILog :
// to create a sorted version of this log, with entries sorted by distance
ILog sortByDist();

The method consumes a log and produces one sorted by distance.
We use the now familiar sample logs from figure 52 to create examples

for this method:

check l1.sortByDist() expect l1
check l2.sortByDist() expect l2
check l4.sortByDist() expect

new ConsLog(e2,
new ConsLog(e1,

new ConsLog(e3, new MTLog()))

The first two are a bit odd; the result is identical to the “input” because
the given logs are already sorted. The last one shows how the method
rearranges the entries when needed.

Here are the two templates refined for our new purpose:

inside of MTLog :

ILog sortByDist() {
. . .
}

inside of ConsLog :

ILog sortByDist() {
. . . this.fst.mmm() . . .
. . . this.rst.sortByDist() . . .
}

The method templates suggest how to design both methods. For sortBy-
Dist in MTLog, the result is the empty log again. For sortByDist in ConsLog,
the method call

this.rst.sortByDist()

produces a sorted list of all entries in the rest of the log. That means we
only need to insert the first entry into the sorted version of rst to obtain the
sorted log that corresponds to the given one.
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Following our wish list method, we faithfully add this “insert” method
to our list:

inside of ILog :
// insert the given entry into this (sorted) log
ILog insertDist(Entry e);

The difference between the previous example and this one is that we are
adding this wish list item to the very same class (hierarchy) for which we
are already designing sortByDist.

Now we can use insertDist in sortByDist:

inside of MTLog :

ILog sortByDist() {
return this;
}

inside of ConsLog :

ILog sortByDist() {
return this.rst.sortByDist().insertDist(this.fst);
}

Specifically, the method first invokes sortByDist on rst and then invokes
insertDist on the result. The second argument to insertDist is this.fst, the
first Entry in the given log.

Now that we’re done with sortByDist, we turn to our wish list, which
contains insertDist in ILog. We immediately move on to the development of
a good set of functional examples, starting with a new data example that
contains three entries:

ILog l5 =
new ConsLog(new Entry(new Date(1,1,2003), 5.1, 26, "good"),

new ConsLog(new Entry(new Date(1,2,2003), 4.9, 25, "okay"),
new MTLog()))

Because the addition of another instance of Entry to l5 can take place at
three distinct places, we develop three distinct examples:

1. The first example shows that the given Entry might end up in the
middle of the given log:

check l5.insertDist(new Entry(new Date(1,3,2003), 5.0, 27, "great"))
expect

new ConsLog(new Entry(new Date(1,1,2003), 5.1, 26, "good"),
new ConsLog(new Entry(new Date(1,3,2003), 5.0, 27, "great"),

new ConsLog(new Entry(new Date(1,2,2003), 4.9, 25, "okay"),
new MTLog())))

2. In the second case, the given Entry is the first Entry of the resulting
log:
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check l5.insertDist(new Entry(new Date(1,4,2003), 5.2, 24, "fine"))
expect

new ConsLog(new Entry(new Date(1,4,2003), 5.2, 24, "fine"),
new ConsLog(new Entry(new Date(1,1,2003), 5.1, 26, "good"),

new ConsLog(new Entry(new Date(1,2,2003), 4.9, 25, "okay"),
new MTLog())))

3. Finally, the third example explains that the Entry can also be the last
one in the result:

check l5.insertDist(new Entry(new Date(1,5,2003), 4.8, 23, "bad"))
expect

new ConsLog(new Entry(new Date(1,1,2003), 5.1, 26, "good"),
new ConsLog(new Entry(new Date(1,2,2003), 4.9, 25, "okay"),

new ConsLog(new Entry(new Date(1,5,2003), 4.8, 23, "bad"),
new MTLog())))

Still, in all cases, the resulting logs are sorted in the descending order of
distances run.

Let us look at the complete definitions:

class MTLog implements ILog {
...

ILog insertDist(Entry e){
return

new ConsLog(e, this);
}
}

class ConsLog implements ILog {
Entry fst;
ILog rst;

...
ILog insertDist(Entry e){

if (e.distance > this.fst.distance) {
return new ConsLog(e, this); }

else {
return

new ConsLog(this.fst,
this.rst.insert(e))); }

}
}

The method on the left must return a log with one Entry because the pur-
pose statement promises that the given Entry and all the Entrys in the given
log show up in the result. Since the given log is an instance of MTLog, the
result must be the log that consists of just the given Entry.

The method on the right must distinguish two cases. If the distance
in the given Entry is larger than the distance in fst, it is larger than all the
distances in the given log, and therefore the given Entry must show up at
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the beginning of the result. If the distance in the given Entry is less than
(or equal to) the distance in fst, the recursive method call inserts the given
Entry in rst and the method just adds fst to the result of this recursive call.

Exercises

Exercise 15.4 Suppose the requirements for the program that tracks a run-
ner’s log includes this request:

. . . The runner would like to see the log with entries ordered
according to the pace computed in minutes per mile in each run,
from the fastest to the slowest. . . .

Design this sorting method.

15.3 Example: Overlapping Shapes

Recall the problem of representing overlapping shapes (page 44), which we
discussed in section 5.2. The data representation that we chose is displayed
in figure 23 (the class diagram) and in figure 24 (the class definitions). In
this section, we design some methods to these interfaces and classes, based
on problems from a programming contest for researchers.

As with the preceding examples, we start with the addition of templates
to the classes. The templates for Dot, Square, and Circle are routine affairs.
As for SuperImp, the two containment arrows from SuperImp to IComposite
in the class diagram suggest that we need two method calls to the method
template in IComposite. After all, a method that processes a SuperImp may
have to process both pieces, and they are IComposite shapes.

Figure 53 contains the class definitions enriched with the templates; to
keep the example reasonably small, Dot and CartPt are omitted as are the
schematic calls to the latter. Furthermore, figure 54 presents several exam-
ples, because as we have seen now many times, it is always good to have a
small set of examples around. Take a look at the four instances of SuperImp;
they illustrate the kind of problem we are facing well. The first two just
combine Squares and Circles; the third shows that a SuperImp may also con-
tain another SuperImp; and the last one contains not one but two SuperImps.

With the template and the examples in place, we can turn to an imagi-
nary programming problem from the above-mentioned contest:

. . . A combination of shapes represents a formation of war-
ships. The commanding officer wants to know how close the
formation is to some target. . . .
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interface IComposite {
??? nnn();
}

class Square
implements
IComposite {

CartPt loc;
int size;

Square(CartPt loc,
int size){

this.loc = loc;
this.size = size;
}

??? nnn() {
. . . this.loc . . .
. . . this.size . . .
}
}

class Circle
implements
IComposite {

CartPt loc;
int radius;

Circle(CartPt loc,
int radius){

this.loc = loc;
this.radius = radius;
}

??? nnn() {
. . . this.loc . . .
. . . this.radius . . .
}
}

class SuperImp
implements
IComposite {

IComposite bot;
IComposite top;

SuperImp(
IComposite bot,
IComposite top) {

this.bot = bot;
this.top = top;
}

??? nnn() {
. . . this.bot.nnn() . . .
. . . this.top.nnn() . . .
}
}

Figure 53: Classes for combination shapes, with templates

While this formulation of the problem is quite different from the original,
rather plain formulation on page 118 for the collection of basic shapes, it
is easy to recognize that they are the basically the same. The origin is the
target, and the distance to the origin is the distance to the target. If we
continue to assume that the shape is entirely on the canvas, the signature
and the purpose statement carry over from the original problem to this one:

inside of IComposite :
// to compute the distance of this shape to the origin
double distTo0();

Indeed, the concrete methods for Square and Circle also remain the same.
The difference is the concrete method for SuperImp, which must compute
the distance of an entire combination of shapes to the origin.

For the classes Square and Circle the expected results are computed the
same was as those we saw earlier: see testS1, testS2, testC1, and testC2 in fig-
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class CompositeExamples {
IComposite s1 = new Square(new CartPt(40, 30), 40);
IComposite s2 = new Square(new CartPt(120, 50), 50);
IComposite c1 = new Circle(new CartPt(50, 120), 20);
IComposite c2 = new Circle(new CartPt(30, 40), 20);
IComposite u1 = new SuperImp(s1, s2);
IComposite u2 = new SuperImp(s1, c2);
IComposite u3 = new SuperImp(c1, u1);
IComposite u4 = new SuperImp(u3, u2);

boolean testS1 = check s1.distTo0() expect 50.0 within .1;
boolean testS2 = check s2.distTo0() expect 80.0 within .1;
boolean testC1 = check c1.distTo0() expect 110.0 within .1;
boolean testC2 = check c2.distTo0() expect 30.0 within .1;

CompositeExamples() { }
}

Figure 54: Examples for combination shapes

ure 54. The instances of SuperImp make up the interesting examples. Given
that a SuperImp contains two shapes and that we wish to know the distance
of the closer one to the shape, we pick the smaller of the two distances:

check u1.distTo0() expect 50.0 within .1
check u2.distTo0() expect 30.0 within .1
check u3.distTo0() expect 50.0 within .1
check u4.distTo0() expect 30.0 within .1

The distance of u2 to the origin is 30.0 because the Square s1 is 50.0 pixels
away and the Circle c2 is 30.0 pixels away. Convince yourself that the other
predicted answers are correct; draw the shapes if you have any doubts.

Our reasoning about the examples and the template for SuperImp imply
that the method just computes the distance for the two shapes recursively
and then picks the minimum:

inside of SuperImp :

double distTo0(){
return Math.min(this.bot.distTo0(), this.top.distTo0());

}
As suggested by its name, Math.min picks the smaller of two numbers.

Here is a related problem (from the same contest):
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. . . Assuming the shapes represent those points that are reach-
able with anti-aircraft missiles, the commanding officer wishes
to know whether some point in the Cartesian space falls within
the boundaries of the formation’s outline. . . .

If you prefer a plainer problem statement, see page 119 for the analogous
problem for basic shapes.

Clearly the methods for Square and Circle can be used “as is.” The pur-
pose statement and header from IShape can also be transplanted into the
new interface:

inside of IComposite :
// is the given point within the bounds of this shape
boolean in(CartPt p);

inside of CompositeExamples :
check u1.in(new CartPt(42,42)) expect true
check u2.in(new CartPt(45,40)) expect true
check u2.in(new CartPt(20,5)) expect false

The examples illustrate that “being within the boundary” means being
within one or the other shape of a SuperImp.

And again, we use the template and the examples to assemble the con-
crete method for SuperImp in a straightforward manner:

inside of SuperImp :

double in(CartPt p){
return this.bot.in(p) || this.top.in(p);

}
The method computes the results for both of the shapes it contains and
then checks whether one or the other works. Recall that b1 || b2 computes
whether b1 or b2 is true.

Without ado, here is a restatement of the last geometric problem for
basic shapes (see page 123):

. . . The Navy wishes to know approximately how large an area
a group of objects covers. It turns out that they are happy with
the area of the bounding box, i.e., the smallest rectangle that
contains the entire shape. . . .

Since we already have a solution of this problem for Dots, Squares, and
Circles, it looks like we just need to solve the problem for SuperImp, the
variant in the union.
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When we solved the bounding-box problem for IShape, we started with
a careful analysis of what it means to compute a bounding box. Let’s extend
this analysis to SuperImp. So, imagine the square and circle in the left figure
as the two components of an SuperImp:
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The circle’s center is on the top-line of the square. In the central drawing,
we see the square’s and the circle’s individual bounding boxes; the square’s
bounding box is itself and the circle’s bounding box is the dashed square.
The right drawing shows the bounding box for the entire SuperImp shape
as a dashed rectangle; as you can see, it’s a rectangle proper.

The immediate conclusion of our analysis is that the bounding box of a
composite shape is a rectangle, not a square. Hence, Square can no longer
serve as the representation of bounding boxes; instead we need something
that represents rectangles in general. There are two obvious choices:

1. We can extend our shape datatype with a variant for representing
rectangles. That is, we would add a variant to the existing union that
that represents rectangles in exactly the same fashion as an instance
of Square represents a square and an instance of Circle represents a
circle.

2. We can define a class that is tailored to creating bounding boxes. Since
bounding boxes are rectangles, such a class would also represent a
rectangle. It doesn’t have to implement IComposite, however, impos-
ing fewer burdens on the design process. In particular, we do not
have to add all the methods that IComposite demands from its imple-
menting classes.

Each has advantages and disadvantages, even without considering the con-
text in which your classes are used. Stop to think briefly about an advan-
tage/disadvantage for each alternative.

Here we develop a solution for the second alternative; see exercise 15.5
for the first one. As a matter of fact, we don’t even commit to the fields of
the new class; all we assume for now is that it exists:

class BoundingBox { . . . }
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Even with that little, we can get pretty far, starting with a contract proper
for the bb method in IComposite:

inside of IComposite :
// compute the bounding box for this shape
BoundingBox bb();

The second step is to calculate out some examples, except that we don’t
know how to express them with BoundingBox. We therefore write them
down in a precise but informal manner:

1. s1.bb() should produce a 40-by-40 rectangle at (40,80);

2. s2.bb() should produce a 50-by-50 rectangle at (120,50);

3. c1.bb() should produce a 40-by-40 rectangle at (30,100);

4. c2.bb() should produce a 40-by-40 rectangle at (10,20).

Not surprisingly, these rectangles are squares because they are bounding
boxes for circles and squares. Still, the descriptions illustrate how to work
out examples without knowledge about the result type.

Next we look at the bounding boxes of instances of SuperImp:

1. u1.bb() should produce a 110-by-70 rectangle at (40,30);

2. u2.bb() should produce a 70-by-50 rectangle at (10,20);

3. u3.bb() should produce a 70-by-120 rectangle at (10,20);

4. u4.bb() should produce a 70-by-120 rectangle at (10,20).

For the template step, we use the generic templates from figure 53 and
refine them for this specific problem:

inside of Square :

BoundingBox bb() {
. . . this.loc . . .
. . . this.size . . .
}

inside of Circle :
BoundingBox bb() {

. . . this.loc . . .

. . . this.radius . . .
}

inside of SuperImp :

BoundingBox bb() {
. . . this.bot.bb() . . .
. . . this.top.bb() . . .
}

Without further commitments to the design of BoundingBox, we cannot
make progress on the method definitions in Square and Circle. For SuperImp,
however, we can actually finish the definition. Here is the template again,
with the purpose statements refined for each method invocation:
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inside of SuperImp :

BoundingBox bb() {
// compute the bounding box for top
. . . this.top.bb() . . .
// compute the bounding box for bot
. . . this.bot.bb() . . .
}

These refined purpose statements tells us that the two expressions in the
template produce bounding boxes for the respective shapes. Since it is
clearly a complex task to combine two bounding boxes into a bounding
box, we add a wish to our wish list:

inside of BoundingBox :
// combine this bounding box with that one
BoundingBox combine(BoundingBox that);

If the wish works, we can finish bb’s definition:

inside of SuperImp :

BoundingBox bb() {
return this.top.bb().combine(this.bot.bb());
}

Before you continue, contemplate why combine is a method in BoundingBox.
To make progress, we need to reflect on the bb methods in Circle and

Square. Both must produce instances of BoundingBox that represent squares
or, in general, rectangles. Before we commit to a concrete definition of
BoundingBox, let’s briefly discuss possible representations of rectangles:

1. In the past we have represented rectangles with three pieces of infor-
mation: the anchor point, its width, and its height.

2. One obvious alternative is to represent it with the four corners. Since
we committed to have the sides of rectangles run parallel to the axes,
we actually just need two opposing corners.

3. Based on the first two alternatives, you can probably think of a mix-
ture of others.

Before you commit to a choice in this situation, you should explore
whether the other operations needed on your class are easy to calculate.
Here we just need one: combine, which turns two rectangles into the small-
est rectangle encompassing both. When you are faced with such a choice,
it helps to plan ahead. That is, you should see how easily you can calculate
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with examples or whether you can calculate examples at all. For this par-
ticular example, it helps to draw pictures of rectangles and how you would
combine them, i.e, surround them with one large rectangle. See the three
drawings above that explain how to get one such rectangle for one instance
of SuperImp.

Drawing such pictures tells you quickly that the combine method has
to pick the extreme left line, right line, top line, and bottom line from the
four sides. As it turns out, this insight is easy to express for the second
alternative but takes quite some work for the first. Specifically, if instances
of BoundingBox contain the coordinates of two opposing corners, combine
could, for example, use the extreme left and the extreme top coordinate for
one new corner and the extreme right and the extreme bottom coordinate
for the other. Indeed, this consideration implies that it suffices to record
these four numbers in a BoundingBox; after all, they determine the rectangle
and they allow a straightforward definition of combine.

Here is the basic idea then:

// representing bounding boxes in general
class BoundingBox {

int lft;
int rgt;
int top;
int bot;
. . .
// combine this bounding box with that one
BoundingBox combine(BoundingBox that) { . . . }
}

Before we design the method, though, we should formulate the examples
for the bb method for this choice to ensure we understand things properly:

inside of CompositeExamples :
boolean test1 = check s1.bb() expect new BoundingBox(40,80,30,70);
boolean test2 = check s2.bb() expect new BoundingBox(120,170,50,100);
boolean test3 = check c1.bb() expect new BoundingBox(30,70,100,140);
boolean test4 = check c2.bb() expect new BoundingBox(10,50,20,60);

boolean test5 = check u1.bb() expect new BoundingBox(40,170,30,100);
boolean tets6 = check u2.bb() expect new BoundingBox(10,80,20,70);
boolean test7 = check u3.bb() expect new BoundingBox(10,80,20,140);
boolean test8 = check u4.bb() new BoundingBox(10,80,20,140);
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The first four examples show how to compute a bounding box for Squares
and Circles; not surprisingly, these bounding boxes represent squares in the
Cartesian plane. The fifth and sixth are for SuperImps but they are easy to
compute by hand because they just combine the bounding boxes for basic
shapes. The last two expected bounding boxes require some calculation.
For such examples, it is best to sketch the given shape on drawing paper
just to get a rough impression of where the bounding box should be.

Now that we the functional examples and a template, we can define the
methods for the basic classes, Square and Circle:

inside of Square :

BoundingBox bb() {
return

new BoundingBox(
this.loc.x,
this.loc.x+this. size,
this.loc.y,
this.loc.y+this. size);

}

inside of Circle :
BoundingBox bb() {

return

new BoundingBox(
this.loc.x − this.radius,
this.loc.x + this.radius,
this.loc.y − this.radius,
this.loc.y + this.radius);

}

Computing the margins for a Square is obvious. For Circles, the left mar-
gin is one this.radius to the left of the center, which is at located at this.
loc; similarly, the right margin is located one this.radius to the right of the
center. For the top and the bottom line, the method must conduct similar
computations.

There is one entry left on our wish list: combine in BoundingBox. Re-
call that the purpose of combine is to find the (smallest) BoundingBox that
contains this and that BoundingBox, where the latter is given as the sec-
ond argument. Also recall the picture from the problem analysis. Clearly,
the left-most vertical line of the two bounding boxes is the left-most line
of the comprehensive bounding box and therefore determines the lft field
of the combined box. This suggests, in turn, that combine should compute
the minimum of this. lft—the left boundary of this—and that.lft—the left
boundary of that:

. . . Math.min(this.lft,that.lft) . . .

Before you move on: what are the appropriate computations for the pair of
right-most, top-most, and bottom-most lines?

Putting everything together yields this method definition:
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inside of BoundingBox :

BoundingBox combine(BoundingBox that) {
return new BoundingBox(Math.min(this.lft,that.lft),

Math.max(this.rgt,that.rgt),
Math.min(this.top,that.top),
Math.max(this.bot,that.bot))

}
These methods are obviously complicated and require thorough testing. In
addition, you may wish to add drawing methods that visualize the process,
but keep in mind as you do so that a visual inspection does not—we repeat
not—represent a test proper.

Exercises

Exercise 15.5 When we discussed the design of BoundingBox, we briefly
mentioned the idea of adding a Rectangle class to the IComposite hierarchy
figure 53:

class Rectangle implements IComposite {
CartPt loc;
int width;
int height;

Rectangle(CartPt loc, int width, int height){
this.loc = loc;
this.width = width;
this.height = height;
}

??? nnn() {
. . . this.loc . . .
. . . this.width . . .
. . . this.height . . .
}
}
Now re-design the method bb for IComposite using this signature and

purpose statement:

inside of IComposite :
// compute the bounding box for this shape
Rectangle bb();
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Hint: Extend Rectangle with auxiliary methods for computing the combina-
tion of bounding boxes.

Note: This exercise illustrates how a decision concerning the represen-
tation of information—the bounding boxes—can affect the design of meth-
ods, even though both design processes use the same design recipe after
the initial decision.

Exercise 15.6 Drawing shapes and their bounding boxes is a graphical way
of checking whether bb works properly. Equip all classes from this section
with a draw method and validate the results of bb via visual inspection.
Add the class Examples, which creates examples of shapes and contains a
method that first draws the bounding box for a given shape and then the
shape itself. Use distinct colors for bounding boxes and shapes.

15.4 Example: River Systems

The last example in this chapter concerns the problem of monitoring the
nation’s river systems (page 46):

. . . The EPA’s software must represent river systems and mon-
itor them. . . .

Figure 55 contains the classes and interfaces for representing a river system.
The code is an enrichment of the one in figure 26 with method templates
where needed. Before you proceed, take another look at the example in the
original problem and the object representation of this example.

Let’s use these templates and examples of “inputs” to solve this prob-
lem:

. . . An EPA officer may wish to find out how many sources
feed a river system. . . .

First we make up some examples for the sources method:

check s.sources() expect 1
check a.sources() expect 3
check b.sources() expect 2
check m.sources() expect 3
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// the end of a river
class Mouth{

Location loc;
IRiver river;
. . .

??? nnn() {
. . . this.loc.mmm() . . .
. . . this.river.nnn() . . .
}

}

// a location on a river
class Location{

int x;
int y;
String name;
. . .
??? nnn() {

. . . this.x . . . this.y . . . this.name . . .
}
}

// a river system
interface IRiver{

??? nnn();
}

// the source of a river
class Source implements IRiver {

Location loc;
. . .

??? nnn() {
. . . this.loc.mmm() . . .
}

}

// a confluence of two rivers
class Confluence implements IRiver{

Location loc;
IRiver left;
IRiver right;
. . .

??? nnn() {
. . . this.loc.mmm()
. . . this.left.nnn() . . .
. . . this.right.nnn(. . . ) . . .
}
}

Figure 55: Methods for a river system

Each source contributes 1 to the total count. For each confluence of two
rivers, we add up the sources of both tributaries. And the sources that feed
a mouth are the sources of its river.

Here are the methods, including signatures and purpose statements for
Mouth and IRiver:
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inside of Mouth :
// count the number of sources
// that feed this Mouth
int sources() {

return this.river.sources();
}

inside of IRiver :
// count the number of sources
// for this river system
int sources();

The method for Mouth just calls the method for its river, following the con-
tainment arrow in the class diagram. Also following our design rules for
unions of classes, the method in IRiver is just a signature.

Next we define the methods for Source and Confluence:

inside of Source :
int sources(){

return 1;
}

inside of Confluence :

int sources(){
return this.left.sources() + this.right.sources();
}

The templates and the method examples suggest these straightforward def-
initions. You should make sure sure that these methods work as advertised
by the examples.

The next problem involves the locations that are a part of river systems:

. . . An EPA officer may wish to find out whether some location
is a part of a river system. . . .

Take a look at figure 56. It contains the refined templates for the relevant
five classes: Mouth, IRiver, Confluence, Source, and Location. Specifically,

1. the refined methods have names that are appropriate for the problem;

2. they have complete signatures;

3. and they come with purpose statements.

The Location class is also a part of the class hierarchy because the problem
statement implies that the search methods must be able to find out whether
two Locations are the same.

Our next step is to work through some examples:

check mouth.onRiver(new Location(7,5)) expect true

After all, the given location in this example is the location of the mouth
itself. Hence, we also need an example where the location is not the mouth:

check mouth.onRiver(new Location(1,5)) expect false
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// the end of a river
class Mouth {

Location loc;
IRiver river;
. . .

boolean onRiver(Location aloc) {
. . . this.loc.same(aloc) . . .
. . . this.river.onRiver(Location aloc) . . .
}

}

// a location on a river
class Location {

int x;
int y;
. . .
. . .
boolean same(Location aloc) {

. . . this.x . . . aloc.x . . .

. . . this.y . . . aloc.y . . .
}
}

// a river system
interface IRiver{

boolean onRiver(Location aloc);
}

// the source of a river
class Source implements IRiver {

Location loc;
. . .

boolean onRiver(Location aloc) {
. . . this.loc.same(aloc) . . .
}

}

// a confluence of two rivers
class Confluence implements IRiver{

Location loc;
IRiver left;
IRiver right;
. . .

boolean onRiver(Location aloc) {
. . . this.loc.same(aloc)
. . . this.left.onRiver(aloc) . . .
. . . this.right.onRiver(aloc) . . .
}
}

Figure 56: Methods searching river systems for locations

This time, the given location is the source of t, which joins up with s to
form b, and that in turn flows into a and thus mouth itself. A complete
set of examples would contain method calls for the templates in Source,
Confluence, and Location.

The examples suggest that onRiver in Mouth checks whether the given
location is the location of the mouth or occurs on the river system:
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inside of Mouth :
// does aloc occur
// along this river system?
boolean onRiver(Location aloc){

return this.loc.sameloc(aloc) ||
this.river.onRiver(aloc);

}

inside of IRiver :
// does aloc occur
// along this river system?
boolean onRiver();

Again, the two method calls are just those from the template; their com-
bination via || is implied by the examples. Both follow the containment
arrows in the diagram, as suggested by the design recipe.

The methods in Source and Confluence follow the familiar pattern of re-
cursive functions:

inside of Source :
boolean onRiver(Location aloc){

return this.loc.sameloc(aloc);
}

inside of Confluence :

boolean onRiver(Location aloc){
return this.loc.sameloc(aloc) ||

this.left.onRiver(aloc) ||
this.right.onRiver(aloc);

}

In Source, the method produces true if and only if the given location and
the location of the source are the same; in Confluence, the given location
could be on either branch of the river or it could mark the location of the
confluence.

Last but not least we must define what it means for two instances of
Location to be the same:

inside of Location :
// is this location identical to aloc?
boolean same(Location aloc) {

return (this.x == aloc.x) && (this.y == aloc.y);
}

Like the methods above, this one is also a simple refinement of its template.

Note: If we wanted to have a more approximate notion “sameness”, we
would of course just change this one definition. The others just defer to
Location for checking on sameness, and hence changing “sameness” here
would change it for every method. What you see in action is, of course, the
principle of “single point of control” from How to Design Programs.

Here is the final problem concerning river systems:
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. . . An EPA officer may request the number of miles of a river
system, either starting from the river’s mouth or any of its con-
fluence points. . . .

Because our existing representation of river systems doesn’t include any in-
formation about the lengths of the segments, the problem requires a mod-
ification of the data representation before we even consider the design of
the required method.

t
s /
\ length: 2

length: 3 /
\ /
\ /
\/
b u
\ /

length: 3 length: 1
\ /
\ /
a
|

length: 4
|
m

IRiver s = new Source(3,new Location(1, 1));
IRiver t = new Source(2,new Location(1, 5));
IRiver u = new Source(1,new Location(3, 8));

IRiver b =
new Confluence(3,new Location(3, 3),s,t);

IRiver a =
new Confluence(4,new Location(5, 5),b,u);

Mouth mouth =
new Mouth(new Location(7, 5), a);

Figure 57: A sample river system with length measurements

It is easy to add the lengths of river segments to the picture of a river
system because the segments are clearly visible. The picture on the left
of figure 57 shows how to do this for the artificial example in the original
problem statement (page 46). In our data representation from figure 55 or
equivalently 26, however, we don’t represent the segments at all. Instead
we just represent three kinds of points of interest: the mouth, the conflu-
ences of rivers, and their sources. The segments are implied as connections
between these points.

This situation forces a choice on us: to include segments in our data
representation or to work with what we have. Changing the representa-
tion means adding a class that represents segments and modifying Mouth,
IRiver, Source, and Confluence to refer to segments. In all likelihood the ex-
isting methods won’t work after this reorganization. Alternatively, we can
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add fields to the existing classes that record the length of associate seg-
ments. Still, even if we leave the overall structure of the hierarchy alone,
we face another choice:

1. for any point of interest, we can record the length of the downward
segment; or

2. for any point of interest, we can record the length of the upward seg-
ment.

Here we choose to leave the structure of the class hierarchy alone and to
record the length of a segment in its origination point (choice 1); exer-
cise 15.9 explores the second choice.

class Mouth {
Location loc;
IRiver river;
. . .

??? nnn() {
. . . this.loc.mmm() . . .
. . . this.river.nnn() . . .

}

interface IRiver {
??? n();
}

class Source implements IRiver {
int miles ;

Location loc;
. . .

??? nnn() {
. . . this.miles . . .

. . . this.loc.mmm() . . .
}

}

class Confluence implements IRiver {
int miles ;

Location loc;
IRiver left;
IRiver right;
. . .

??? nnn() {
. . . this.miles . . .

. . . this.loc.mmm()

. . . this.left.nnn() . . .

. . . this.right.nnn(. . . ) . . .
}
}

Figure 58: Adding the length of a river segment to the data representation

Figure 58 shows the adapted classes for a river system. The new fields
in Source and Confluence denote the length of the down-river segment that
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is adjoined to a point of interest. There is no length field in Mouth because
the mouth of a river is its end. The figure also contains the adapted method
templates. Both nnn in Source and nnn in Confluence require one extra line.
The added fields and lines are shaded gray.

For examples that describe the behavior of length, we need to look back
at the left part of figure 57 and adapt the examples from the original prob-
lem (page 49); the right part of figure 57 shows the new representation.
Based on these specifications, the expected results for length are as follows:

check s.length() expect 3
check t.length() expect 2
check u.length() expect 1
check b.length() expect 8
check a.length() expect 13
check m.length() expect 13

From here it is easy to develop a method that computes the total length
of a river system from a certain point:

inside of Mouth :
// the total length of
// the river system
int length(){

return this.river.length();
}

inside of IRiver :
// compute the total length of the
// waterways that flow into this point
int length();

The method in Mouth still defers to the method of its river field to compute
the result; and that latter method is just a signature, i.e., it is to be defined
in the variants of the union.

All that is left to define are the methods in Source and Confluence:

inside of Source :
boolean length(){

return this.miles;
}

inside of Confluence :

int length(){
return this.miles +

this.left.length() +
this.right.length();

}
The total length for the Source class is the value of the length. The total
length of the river flowing to a Confluence is the sum of the total lengths of
the two tributaries and the length of this river segment.

Exercises
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Exercise 15.7 The EPA has realized that its case officers need a broader
meaning of “finding locations along the river system” than posed in this
section:

. . . An EPA officer may wish to find out whether some location
is within a given radius of some confluence or source on a river
system. . . .

Modify the existing onRiver method to fit this revised problem statement.

Exercise 15.8 Design the following methods for the class hierarchy repre-
senting river systems:

1. maxLength, which computes the length of the longest path through
the river system;

2. confluences, which counts the number of confluences in the river sys-
tem; and

3. locations, which produces a list of all locations on this river, including
sources, mouths, and confluences.

Exercise 15.9 Design a representation of river systems such that each place
(mouth, confluence, or source) describes how long the segments are that
flow into it. Hint: For a confluence, you will need two lengths: one for the
left tributary and one for the right.

15.5 Finger Exercises

Exercise 15.10 Design a data representation for shopping lists. Start from
the class of grocery items developed in exercise 14.7. Add the following
methods:

1. howMany, which computes the number of items on the shopping list;

2. brandList, which produces the list of all brand names; and

3. highestPrice, which determines the highest unit price among all items
in the shopping list.

Exercise 15.11 Figure 59 contains a class diagram that describes the GUI hi-
erarchy of exercise 6.5. Note that one of its interfaces, ITable, refines another
interface IGUIComponent.

Add templates to each box in this diagram. Do not assume anything
about the return type; do not design classes.
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IGUIComponent

BooleanView

String label

TextFieldView

String label

OptionsView

String label

ColorView

String label

ITable

MTTable AddRow

Table rest
IRow first

IRow

ConsRow

IRow rest
GUIComponent first

MTRow

Figure 59: A hierarchy of GUI components

Exercise 15.12 Develop a program for managing discount bookstores (see
exercise 14.8):

1. design a representation for lists of books;

2. write down (in English) three examples of book lists and their corre-
sponding data representations;

3. develop the method thisAuthor, which produces the list of books that
this author has authored.

Modify the data representation for books so that books can have an arbi-
trary number of authors. Then adapt the methods above.
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16 Designing Methods

The purpose of a method is to produce data from the data in the given
object and the method’s arguments. For that reason, the design recipe for
methods—adapted from the design recipe from How to Design Programs
for functions—focuses on laying out all the available pieces of data as the
central step:

purpose & signature When you design a method, your first task is to clar-
ify what the method consumes and what it produces. The method
signature specifies the classes of (additional) “inputs” and the class of
“outputs.” You should keep in mind that a method always consumes
at least one input, the instance of the class on which it is invoked.

Once you have a signature, you must formulate a purpose statement
that concisely states what the method computes with its arguments.
You do not need to understand (yet) how it performs this task. Since
the method consumes (at least) the instance of the class in which the
method is located, it is common practice to write down the purpose
statement in terms of this; if the names of parameters are useful, too,
use them to make the statement precise.

functional examples The second step is the creation of examples that illus-
trate the purpose statement in a concrete manner.

template The goal of the template step is to spell out the pieces of data
from which a method can compute its result. Given that a method
always consumes an instance of its class, the template definitely con-
tains references to the fields of the class. Hint: Annotate these “selec-
tor” expressions with comments that explain their types; this often
helps with the method definition step.

If any of the fields have a class or interface type, remind yourself with
an appropriate expression that your method can—and often must—
use method calls on these objects.

Additionally, if your method’s extra arguments have class or interface
types, add a schematic method call to the method parameter (p):

AType m(AClass p, . . . ) {
. . . p.lll()
}
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Last but not least, before you move on, keep in mind that a method
body may use other already defined methods in the surrounding class
or in the class and interaces of its parameters.

method definition Creating the method body is the fourth step in this se-
quence. It starts from the examples; the template, which lays out all
the available information for the computation; and the purpose state-
ment, which states the goal of the computation. If the examples don’t
clarify all possible cases, you should add examples.

tests The last task is to turn the examples into executable tests. Ideally
these tests should be evaluated automatically every time you edit the
program and get it ready to run.

The five steps depend on each other. The second step elaborates on the first;
the definition of the method itself uses the results of all preceding steps; and
the last one reformulates the product of the second step. On occasion, how-
ever, it is productive to re-order the steps. For example, creating examples
first may clarify the goal of the computation, which in turn can help with
the purpose statement. Also, the template step doesn’t depend on the ex-
amples, and it is often possible and beneficial to construct a template first.
It will help a lot when methods come in bunches; in those cases, it is often
straightforward to derive the methods from the templates then.

16.1 The Varieties of Templates

Class arrangements come in four varieties and so do templates. Let’s take
a quick look at each of these situations because it will help you develop
templates from the organization of the classes.

Basic Classes

A basic class comes with a name and some properties of primitive type:

Basic

String s
int i
double d

Basic

String s
int i
double d

??? nnn() {
... this.i ... 
... this.d ... 
... this.j ... }
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Adding a template to such a basic class is straightforward, as the elaborated
class diagram on the right shows. The method template enumerates all
fields using the this-dot syntax, which indicates that the values come from
the instance that is the implicit first argument to mmm.

Containment

The next case concerns a class that refers to (instances of) other classes:

Containment

Basic b
double d

Basic

String s
int i
double d

Here Containment refers to Basic. A computation concerning Containment
may therefore need some data from (or about) Basic. Of course, this data
may or may not play the same role, so this doesn’t mean that we need
the exact same method in Basic that we have in Containment. We therefore
create a template with distinct method stubs in the two classes:

Containment

Basic b
double d

??? mmm() {
... this.b.nnn() ... 
... this.d ... }

Basic

String s
int i
double d

??? nnn() {
... this.i ... 
... this.d ... 
... this.j ... }

When we eventually define mmm, the expression this.b.nnn() reminds us
that we may have to add a method to Basic. If so, we put it on our wish list;
the template already exists and makes it easy to define the method.

Unions

Here is the diagram for the third situation:
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IUnion

Basic1

boolean b
double d

Basic2

int i
double d

Basic3

int i
String s

The diagram specifies IUnion as the interface for the union of three concrete
classes: Basic1, Basic2, and Basic3. An interface such as IUnion represents a
common facade for the three classes to the rest of the program.

The template for a union of classes requires a method signature in the
interface and basic templates in the concrete variants of the union:

IUnion

Basic1

boolean b
double d

??? mmm() {
... this.b ... 
... this.d ... }

Basic2

int i
double d

??? mmm() {
... this.i ... 
... this.d ... }

Basic3

int i
String s

??? mmm() {
... this.i ... 
... this.s ... }

The method templates for the basic classes mention all fields of the respec-
tive classes.

Self-References and Mutual References

The last case is the most complex one. It deals with self-references and mu-
tual references in class diagrams via refinement and containment arrows.
The following diagram shows a single self-reference in a class hierarchy:
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IUnion

Basic1

String s

Basic2

double d

Basic3

IUnion u

A closer look at the diagram shows that this last particular example is a
composition of the containment and the union case.

Accordingly the creation of the method templates is a composition of
the actions from the preceding two cases. Here is the resulting diagram:

IUnion

Basic1

String s

??? mmm() {
... this.s ... }

Basic2

double d

??? mmm() {
... this.d ... }

Basic3

IUnion u

??? mmm() {
... this.u.mmm() ... }

The IUnion interface contains a method signature for mmm, specifying how
all instances of this type behave. The three concrete classes contain one con-
crete template for mmm each. The only novelty is in the template for Con-
tain3’s mmm method. It contains a method invocation of mmm on u. Since u
is of type IUnion, this recursive invocation of mmm is the only natural way
to compute the relevant information about u. After all, we chose IUnion
as u’s type because we don’t know whether u is going to be an instance of
Atom1, Atom2, or Contain3. The recursive invocation therefore represents a
dynamic dispatch to the specific method in the appropriate concrete class.

Even though the sample diagram is an example of a self-referential class
hierarchy, the idea smoothly generalizes to complex cases, including class
hierarchies with mutual references. Specifically, an interface for a union of
classes always contains a general method signature. As we follow the (re-
verse) refinement arrows, we add concrete versions of the method signa-
ture to the classes. The body of the template contains one reference to each
field. If the field refers to another class in the hierarchy along a containment
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arrow, we turn the field reference into a method call. If, furthermore, the
reference to the other class creates a cycle in the class hierarchy, the method
invocation is recursive. Note how for a collection of classes with mutual
references along containment arrows, the design recipe creates natural mu-
tual references among the methods.

16.2 Wish Lists

A wish list is a programmer’s most important instrument. This is true for
people who design programs, functions, or class hierarchies with methods.
The very first wish on the list is the method that we are asked to design.
As we develop the method for the class hierarchy, we often encounter sit-
uations when we just wish we had some additional method that computes
something about some other object. When that happens, we enter another
wish on our wish list. More precisely, we identify to which class or inter-
face we should add the method and formulate a rough purpose statement
and signature for the method. Those two pieces of information generally
suffice to construct the method later. In the meantime, we act as if we had
that method and finish the definition of the method that we are working on.
Obviously, we can’t test this method because it depends on a non-existing
method. Hence, our next step is to pick an item from our wish list and to
work on it.

When our wish list is empty, we can test all of our examples. We start
testing those methods that don’t depend on any other methods. Once we
are confident that these basic methods work well, we move on to the meth-
ods that depend on the ones we have tested. Put differently, we first work
our way down from the initially requested method to the most basic ones,
and then we test our way back up, starting from the most basic methods.

There are two different situations that call for the addition of a method
to the wish list:

1. If a template contains a method call, say this.u.mmm() where this.u
belongs to some other class or interface, and if the respective contain-
ment arrow does not create a self-reference in the class hierarchy, we
add an entry to the wish list. Specifically, we add a purpose statement
and signature to the type of this.u.

2. If you discover that a method definition becomes complex, you are
probably trying to compute too many things at once. Less charitably,
you are about to violate the “one task, one function” rule. In this case,
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it is critical to identify the independent tasks and to formulate them
as entries on the wish list.

Some experienced programmers can cope with long and complex wish
lists. You shouldn’t. You should avoid large gaps between method defini-
tions and testing. Without quick testing, beginning programmers simply
can’t gain enough confidence about the progress that has been made. You
should therefore learn to recognize basic methods and to design and test
them as quickly as possible.

Experienced programmers also recognize when some other class or the
programming language itself already provides the functionality of a wish.
For example, Java comes with a library of classes that deal with positions
so that we don’t really have to design a class for positions and methods for
computing the distance to the origin. A programmer with a lot of experi-
ence will evaluate those classes and deliberately decide whether to design
a new class or reuse the existing one.

16.3 Case Study: Fighting UFOs, with Methods

Recall the “war of the worlds” problem:

. . . Develop a “War of the Worlds” game. A UFO descends
from the sky. The player owns an anti-UFO platform (AUP),
which can move left and right on the ground. It can also fire
shots, straight up from the middle of the platform. If any of the
shots hit the UFO, the player wins. Otherwise, the UFO lands
and destroys the earth. . . .

In section 6.2, we developed a data representation for this world of UFOs.
All game objects belong to an instance of UFOWorld. Three classes deal
with three kinds of physical objects: UFOs, AUPs, and Shots. The others
represent the collection of all shots that the player has fired.

In this section, we add some methods. The purpose isn’t to develop a
complete game (yet), but to study the design recipe for methods in action.
Just like for the design of classes, you need to read the problem statement
carefully to figure out what methods are needed. Our problem statement
contains some direct requests for methods:

1. The UFO descends, i.e., it moves downward on the canvas.

2. The player can move the AUP left or right.
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// the world of UFOs, AUPs, and Shots
class UFOWorld {

UFO ufo;
AUP aup;
IShots shots;
IColor BACKG = new Blue();
int HEIGHT = 500;
int WIDTH = 200;

UFOWorld(UFO ufo, AUP aup, IShots shots) { . . . }

// draw this world
boolean draw(Canvas c) { . . . }
// move the objects in this world
UFOWorld move() { . . . }
// fire a shot in this world
UFOWorld shoot() { . . . }
}

// an anti-UFO platform: its left corner is
// location pixels from the left,
// at the bottom of the world
class AUP {

int location;
IColor aupColor = new Red();

AUP(int location) { . . . }

// draw this AUP
boolean draw(Canvas c) { . . . }
// fire a shot from this AUP
Shot fireShot(UFOWorld w) { . . . }
}

// a UFO: its center is at location

class UFO {
Posn location;
IColor colorUFO = new Green();

UFO(Posn location) { . . . }

// draw this UFO
boolean draw(Canvas c) { . . . }
// drop this UFO
UFO move() { . . . }
}

Figure 60: UFOs and AUPs with preliminary method specifications

3. The player can also fire shots from the AUP.

4. The shots fly upwards, presumably in a straight line.

5. If a shot hits the UFO, the player wins the game.
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6. If the UFO has landed, the player has lost the game.

Implicitly, the problem also asks for methods that draw the various objects
onto the canvas. Here we discuss how to develop methods for drawing the
objects of the world in a canvas, for moving them, and for firing a shot. The
remaining methods are the subject of exercises at the end of the section.

Figures 60 and 61 display the classes that represent the entire world,
UFOs, AUPs, and lists of shots; the routine constructors are elided to keep
the figures concise. When you add purpose statements and signatures to
such a system of classes, start with the class that stands for the entire world.
Then you follow the containment and refinement arrows in the diagram
as directed by the design recipe. If you believe that a method in one class
requires a method with an analogous purpose in a contained class, it’s okay
to use the same name. These additions make up your original wish list.

Now take a look at the draw method in UFOWorld. Its purpose is to
draw the world, that is, the background and all the objects contained in the
world. The design recipe naturally suggests via the design template that
draw in UFOWorld use a draw method in UFO, AUP, and IShots to draw the
respective objects:

inside of UFOWorld :
boolean draw(Canvas c) {

. . . this.BACKG . . . this.HEIGHT . . . this.WIDTH . . .

. . . this.ufo.draw(. . . ) . . .

. . . this.aup.draw(. . . ) . . .

. . . this.shots.draw(. . . ) . . .
}

An example of a canvas for UFOWorld came with the original problem
statement (see page 56). The image shows that the world is a rectangle,
the UFO a flying saucer, and the AUP a wide horizontal rectangle with a
short vertical rectangle sticking out in the middle. Before we can define
the draw method, however, we must also recall from section 14.1 how the
drawing package works. A Canvas comes with basic methods for drawing
rectangles, circles, disk and so on. Hence, a draw method in our world must
consume an instance of Canvas and use its methods to draw the various
objects.

With all this in mind, we are now ready to define draw:
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inside of UFOWorld :
boolean draw(Canvas c) {

return

c.drawRect(new Posn(0,0), this.WIDTH,this.HEIGHT,this.BACKG)
&& this.ufo.draw(c)
&& this.aup.draw(c)
&& this.shots.draw(c);

}

It combines four drawing actions with &&, meaning all four must succeed
before draw itself signals success with true.

// managing a number of shots
interface IShots {

// draw this list of shots
boolean draw(Canvas c);
// move this list of shots
IShots move();
}

// a shot in flight, whose upper
// left corner is located at location
class Shot {

Posn location;
IColor shotColor = new Yellow();

Shot(Posn location) { . . . }
// draw this shot
boolean draw(Canvas c) { . . . }
// move this list of shots
Shot move(UFOWorld w) { . . . }
}

// the empty list of shots
class MtShots implements IShots {

MtShots() { }

boolean draw(Canvas c) { . . . }
IShots move(UFOWorld w) { . . . }
}

// a list with at least one shot
class ConsShots implements IShots {

Shot first;
IShots rest;

ConsShots(Shot first, IShots rest) { . . . }

boolean draw(Canvas c) { . . . }
IShots move(UFOWorld w) { . . . }
}

Figure 61: Shots and lists of shots with preliminary method specifications

The draw methods in AUP and UFO just draw the respective shapes. For
example, draw in UFO draws a disk and a rectangle placed on its center:
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inside of UFO :
// draw this UFO
boolean draw(Canvas c) {

return

c.drawDisk(this.location,10,this.colorUFO) &&
c.drawRect(new Posn(this.location.x − 30,this.location.y − 2),

60,4,
this.colorUFO);

}
Note how the calculations involve for the positions plain numbers. Follow-
ing the advice from How to Design Programs, it would be better of course to
introduce named constants that the future readers what these numbers are
about. Do so!

In comparison, IShots contains only a method signature because IShots
is the interface that represents a union. Its addition immediately induces
two concrete draw methods: one in MtShots and one in ConsShots. Here are
the two templates:

inside of MtShots :
boolean draw(Canvas c) {

. . .
}

inside of ConsShots :
boolean draw(Canvas c){

. . . this.first.draw() . . . this.rest.draw() . . .
}

Since the purpose of the draw method is to draw all shots on a list of shots,
it is natural to add a draw method to Shot and to use this.first.draw() in
ConsShots. Like all other draw methods, these, too, consume a Canvas so
that they can use the drawing methods for primitive shapes.

Exercises

Exercise 16.1 Define the draw methods for MtShots, ConsShots, and Shot.
Remember that on screen, a Shot is drawn as a thin vertical rectangle.

Exercise 16.2 Define the draw method in AUP. As the screen shot in the
problem statement on page 56 indicates, an AUP consists of two rectangles,
a thin horizontal one with a short, stubby vertical one placed in its middle.
It is always at the bottom of the screen. Of course, your boss may require
that you can change the size of UFOWorld with a single modification, so
you must use a variable name not a number to determine where to place the
AUP on the canvas. Hint: Add a parameter to the draw method’s parameter



184 Section 16

list so that it can place itself at the proper height. Does this change have any
implications for draw in UFOWorld?

Exercise 16.3 When you have solved exercises 16.1 and 16.2 combine all
the classes with their draw methods and make sure your code can draw a
world of UFOs. You may wish to use the examples from figure 34.

Once your program can draw a world of objects, the natural next step
is to add a method that makes the objects move. The purpose of move
in UFOWorld is to create a world in which all moving objects have been
moved to their next place—whatever that is. Hence, if the method is some-
how called on a regular basis and, if every call to move is followed by a call
to draw, the player gets the impression that the objects move continuously.

Here is a draft purpose statement, a method signature, and a template
for the move method:

inside of UFOWorld :
// to move all objects in this world
UFOWorld move() {

. . . this.BACKG . . . this.HEIGHT . . . this.WIDTH . . .

. . . this.ufo.move(. . . ) . . .

. . . this.aup.move(. . . ) . . .

. . . this.shots.move(. . . ) . . .
}

The template reminds us that the world consists of three objects and, fol-
lowing the design recipe, that each of these objects also has a move method.
You might conclude that the move method for the world moves all objects
just like the draw method draws all objects. This conclusion is too hasty,
however. While the UFO and the shots are moving automatically, the AUP
moves in response to a player’s instructions. We therefore exclude the AUP
from the overall movement and focus only on the UFO and the shots:

inside of UFOWorld :
// to move the UFO and the shots in this world
UFOWorld move() {

return

new UFOWorld(this.ufo.move(),this.aup,this.shots.move());
}

That is, the move method creates a new UFOWorld from the existing AUP
plus a UFO and a list of shots that have been moved.
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Exercises

Exercise 16.4 Our development skipped over the example step. Use fig-
ure 34 to develop examples and turn them into tests. Run the tests when
the move methods for UFOs and IShots are defined (see below).

By following the design recipe, you have placed two methods on your
wish list: move in UFO and move in IShots. The latter is just a signature; its
mere existence, though, implies that all implementing classes must posses
this method, too. The former is concrete; its task is to create the “next” UFO.
This suggests the preliminary method signatures and purpose statements
in figures 60 and 61.

Let’s take a step at a time and develop examples for move in UFO. Sup-
pose the method is invoked on

new UFO(new Posn(88,11))

Given the dimensions of UFOWorld, this UFO is close to the top of the can-
vas and somewhat to the left of the center. Where should it be next? The
answer depends on your boss, of course.24 For now, we assume that move
drops the UFO by three (3) pixels every time it is invoked:

check new UFO(new Posn(88,11)).move()
expect new UFO(new Posn(88,14))

Similarly:

check new UFO(new Posn(88,14)).move()
expect new UFO(new Posn(88,17))

and

check new UFO(new Posn(88,17)).move()
expect new UFO(new Posn(88,20))

While this sequence of examples shows the natural progression, it also
calls into question the decision that move drops the UFO by 3 pixels every
time it is invoked. As the problem statement says, once the UFO reaches

24Deep down, it depends on your knowledge, your imagination, and your energy. Many
computer games try to emulate physical laws. To do so, you must know your physics. Oth-
ers rely on your imagination, which you can foster, for example, with readings on history,
mythology, science fiction, and so on.
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the ground level, the game is over and the player has lost. Translated into
an example, the question is what the expression

new UFO(new Posn(88,499)).move()

for example, should produce. With a y coordinate of 499, the UFO is close
to the ground. Another plain move would put it under the ground, which
is impossible. Consequently, move should produce a UFO that is on the
ground:

check new UFO(new Posn(88,499)).move()
expect new UFO(new Posn(88,500))

Of course, if move is invoked on a UFO that has landed, nothing happens:

check new UFO(new Posn(88,500)).move()
expect new UFO(new Posn(88,500))

// the world of
// UFOs, AUPs, and Shots
class UFOWorld {

UFO ufo;
AUP aup;
IShots shots;
IColor BACKG = . . . ;
int HEIGHT = 500;
int WIDTH = 200;
. . .
// move the objects in this world
UFOWorld move() {
return

new UFOWorld(this.ufo.move( this ),
this.aup,
this.shots.move());

}
}

// a UFO, whose center is
// located at location
class UFO {

Posn location;
IColor colorUFO = . . . ;
. . .
// drop this UFO by 3 pixels
UFO move(UFOWorld w) {

if (this.landed(w)) {
return this; }

else { if (this.closeToGround(w)) {
return

new UFO(
new Posn(this.location.x,

w.HEIGHT)); }
else {

return
new UFO(

new Posn(this.location.x,
this.location.y+3)); }

}
}
}

Figure 62: The move methods for UFOWorld and UFO

Here is the preliminary template for move:
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inside of UFO :
// to move this UFO
UFO move() {

. . . this.location . . . this.colorUFO . . .
}

The template points out that an instance of UFO contains two fields: one
records the current location, which move must change, and the other one
records the UFO’s color, which is irrelevant to move. It currently does not
have any data, however, that helps decide whether the UFO is close to the
ground or whether it is on the ground.

To overcome this problem, we can choose one of these solutions:

1. equip the UFO class with a field that represents how far down it can
fly in the world. This also requires a modification of the constructor.

2. add a parameter to the move method that represents the height of the
world. Adapting this solution requires a small change to the move
method in UFOWorld, i.e., the addition of an argument to the invoca-
tion of UFO’s move method.

3. Alternatively, move in UFOWorld can also hand over the entire world
to move in UFO, which can then extract the information that it needs.

We choose the third solution. For an analysis of the alternatives, see the
exercises below.

With the change, we get this revised template:

inside of UFO :
// to move this UFO
UFO move(UFOWorld w) {

. . . w . . . this.location . . . this.colorUFO . . .
}

If you wanted to, you could now add the numeric case distinction that
the study of examples has suggested; check how to develop conditional
methods in section 10.4.

The complete definitions for UFOWorld and UFO are displayed in fig-
ure 62. The move method in UFOWorld invokes move from UFO with this:
see the gray-shaded occurrence of this. It is the first time that we use this

as an argument but it shouldn’t surprise you. We have used this as a return

value many times, and we always said that this stands for the current ob-
ject, and objects are arguments that come with method calls. It is perfectly
natural to hand it over to some other method, if needed.
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The move method in UFO first checks whether the UFO has already
landed and then whether it is close enough to the ground. Since these two
computations are really separate tasks, we add them to our wish list:

inside of UFO :
// has this UFO landed yet?
boolean landed(UFOWorld w) { . . . }

// is this UFO about to land?
boolean closeToGround(UFOWorld w) { . . . }

The two are relatively simple methods, and the examples for move readily
induce examples for these two methods.

Exercises

Exercise 16.5 Design the method landed for UFO.

Exercise 16.6 Design the method closeToGround for UFO.

Exercise 16.7 Revise the examples for move in UFO and test the method,
after you have finished exercises 16.5 and 16.6.

Exercise 16.8 You have decided to double the height of the world, i.e., the
height of the canvas. What do you have to change in the move methods?

You are contemplating whether players should be allowed to resize the
canvas during the game. Resizing should imply that the UFO has to de-
scend further before it lands. Does our design accommodate this modifica-
tion?

Change the move methods in UFOWorld and UFO so that the former
hands the latter the height of this world. Does your answer to the question
stay the same?

Exercise 16.9 Change the UFO class so that it includes an int field that rep-
resents the height of the world, i.e., how far down it has to fly before it can
land. Remove the UFOWorld parameter from its move method. Hint: The
changes induces changes to UFOWorld, too.

Once you have completed the design (i.e, run the tests), contemplate
the question posed in exercise 16.8.

In response to this question, you may wish to contemplate whether the
UFO class should include a field that represents the entire UFOWorld in
which it exists. What problem does this design choice pose?
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Exercise 16.10 Players find your UFO too predictable. They request that
it should randomly swerve left and right, though never leave the canvas.
Would the current move method easily accommodate this change request?

Note: We have not provided enough information yet for you to design
such a move method. For the impatient, see exercise 19.18.

Designing the move method for the collection of shots is much more
straightforward than move for UFO. Recall the method signature in IShots:

inside of IShots :
// move this list of shots
IShots move();

It says that the method consumes a collection of shots and produces one.
The implementing classes contain concrete method definitions:

inside of MtShots :
IShots move() {

return this;
}

inside of ConsShots :
IShots move() {

return

new ConsShots(this.first.move(),this.rest.move());
}

The one in MtShots just returns the empty list; the other one moves the
first shot and the rest via the appropriate move methods. Since first is an
instance of Shot, this.first.move() uses the yet-to-be-defined method move in
Shot; similarly, since rest is in IShots, this.rest.move() invokes move on a list
of shots.

The move method in Shot is suggested by the design recipe, specifically
by following the containment link. Consider the following examples:

check new Shot(new Posn(88,17)).move()
expect new Shot(new Posn(88,14))
check new Shot(new Posn(88,14)).move()
expect new Shot(new Posn(88,11))
check new Shot(new Posn(88,11)).move()
expect new Shot(new Posn(88,8))

It expresses that an instance of Shot moves at a constant speed of 3 pixels
upwards. Let’s assume that it doesn’t matter whether a shot is visible on
the canvas or not. That is, the height of a shot can be negative for now.
Then the method definition is straightforward:
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inside of Shot :
// lift this shot by 3 pixels
Shot move() {

return new Shot(new Posn(this.location.x,this.location.y − 3));
}

In particular, the definition doesn’t create any wishes and doesn’t require
any auxiliary methods. You can turn the examples into tests and run them
immediately.

Exercise

Exercise 16.11 Modify the move methods in IShots and implementing class-
es so that if a shot has a negative y coordinate, the resulting list doesn’t
contain this shot anymore. Write up a brief discussion of your design alter-
natives.

It is finally time for the addition of some action to our game. Specif-
ically, let’s add methods that deal with the firing of a shot. As always,
we start with the UFOWorld class, which represents the entire world, and
check whether we need to add an appropriate method there. The purpose
of UFOWorld is to keep track of all objects, including the list of shots that
the player has fired. Hence, when the player somehow fires another shot,
this shot must be added to the list of shots in UFOWorld.

The purpose statement and method signature for shoot in figure 60 ex-
press just this reasoning. Here is the template for the method:

inside of UFOWorld :
UFOWorld shoot() {

. . . this.BACKG . . . this.HEIGHT . . . this.WIDTH . . .

. . . this.ufo.shoot(. . . ) . . .

. . . this.aup.shoot(. . . ) . . .

. . . this.shots.shoot(. . . ) . . .
}

It is of course just a copy of the template for draw with new names for the
methods on contained objects. But clearly, BACKG, HEIGHT, WIDTH, and
ufo don’t play a role in the design of shoot. Furthermore, while the shots are
involved, they don’t shoot; it is the aup that fires the shot. All this, plus the
problem analysis, suggests this code fragment:
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inside of UFOWorld :
UFOWorld shoot() {

return

new UFOWorld(this.ufo,
this.aup,
new ConsShots(this.aup.fireShot(. . . ),this.shots));

}

In other words, firing a shot creates a new UFOWorld with the same ufo and
the same aup but a list of shots with one additional shot. This additional
shot is fired from the aup, so we delegate the task of creating the shot to an
appropriately named method in AUP.

The screen shot on page 56 suggests that the AUP fires shots from the
center of its platform. That is, the shot visually originates from the stubby,
vertical line on top of the moving platform. This implies the following
refinement of the purpose statement and method signature:

inside of AUP :
// create a shot at the middle of this platform
Shot fireShot(. . . ) { . . . }

Thus, with an AUP such as this:

new AUP(30)

in a conventional world, we should expect a shot like this:

new Shot(new Posn(42,480))

or like that:

new Shot(new Posn(42,475))

The 42 says that the left corner of the shot is in the middle of the AUP; the
480 and the 475 say that the top of the shot is somewhere above the AUP.
The true expected answer depends on your boss and the visual appear-
ances that you wish to achieve. For now, let’s say the second answer is the
one your manager expects.

The third step is to develop the template for fireShot:

inside of AUP :
Shot fireShot(. . . ) {

. . . this.location . . . this.aupColor . . .
}
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The template contains references to the two fields of AUP: its x coordinate
and its color. While this is enough data to create the x coordinate of the
new shot, it doesn’t help us with the computation of the y coordinate. To
do so, we need knowledge about the world. Following our above design
considerations, the method needs a UFOWorld parameter:

inside of AUP :
Shot fireShot(UFOWorld w) {

return new Shot(new Posn(this.location + 12,w.HEIGHT − 25));
}

Again, consider naming the constants in this expression for the benefit of
future readers.

With fireShot in place, we can finally develop some examples for shoot
and complete its definition. Here are some of the examples in section 6.2:

AUP a = new AUP(90);
UFO u = new UFO(new Posn(100,5));
Shot s = new Shot(new Posn(112,480));
IShots le = new MtShots();
IShots ls = new ConsShots(s,new MtShots());
UFOWorld w1 = new UFOWorld(u,a,le);
UFOWorld w2 = new UFOWorld(u,a,ls);

In this context, you can create several examples for shoot, including

check w1.shoot()
expect new UFOWorld(u,a,new ConsShots(new Shot(102,475),le))

Create additional functional examples and create a thorough test suite.

Exercises

Exercise 16.12 Design move for AUP. The method consumes a String s. If s
is "left", the method moves the AUP by 3 pixels to the left; if s is "right",
the AUP moves 3 pixels to the right; otherwise, it remains as it is.

Modify the method so that if the AUP were to move out of bounds (of
the current world), it doesn’t move. Hint: Add a UFOWorld parameter to
the method’s signature.

Exercise 16.13 Design the method hit for IShots. The method consumes a
UFO and produces a boolean. Specifically, it produces true, if any of the
shots on the list have hit the given UFO; it produces false otherwise.
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To make things simple,25 we say that a shot hits a UFO if the shot’s loca-
tion is close enough to the UFO, meaning the distance between the UFO’s
center and the location of the shot is less than 10.0 pixels.

Exercise 16.14 Develop the class Player. The class should contain exam-
ples of UFOs, AUPs, Shots, and UFOWorlds. Also add the method play of
no arguments. The method creates an instance of Canvas, uses it to draw in-
stances of UFOWorlds, moves all the objects, fires a shot, and repeats these
actions two or three times. If you have solved exercise 16.12, you may also
want play to move the AUP left and right.

As you can see from this case study, following the design recipe is
highly helpful. Once you have read and analyzed the problem statement,
it provides guidance and hints on how to get things done. The case study
also shows, however, that you need to learn to use the steps of the design
recipe in a flexible manner. No design process is perfect; the design recipe
provides you the most valuable guidance in our experience.

While the design template is almost always useful, making up exam-
ples and even the statement of a precise purpose statement and method
signature may have to wait until you have explored some of the auxiliary
methods. For example, the design of move showed how you sometimes
can’t know the true signature of a method until you are ready to define the
method’s body. The design of shoot showed how you may have to postpone
the development of examples for a method and its testing until an auxiliary
method is defined. Otherwise you may not be able to make up proper ex-
amples. Still, even when you decide to reorder the steps or to explore the
design of auxiliary methods before you define a method proper, you must
make sure to make up examples before you design the method body. If you
don’t, you run the danger to believe what you see—and that almost never
works properly.

25The notion of “a shot hitting the UFO” is something that you would decide on after
some reflection on the geometric shapes of your objects and consultations with someone
who understand geometry well. Put differently, both Shot and the UFO would come with a
method that converts these objects into geometric shapes, and if the two shapes overlap in
any form, we might say that the shot has hit the UFO.
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Intermezzo 2: Methods

Intermezzo 1 summarizes the language of class and interface definitions
in ProfessorJ’s Beginner language. In this intermezzo, we extend this lan-
guage with methods. This time, though, the language discussion requires
four parts not just three: syntax, type checking, semantics, and errors.

→ an INTERFACEDEFINTION is:

interface InterfaceN {
MethodSignature;
. . .
}

→ a CLASSDEFINTION is:

class ClassN [ implements InterfaceN ] {
Type FieldN [ = Expr ];
. . .
ClassN(Type FieldN, . . . ) {

this.FieldN = FieldN;
. . .
}

MethodDefinition
. . .
}

→ a METHODSIGNATURE is:

Type MethodN(Type ParameterN, . . . )

→ a METHODDEFINITION is:

MethodSignature {
Statement
}

→ METHODN, PARAMETERN are
alphanumeric sequences

→ a STATEMENT is one of:

– return Expr;

– an if statement:

if (Expr) {
Statement }

else {
Statement }

→ an EXPR is one of:

– constant,
e.g., 5, true

– primitive expressions,
e.g., true || false

– ParameterN

– this

– Expr . FieldN

– ConstructorCall

– MethodCall

→ a METHODCALL is one of:

– a plain method call
Expr.MethodN (Expr, . . . )

– a dotted method call
ClassN.MethodN (Expr, . . . )

Notes (in addition those in figure 35):

1. A class or interface definition must not use the same method name in two
distinct method signatures.

2. A method signature must not use the same ParameterN twice.

Figure 63: The grammar of ProfessorJ: Beginner with methods
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Vocabulary and Grammar for Methods

Figure 63 presents the extension of the grammar presented in Intermezzo 1
(figure 35 on page 66). The comparison of these two figures shows that Be-
ginner contains just a few keywords for the formulation of methods, most
importantly return, if, else, and this. Other than that, the extension is
mostly about allowing programmers to write additional phrases, such as
method signatures or return statements, and adding them to classes and
interfaces.

Let’s take a look at these changes, one by one:

1. Interfaces now contain a series of method signatures, each ending in
a semicolon:

interface InterfaceName {
Type methodName(Type parameterName, . . . );
. . .
}

Each method signature starts with a Type, is followed by the method-
Name, and concludes with a parameter specification. The parameters,
also called formal arguments, are sequences of types and names, sep-
arated by commas, and enclosed in parentheses.

Constraint: An interface in Beginner must not contain two method
signatures that use the same method name.

Constraint: A method signature must not contain two identical pa-
rameter names.

2. Classes may contain method definitions. In ProfessorJ, you place
such definitions below the constructor of the class:

class ClassName {
Type fieldName [= Expr]; ...
ClassName(Type fieldName, . . . ) {

this.fieldName = fieldName; ...
}
// method definitions following:

Type methodName(Type parameterName, . . . ) {
Statement

}
. . .
}
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Each method consists of a signature and a body, which is a single
statement enclosed in braces.

Constraint: A class in Beginner must not contain two method defini-
tions that use the same method name nor a method with the name of
the class.

If a method signature occurs inside an interface that the class imple-

ments, then the class must contain a method with that signature.

3. A Statement is one of:

(a) a return statement, which is the return keyword followed by an
expression:

return Expr;

(b) an if expression with statements:

if (Expr) {
Statement }

else {
Statement }

The description is self-referential, which signals that you can nest
Statements arbitrarily deep. In the preceding chapter, we have, in par-
ticular, seen if statements nested several times.

4. The language of expressions has also changed: Expr is one of:

– constant, e.g., 5, true

– primitive expressions, e.g., true || false

– ParameterN, that is, the parameters in method signatures

– this, which is the current object

– Expr . FieldN, which is a selector expression

– ConstructorCall, which we have seen before

– MethodCall

The description is now self-referential, meaning Exprs can be nested
arbitrarily deep just like Statements.

Constraint: The field initialization “equations” in a class in Beginner
must not be the expression this.

A constructor call is now applied to a number of Exprs from this
larger set of expressions.
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Type Checking

The first intermezzo (7.3) deals with type checking in a simplistic man-
ner, matching the simplicity of the language covered in part I. Section 13.2
briefly discusses the role of types as a tool for preventing abuses of methods
and thus potential run-time errors.

A short summary of those sections is that the type checker should help
you writing programs. Specifically, it should have rules that disallow the
addition of true to 55 (true + 55) because this makes no sense and would
only trigger a run-time error. Similarly, if a class C doesn’t define method
m, then your program should never contain expressions that invoke m on
an instance of C.

import draw.∗;

interface ILoc {
int xasix();
int yaxis();
double dist(ILoc l);
}

class Loc implements ILoc {
int x;
int y;
Loc(int x, int y) {

this.x = x;
this.y = y;
}

double dist(ILoc l) {
return . . . • . . .
}
. . .
}

Figure 64: A sample program

The Java type checker guarantees all that. If a program passes its rules,
you can safely assume that an expression of type boolean always produces
true or false and that an expression of type C (a class) always reduces to an
instance of C. In other words, the type checker prevents a whole range of
potential run-time errors à la How to Design Programs.
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Understanding how type checking works is essential if you work with
a typed language. It helps you recover from type errors—if your Java pro-
gram has type errors, you can’t run it—but more importantly, it helps you
understand what the type system proves about your program and what it
doesn’t.

We believe that the best way to understand a type checker is to study
the design and implementation of programming languages in depth. Ide-
ally, you should implement a type checker. Doing so, however, is an ex-
tremely complex task with the portion of Java that you know. Therefore
this section presents the rules of type checking and signaling type errors
with structured and stylized English.

The core of type checking programs is a collection of rules for determin-
ing the type of an expression and for making sure actual and specified types
match up as appropriate. Describing these rules requires the discussion of
two preliminary notions: type contexts and signature tables. A TYPE CON-
TEXT is simply a list of all field names with their types and all parameters
with their types that surround the expression you want to check.

Say you are type checking the program in figure 64. When you focus on
expression where where you see •, the type context looks like this:

1. x in Loc has type int;

2. y in Loc has type int;

3. l has type ILoc.

Note how fields come with information about the class in which they are
contained; parameters don’t have and don’t need such information.

Signatures is something you know. Every method requires one. We say
that operators such as + or || and constructors have signatures, too. Given
that, you write down a signature table for the above program as follows:

Class (if any) Name Domain Range

— + int, int int
— || boolean,boolean boolean
World onTick — World
World bigBang int, int, double boolean
ILoc xaxis — int
ILoc yaxis — int
ILoc dist ILoc double
Loc new int, int Loc
Loc dist ILoc double
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The line separates those parts of the table that originate from Java and the
library from those that originate from explicit interface and class defini-
tions. Before you proceed, take a close look at the table to understand its
pieces.

Once you have a type context and a signature table, you check each
kind of expression according to how it is constructed:

1. As discussed before, every constant has an obvious type.

2. To determine the type of a primitive expression, first determine the
types of all sub-expressions and the signature of the operator. If the
types of the sub-expressions match the types of the operator’s do-
main (in the right order), the expression’s type is the range type of
the operator. If not, the type checker signals a type error.

Example 1:

32 + 10

The sub-expressions are 32 and 10 and have the types int and int. The
operator’s signature is int and int for the domain, which matches the
types of the sub-expressions. Therefore the type of the entire expres-
sion is int.

Example 2:

(32 + 10) || true

The sub-expressions are (32 + 10) and true. We know from the first
example that the type of the first sub-expression is int; the type of
the second one is boolean by the first rule. The signature of || is
boolean and boolean for the domain. While the type of the second
sub-expression matches the corresponding type in the operator’s do-
main, the first one doesn’t. Hence, you have just discovered a type
error.

3. To determine the type of a parameter, look in the type context.

4. The type of this is always the name of the class in which it occurs.

5. To determine the type of a field selection e.fieldName, first determine
the type of e. If it isn’t the name of a class, the type checker signals an
error. If it is, say C, and if the type context contains a field of name
fieldName with type T for C, then the type of the entire expression is T.
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Example 3:

. . . l.x . . .

If this expression occurs in lieu of the • in figure 64, then the param-
eter l has type ILoc according to the type context. Since ILoc is an
interface and not a class, it can’t support field access, so what you see
here is an example of a type error concerning field access.

If you change the program just slightly, like this:

Example 4:

double dist(Loc l) {
. . . l.x . . .

}

then everything works out. The parameter l now has type Loc, which
is a class and which contains a field named x. The field’s type is int so
that l.x has type int.

6. For a constructor call, the type checker determines the types of all
the arguments. It also determines the signature of the new construc-
tor in the signature table. Now, if the types of the arguments match
the types of the constructor’s domain (in the proper order), the ex-
pression’s type is the class of the constructor. If not, the type checker
signals a type error.

7. Finally, to determine the type of a method call ec.methodName(e1,. . . ),
the type checker starts with the expression ec. Its type must be the
name of a class or the name of an interface. If so, the signature can be
extracted from the signature table. If not, the type checker signals an
error.

Second, the type checker determines the types of the arguments. They
must match the types of the methods domain (in the proper order). If
so, the expression’s type is the range type from the method signature;
otherwise, there is a type error.

Example 5:

new Loc(10,20).dist(new Loc(30,40))
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Here the object expression is new Loc(10,20), which by the rules for a
constructor expression has type Loc. According to the signature table,
this class contains a method called dist with domain ILoc and range
double.

Next, the argument expression is new Loc(30,40), and it has type Loc.
Since Loc implements ILoc, the types match. The type of the example
expression is therefore double.

Several of these clauses use the phrase “the types match.” What this means,
for now, is that the types are either equal or that the first type is a class type
and implements the second one, which is an interface type.

Type checking statements is like type checking expressions. Again, we
look at statements case for case, using type contexts and signature tables:

1. A return statement consists of a keyword and an expression. This
implies that the type checker must determine the type of the expres-
sion. After that, it must match that type and the specified range of
the method that contains the return statement. If the types match, the
statement type checks; otherwise, the type checker reports an error.

Example 6:

. . . return 4.0; ...

In the context figure 64, the type of 4.0 is double, which is also the
range of the signature of dist. Hence, this return statement type-
checks.

In contrast, Example 7:

. . . return this.x; ...

this has type Loc and this.x has therefore type int, which is not a match
for double.26

2. An if statement is more complex than a return statement and, yet,
type-checking it is straightforward. The type checker determines the
type of the test expression. If it isn’t boolean, the type checker signals
a type error. If it is, the type checker makes sure that the statements

26In Java, an int is automatically converted into a double in such situations. This auto-
matic conversion simplifies life for a programmers, but it also introduces opportunities for
mistakes for novices. Therefore ProfessorJ does not match int and double.
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in the two branches of the if statement type check (relative to the
method context).

Example 8:

. . .
if (l.xaxis()) {

return 4.0; }
else {

return 10.0; }

Since l i of type ILoc in the given type context, xaxis is an available
method. Accordingly, the type of l.xaxis() is int (why?), which isn’t
boolean. Therefore the type checker must report an ill-formed if state-
ment, even though the two branches are properly typed.

Finally field declarations require type checking when they come with
an initialization “equation.” This kind of type checking computes the type
of the expression on the right-hand side and matches it with the declared
type of the field. “Equations” in the constructor are checked likewise.

Meaning: Evaluating Method Calls

In How to Design Programs, the meaning of an expression is its value, e.g.,
(+ 3 2) has the value 5. The process of determining the value of an expres-
sion is called EVALUATION; sometimes we also use the fancy language of
an expression is REDUCED TO a value. For simple arithmetic expressions,
such as (first (cons 1 empty)) or (+ 3 2), the laws of arithmetic suffice to de-
termine the value. For expressions with calls to functions that you defined,
we need to recall a tiny bit of algebra. Expressions are always evaluated in
the context of some function (and variable) definitions, i.e., the content of
the definitions window. Then if you need to evaluate an expression that is
a function application, you replace it with the body (right-hand side) of the
function and substitute the (values of the) arguments for its parameters.

For the Beginner language of ProfessorJ, the context in which you eval-
uate expressions is a sequence of classes and interfaces, optionally prefixed
with imports from libraries. The values you get are either instances of
classes or the same old values you know (ints, doubles, booleans, Strings).
As for the rules for evaluating an expression in ProfessorJ, they are—in
principle—the same as those you know from How to Design Programs. Java’s
syntax, however, is so much more complex than Scheme’s that it is diffi-
cult to formulate and use such rules in the context of this book. Instead,
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we sketch the evaluation rules and practice them with examples. Together
with your understanding of the evaluation of Scheme programs, this sketch
should suffice for thinking about the Java programs in this book.27

Let’s study the collection of expressions case-by-case to see how to eval-
uate them. Instead of going through them in order, we start with constants
and constructor calls:

1. Constants such as "hello world", 5, ’8’, true are primitive values.

2. As Intermezzo 1 shows, a constructor call evaluates to an instance of
the specified class if the argument expressions are values; if not, we
must reduce them to values first. We loosely use the word VALUE for
these instances, too; many other texts use value for constants only.

To jog your memory, we distinguish two kinds of constructor calls.
The first concerns a class without initialization “equations.”

Example 1:

class Dog {
String name;
int age;
Dog(. . . ) { . . . }
}

In this context, the constructor new Dog("woof",2) call determines the
instance completely and immediately. We can use the call in place of
the instance.

The second concerns a class with initialization “equations.”

Example 2:

class Ball {
int x;
int y;
IColor c = new Red();
Ball(. . . ) { . . . }
}

27For those readers interested in becoming good programmers, we recommend taking a
college course on programming languages that demonstrates how to implement evaluation
rules.
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Here , the constructor call new Ball(3,2) triggers an instance creation.
The resulting object has three fields, initialized to 3, 2, and an instance
of Red, respectively. Indeed, every time we evaluate the constructor
call, we get an instance like that. So for now, we can still identify the
call with the instance.

The next step is to look at two complex kinds of expressions:

3. You know how to evaluate primitive expressions from your grade
school courses in arithmetic. That is, we assume that you can evaluate
all those expressions that involve ints, doubles, and booleans for now,
plus the operations of figure 36.

4. A method call consists of a TARGET expression, a method name, and
a bunch of argument expressions:

targetExpression.methodName(argumentExpression1, . . . )

It is ready to be evaluated if all these expressions are values. Proceed-
ing from here depends on the value of targetExpression. If it were an
int, a double, or a boolean, the evaluation would be stuck; fortunately
this can’t happen because of the type system. If it is String, we need
to perform the appropriate operation (see figure 37). Otherwise it is
an instance of a class in the definitions window:28

new aClass(someValue1, . . . )

where someValue1 and so on are the values that went into the con-
struction of the instance.

Now look up the method definition in aClass and evaluate the method
call with the method body after substituting the parameters of the
method with the values argumentExpression1, etc. The implicit first
parameter—this—is replaced with the value of the target expression.
The value of the method’s body is the value of the method call.

Studying this last paragraph also reveals why we call Java a complex
programming language. As you know by now, the method body is
a statement not an expression. This makes it difficult to calculate as
easily and as simply as in algebra and arithmetic. Indeed, we can’t
really understand how to evaluate a method’s body until we have

28We act as if classes defined in libraries are part of the definitions window.
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studied the evaluation of statements. For now, we just imagine that
we are dealing with return statements and that the value of such a
statement is the value of its expression.

Say your definitions window contains this class definition:

Example 3a:

class Sample {
Sample() { }

// just a number
int stuff () {

return 10;
}
}

If you were to evaluate 3 ∗ (new Sample().stuff ()) you would proceed
like this:

(a) You notice that 3 is a value. So your next task is to evaluate the
method call, wrapped in optional parentheses.

(b) The target expression is a value, new Sample(), and therefore you
look up the body of stuff , which is return 10.

(c) You replace the method call with the method body, replacing
all parameters with their values. The method body, however,
doesn’t contain any parameters. You are left with

3 ∗ (return 10)

(d) Since we agreed to identify the value of a return statement with
the value of its expression, you continue with

3 ∗ 10

and you get 30.

Naturally you can perform all these calculations in your head because
this method call is simple. You do need the rules for when things get
complicated.

Consider this slight variation of the class definition:

Example 3b:

class Sample {
Sample() { }
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// just a number
int stuff () {

return 10 + 20;
}
}

Evaluating the method call 3 ∗ (new Sample().stuff ()) now requires the
evaluation of a primitive expression inside the return statement:

3 ∗ (new Sample().stuff ())
;; reduces to
3 ∗ (return 10 + 20)
;; reduces to
3 ∗ (return 30)
;; reduces to
3 ∗ 30

and so the value is 90 as expected.

Here is a another example:

Example 4:

class Rectangle {
int w;
int h;
Rectangle(int w, int h) { } // conventional

// the area of this rectangle
int area() {

return (this.w) ∗ (this.h);
}
}

We have surrounded the factors of the multiplication in area with op-
tional parentheses to clarify the rest of the example.

After clicking RUN, you enter new Rectangle(3,5).area() in the inter-
actions window and expect to see 15. Here is how this comes about.
The target expression is a value so we can just look at the method
body and substitute the parameters:

(new Rectangle(3,5). w) ∗ (new Rectangle(3,5). h)
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The method has only one parameter: this. As prescribed, this has
been replace by the value of the target expression, which we identify
with the constructor call. The next two expression we must evaluate
are field selector expressions.

For the remaining expressions, we can now proceed more rapidly:

5. An expression that is just a parameter name (ParameterN) can’t show
up according to our rules. Such a name is just a placeholder for a
value. As soon as we match up a placeholder and its actual value, we
replace the name with the value.

6. The preceding remark applies to this, too, because this is just a special
parameter.

7. This leaves us with expressions for field access. It is similar to a
method call but simpler than that. Like a method call, a field access
expression starts with a target expression. The rest, however, is just
the name of some field:

targetExpression.fieldName

Before you proceed, you must reduce targetExpression to a value. Pro-
ceeding from here depends on that value. If it is an instance of a class
in the definitions window, the value has roughly this shape:

new aClass(someValue1, . . . )

where someValue1 and so on are the values that went into the con-
struction of the instance.

To finish the evaluation of the field access expression, we must dis-
tinguish between two cases of constructor calls (see intermezzo 7.2):

(a) If the constructor call involves a class that has no initialization
“equations,” then the constructor call has as many argument val-
ues as there are fields in the class. It is thus possible to extract
the desired field value from the list of constructor arguments.

Example 5a:
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class Rectangle {
int w;
int h;
Rectangle(int w, int h) {

this.w = w;
this.h = h;
}
}

The expression new Rectangle(2,5).h uses a constructor call as the
target expression. Furthermore, the class of the constructor call
uses has no initialization equations. Hence, the second argu-
ment of the call corresponds to the second field of the class, and
therefore, the result of the field access expression is 5.

Given this much, we can also finish the evaluation of example 4.
We had stopped at the expression

(new Rectangle(3,5). w) ∗ (new Rectangle(3,5). h)

because it required two field accesses (in the same context as
example 5a). Now we know how to continue:

(new Rectangle(3,5). w) ∗ (new Rectangle(3,5). h)
;; reduces to
3 ∗ (new Rectangle(3,5). h)
;; reduces to
3 ∗ 5
;; reduces to
15

(b) If the class has initialization “equations” for fields, you need to
look at the entire created target object, i.e., the value of the tar-
get expression, to extract the value of the field. This can take
two different forms. On one hand, you can have an initialization
“equation” directly with a field:

Example 5b:
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class Rectangle {
int w;
int h;
IColor displayColor = new Blue();
Rectangle(int w, int h) {

this.w = w;
this.h = h;
}
}

Here the class comes with three fields, one of which is initialized
immediately and independently of the constructor (and its pa-
rameters). If a field access expression uses displayColor, you can
read it off from the definition of the class.

On the other hand, we have seen that a class may have a field
that is initialized within the constructor via a computation. The
first concrete example came up on page 14.2 when we created
a canvas whose size depended on the parameters of the class
constructor. Another small variation on example 5a illustrates
the point just as well:

Example 5c:

class Rectangle {
int w;
int h;
int area;
Rectangle(int w, int h) {

this.w = w;
this.h = h;
this.area = w ∗ h;
}
}

If you evaluate the expression new Rectangle(2,5), you now get
a class with three fields, even though your constructor call has
just two arguments. To extract the area field, you have no choice
but to look at the entire target object:

Rectangle(x = 2, y = 5, area = 10)

The field area is initialized to 10, which is thus the result of the
field access expression.
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If the value of the targetExpression were an int, a double, a boolean or
even a String the evaluation would be stuck. Fortunately, this can’t
happen because of the type system.

To finish off the set of computation rules, we need to look at the two
forms of statements we have in the Beginner language:

1. A return statement consists of a keyword and an expression. We have
therefore agreed to identify it with the expression and to just evaluate
the expression instead.

2. In contrast, an if statement consists of several pieces: an expression
and two statements. Determining its value is still straightforward.
You reduce the test expression until it is either true or false. Then you
pick the appropriate statement and determine its meaning. Eventu-
ally, this process leads you to a return statement, and you know how
to evaluate that.

Example 7:

if (0 <= 8 && 8 <= 9) {
if (5 <= 8 && 8 <= 9) {

return "large"; }
else {

return "small"; }
else {

return "not a digit"; }

This if statement consists of the test expression (0 <= 8 && 8 <= 9),
an if statement in the then branch, and a return statement in the else

branch. The test expression reduces to (true && true) and thus to true.
So the next statement to evaluate is

if (5 <= 8 && 8 <= 9) {
return "large"; }

else {
return "small"; }

Here we have an if statement that consists of the test expression (5
<= 8 && 8 <= 9) and two return statements. The test expression
again evaluates to true so that we are left with a return statement:

return "large";
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Since this last return statement contains a plain String value, the value
of the statement is "large".

Exercises

Exercise 17.1 Take a look at this program:

class Room {
Loc l;
Room(Loc l) { this.l = l; }
// how far away is this room from (0,0)?
double distance() { return this.l.distance(); }
}

class Loc {
double x;
double y;
Loc(double x, double y) {

this.x = x;
this.y = y;
}
// how far away is this location from (0,0)?
double distance() {

return Math.sqrt((this.x ∗ this.x) + (this.y ∗ this.y));
}
}

Explain how ProfessorJ determines that new Room(new Loc(3.0,4.0)) has
the value 5.0. Use the numbers of the rules above for your explanation of
each step.

Exercise 17.2 The interface and class definitions in figure 65 sketch a phone
setup where a landline may enable forwarding to a cellphone. (In some
countries this mechanism reduces the cost for calls to a cellphone number.)

Explain how ProfessorJ determines that the evaluation of the expression

new LandLine(true,true,new CellPhone(true)).dial()

produces true. Use the numbers of the rules above for your explanation of
each step.
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// a dialable phone line
interface IPhone {

// dial this pone
boolean dial();

}

class CellPhone implements IPhone {
boolean busy;
CellPhone(boolean busy) {

this.busy = busy;
}

boolean dial() {
return !(this.busy);
}
}

class LandLine implements IPhone {
boolean busy;
boolean fwd;
CellPhone fwdNumber;

LandLine(boolean busy,
boolean fwd,
CellPhone fwdNumber) {

this.busy = busy;
this.fwdNumber = fwdNumber;
this.fwd = fwd;
}

boolean dial() {
if (this.fwd) {

return this.fwdNumber.dial(); }
else {

return !(this.busy); }
}

}

Figure 65: Another evaluation example

Syntax Errors, Type Errors, and Run-time Errors

When you click RUN, ProfessorJ checks two aspects of your program in
the definitions window: its syntax and its types. Checking the grammar
rules comes first. If those work out, it makes sense to check whether the
program adheres to typing rules. If it does, ProfessorJ rests and waits for
you to enter expressions and field definitions in the interactions window.
For each of those, it also checks the consistency with grammar and typing
rules.

After ProfessorJ has grammar and type-checked everything, it deter-
mines the value of the expression in the interactions window, one at a time.
During this evaluation it may encounter additional errors. As you know
from the section on type checking, however, there are far fewer of those
than in DrScheme.

Here we enumerate some illustrative examples for all four categories,
starting with a syntax mistake:
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class Loc {
int x;
int y;
Room(int x, int y) { . . . }

// is this close to ?
int volume(int x, int x) {

return . . . ;
}
}

This class contains a method whose parameter list uses the same parameter
name twice. This is reminiscent of the syntax errors we discussed in the
first intermezzo. Run this example in ProfessorJ and carefully read its error
message.

Next take a look at this grammatically correct class:

class Room {
int x;
int y;
int area;
IColor c;
Room(int x, int y, AClass c) {

this.x = x;
this.y = y;
this.area = x ∗ c;
this.c = x;
}
}

The creator of this class messed up the initialization “equation” for the area
field. The right hand side is an expression that multiplies an int (x) with
a color (c). While this expression is properly formed from two parameter
names and a ∗ operator, it violates the signature of ∗.

Similarly, the following two-class program is also grammatically correct
but contains a type error:
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class Room {
int w;
int h;
Room(int w, int h) {

this.w = w;
this.h = h;
}
int area() { return this.w ∗ this.h; }
}

class Examples {
Room r = new Room();
boolean test1 = check this.r.erah() expect 10;
Examples() { }
}

The problem is that the check expression in Examples invokes a method
erah on the target expression this.r, which has type Room. This latter class,
however, does not support a method named erah and, therefore, the type
checker signals an error.

interface IList {
// find the ith element
// in this list
String find(int i);

}

class MT implements IList {
MT() { }
String find(int i) {

return Util.error("no such element");
}

}

class Cons implements IList {
String first;
IList rest;

Cons(String first, IList rest) {
this.first = first;
this.rest = rest;
}

String find(int i) {
if (i == 0) {

return this.first; }
else {

return this.rest.find(i-1); }
}

}

Figure 66: Run-time errors via error

As for run-time errors, you can run into few of those in the Beginner
language. The type systems prevents most from ever happening, except
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for two. First, your program may ask the computer to divide a number
by 0. In general, there are some primitive operations that are not defined
on all of their inputs. Division is one example. Can you think of another
one from high school mathematics? Second, your program may contain a
method that signals an error for certain inputs. Recall the Dot class from
page 12.2 with its area method:

class Dot {
Posn p;
Dot(Posn p) { this.p = p; }

double area() {
return Util.error("end of the world");
}

Its area method raises an error for all inputs. You may also encounter PAR-
TIAL methods, which are like division in that they work for some, but not
all inputs: see figure 66. There you see a data representation of lists of
Strings, with a function for extracting the ith element. Naturally, if i is too
large, the method can’t return such an element.

Finally, in addition to those programming mistakes that ProfessorJ can
discover for you, there are also logical mistakes. Those are programming
errors that don’t violate the grammar, the typing rules, or the run-time con-
ditions. They are computations that produce incorrect values, i.e., values
that don’t meet your original expectations. In this case, you’re facing a
LOGICAL ERROR. Unless you always develop tests for all possible methods
and careful inspect the results of test runs, you can easily overlook those
logical errors, and they may persist for a while. Even if you do test rigor-
ously, keep in mind that the purpose of tests is to discover mistakes. They
can’t prove that you didn’t make any.

Exercises

Exercise 17.1 Consider the following sketch of a class definition:
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class Jet {
String direction;
int x;
Jet(. . . ) { . . . }
String control(String delta, int delta) {

. . .
}
}

Is it grammatically correct (as far as shown)? Does it violate any typing
rules?

Exercise 17.2 The following class definition violates the typing rules:

class Ball {
double RADIUS = 4.0;
int DIAMETER = this.RADIUS;
String w;
Ball(int w) {

this.w = w;
}
}

Explain why, using the number of the typing rules in the subsection on type
checking in this intermezzo.

Exercise 17.3 The following class definition violates the typing rules:

interface IWeapon {
boolean launch();
}

class Rocket implements IWeapon {
. . .
boolean launch(int countDown) { . . . }
}

Determine whether this sketch is grammatically correct. If so, check does it
satisfy the tying rules?
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TODO

Should we ask students to represent all of Beginner’s syntax?
Should we ask students to write a type checker?



PICTURE: should be on even page, and even pages must be on the left
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Purpose and Background

The purpose of this chapter is to introduce the idea of abstraction within a
class hierarchy. The focus is on creating superclasses from similar classes
and on deriving subclasses when needed.

In general, students must learn that programming is not just the act
of writing down classes and methods that work, but that programming
includes reasoning about programs, “editing” them, and improving them
as needed.

We assume that students are at least vaguely familiar with the idea of
creating simple abstractions. That is, they should know that a program-
mer must define a function if two expressions are basically the same except
for (pairs of distinct) values. Ideally, students should have read or studied
Chapter IV of How to Design Programs so that they should also feel comfort-
able with abstracting over two procedures that look alike and using such
abstractions as needed.

After studying this chapter, students should be able to create common
superclasses for related and similar classes and to extend a framework of
classes with subclasses
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TODO

– introduce more Example stuff, plus abstracting over tests (?)
– use Java 1.5 overriding: it’s okay to decrease the type in the return

position (all covariant positions now): explain and use
– say: public is needed to implement an interface method
– do we need a section that shows how to abstract within one class?

perhaps in Part II already?
– abstraction in TESTS Examples classes



III Abstracting with Classes

Many of our classes look alike. For example, the UFO class has strong
similarities to the Shot class. Both have similar purpose statements, have
the same kinds of fields, and have methods that simulate a move along the
vertical axis.

ProfessorJ:
IntermediateAs How to Design Programs already says, repetitions of code are ma-

jor sources of programming problems. They typically come about when
programmers copy code. If the original code contains an error, the copy
contains it, too. If the original code requires some enhancement, it is of-
ten necessary to modify the copies in a similar manner. The programmers
who work on code, however, are often not the programmers who copied
the code. Thus they are often unaware of the copies. Hence, eliminating
errors becomes a cumbersome chase for all the copies and, therefore, an
unnecessarily costly process.

For these reasons, programmers should eliminate similarities whenever
possible. In How to Design Programs, we learned how to abstract over simi-
larities in functions and data definitions and how to reuse existing abstrac-
tions. More generally, we took away the lesson that the first draft of a pro-
gram is almost never a finished product. A good programmer reorganizes
a program several times to eliminate code duplications just as a good writer
edits an essay many times and a good painter revises an oil painting many
times. Good pieces of art are (almost) never created in a single session; this
includes programs.

Class-based, object-oriented languages such as Java provide a number
of abstraction mechanisms. In this chapter we focus on creating super-
classes for similar classes and the derivation of subclasses from existing
classes. The former is the process of abstraction; its result is an abstraction.
The later is the use of an abstraction; the result is a well-designed program.
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18 Similarities in Classes

Similarities among classes are common in unions. Several variants often
contain identical field definitions. Beyond fields, variants also sometimes
share identical or similar method definitions. In the first few sections of this
chapter, we introduce the mechanism for eliminating these similarities.

18.1 Common Fields, Superclasses

Our first union (page 28) is a representation of simple geometric shapes.
For convenience, the left of figure 67 reproduces the class diagram. Here
are the first three lines of the three class definitions:

// a dot shape
class Dot

implements IShape {
CartPt loc;

// a square shape
class Square

implements IShape {
CartPt loc;

// a circle shape
class Circle

implements IShape {
CartPt loc;

As you can see, all three classes implement IShape. Each contains a CartPt-
typed field that specifies where the shape is located. And best of all, all
three use the same name.

+--------+
| IShape |
+--------+
+--------+

|
/ \
---
|
|

+------------+--------------------+
| | |

+------------+ +------------+ +------------+
| Dot | | Square | | Circle |
+------------+ +------------+ +------------+
| CartPt loc |-+ | CartPt loc |--+ | CartPt loc |-+
| | | | int s | | | int r | |
+------------+ | +------------+ | +------------+ |

| | |
| | |
| +------------+ | |
+->| CartPt |<-+-----------------+

|------------+
| int x |
| int y |
+------------+

+--------+
| IShape |
+--------+
+--------+

|
/ \
---
|
|

+-------------+ +--------+
| Shape | +->| CartPt |
+-------------+ | |--------+
| CartPt loc |--+ | int x |
+-------------+ | int y |

| +--------+
/ \
---
|

+---------+--------------+
| | |
| | |

+-----+ +--------+ +--------+
| Dot | | Square | | Circle |
+-----+ +--------+ +--------+
| | | int s | | int r |
+-----+ +--------+ +--------+

Figure 67: Lifting common fields in geometric shapes

What we want to say in such situations is that all shapes share this field
and yet they represent distinct kind of things. In an object-oriented lan-
guage expressing this statement is indeed possible with an enhanced form
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of inheritance. More specifically, classes cannot only inherit from interfaces,
they can also inherit from other classes. This suggests the introduction of a
common superclass of Dot, Square, and Circle that represents the common-
alities of geometric shapes:

class Shape implements IShape {
CartPt loc;
Shape(CartPt loc) {

this.loc = loc;
}
}

Here the class represents two commonalities: the CartPt field and the im-

plements specification. Now, for example, if we make Dot an extension of
Shape, the former inherits the CartPt field and the obligation to implement
IShape:

// a dot shape
class Dot

extends Shape {

// a square shape
class Square

extends Shape {

// a circle shape
class Circle

extends Shape {

In general, the phrase A extends B says that B inherits all of A’s features
(fields, methods, and implements obligations), which include those that
A inherited. We say that A is the SUPERCLASS and B is the SUBCLASS; we
also say that B REFINES A or that B is DERIVED from A. Last but not least,
extends is like implements as far as type checking is concerned; wherever
the program specifies B (the supertype), an expressions whose actual type
is A (the subtype) is appropriate. In short, A is also a subtype of B.

Note: In the terminology of object-oriented programming, the availabil-
ity of fields and methods in subclasses is called INHERITANCE in analogy to
real-life inheritance from parents to children. There are many more aspects
to method inheritance than the simple example suggests. It is the purpose
of this chapter to introduce method inheritance carefully as it is relevant
for the systematic design of programs.

The right side of figure 67 displays the revised class diagram. The new
class, Shape, sits between the interface IShape and the three shape classes.
That is, Shape refines IShape; Dot, Square, and Circle extend Shape. The lat-
ter contains a single field, loc, and because its type is CartPt, the diagram
connects Shape and CartPt with a containment arrow. In comparison to
the left, the associations between Dot, Square, and Circle and CartPt, respec-
tively, are gone. Finally both Square and Circle still contain their other fields,
which distinguishes them from each other and Dot.
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// geometric shapes
interface IShape {}

// what is common to all shapes
class Shape implements IShape {

CartPt loc;

Shape(CartPt loc) {
this.loc = loc;
}
}

// a dot shape
class Dot

extends Shape {
Dot(CartPt loc) {

super(loc);
}
}

// a square shape
class Square

extends Shape {
int size;

Square(CartPt loc,int size) {
super(loc);
this.size = size;
}
}

// a circle shape
class Circle

extends Shape {
int radius;

Circle(CartPt loc,int radius) {
super(loc);
this.radius = radius;
}
}

Figure 68: A superclass for geometric shapes

The introduction of a superclass for geometric shapes raises the ques-
tion what Square, for example, really looks like. We know that Shape con-
tains one field and that extends means inherit all the fields from the super-
class. Hence Square contains two fields: loc of type CartPt and size of type
int. The Square class does not inherit Shape’s constructor, which leads to the
question what the constructor of Square looks like. There are actually two
answers:

Square(CartPt loc, int size) {
this.loc = loc;
this.size = size;
}

Square(CartPt loc, int size) {
super(loc);
this.size = size;
}

The left one initializes both fields at once, ignoring that Square’s declaration
of the loc field is actually located to its superclass. The right one contains
a novel construct: super(loc), known as a SUPER CONSTRUCTOR. That is,
the constructor doesn’t just consist of “equations,” but the expression su-

per(loc). This expression invokes the constructor of the superclass, handing
over one value for the initialization of the superclass’s loc field.

Now take a look at this expression:
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new Square(new CartPt(77,22),300)

No matter which constructor we use, the result is an instance of Square. Its
location is new CartPt(77,22), and the length of its sides is 300.

Figure 68 contains the class definitions for the revised class diagram on
the right of figure 67. Note how the text completely expresses the subtle
relationships among the five classes:

1. IShape is the interface that represents all plain geometric shapes;

2. Shape is the class that represents the commonalities of all plain geo-
metric shapes;

3. Dot, Square, and Circle refine Shape. They thus inherit all fields (and
future methods) from Shape. Furthermore, they are obliged to satisfy
all obligations of IShape.

4. The constructors in these three classes also remind us how many
fields each class has and, by using the super constructor, also remind
us how they are alike and how they differ from the rest of the shapes.

A comparison with the original definitions suggests that we didn’t save
much space. But remember that this isn’t the goal of the exercise. The true
goal is to eliminate similar pieces of code and to express the relationships
among pieces of code as precisely as possible. With the introduction of
Shape we have succeeded in doing so. Next we need to study the precise
meaning of implements for Shape because an empty interface, such as the
one in figure 68, isn’t good enough to understand this relationship properly.

Exercises

Exercise 18.1 Add constructors to the following six classes:

1. train schedule:

class Train {
Schedule s;
Route r;
}

class ExpressTrain extends Train {
Stops st;
String name;
}

2. restaurant guides:
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class Restaurant {
String name;
String price;
Place place;
}

class ChineseRestaurant extends Restaurant {
boolean usesMSG;
}

3. vehicle management:

class Vehicle {
int mileage;
int price;
}

class Sedan extends Vehicle {}

Assume Schedule, Route, Stops, and Place are defined elsewhere.

Exercise 18.2 Abstract over the common fields of Lion, Snake, and Monkey
in the class diagram of figure 14 (page 32). First revise the class diagram,
then define the classes including the constructors.

Exercise 18.3 Abstract over the common fields in the class diagram of fig-
ure 16 (page 34). Revise the class diagram and the classes.

Exercise 18.4 Determine whether it is possible to abstract in the class hier-
archy of exercise 4.2 (page 31).

18.2 Abstract Classes, Abstract Methods

In section 12.1, we designed several methods for plain shapes, including
area, distTo0, in, and bb. For unions such as those for shapes, the design
of methods starts with the addition of a method signature and a purpose
statement to the interface.

Let us look at this process in light of the preceding section where we
added AShape to the same class hierarchy and said it would collect the
commonalities of the concrete shapes. In addition, we specified that AShape
implements IShape so that we wouldn’t have to repeat this statement over
and over again for all the classes that extend AShape. For AShape this im-
plies that we must implement area, distTo0, in, and bb because that is what
IShape specifies.



Similarities in Classes 227

interface IShape {
// to compute the area
// of this shape
double area();

// to compute the distance of
// this shape to the origin
double distTo0();

// is the given point is within
// the bounds of this shape
boolean in(CartPt p);

// compute the bounding box
// for this shape
Square bb();
}

abstract class AShape implements IShape {
CartPt loc;

abstract double area();
abstract double distTo0();
abstract boolean in(CartPt p);
abstract Square bb();
}

class Dot
extends AShape {

// cons. omitted
. . .
double area() {

return .0;
}

double distTo0() {
return this.loc.distTo0();
}
. . .
}

class Square
extends AShape {
int size;

// cons. omitted
. . .
double area() {

return
this.size ∗
this.size;

}

double distTo0() {
return this.loc.distTo0();
}
. . .
}

class Circle
extends AShape {
int radius;

// cons. omitted
. . .
double area() {

return
Math.PI ∗
this.radius ∗
this.radius;

}

double distTo0() {
return

this.loc.distTo0()
− this.radius;

}
. . .
}

Figure 69: Classes for geometric shapes with methods and templates
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Unfortunately, implementing methods such as area doesn’t make any
sense for AShape because its definition is different for each class that im-
plements it. The two contradictory requirements—implementing area in
AShape and providing a definition for every specific shape—clearly pose a
problem.

To overcome this problem, object-oriented languages usually provide
a mechanism for passing on the implementation requirement from classes
to subclasses. In Java, the solution is to add so-called abstract methods to
the AShape class. An ABSTRACT method is just like a method signature in
an interface, preceded by the keyword abstract. The addition of an abstract
method to a class means that the class’s programmer doesn’t have to define
the method and thus shifts the responsibility to the developer of subclasses.
Of course, it also makes no sense to create instances of the AShape class,
because it doesn’t implement all of the methods from its interface yet. To
make this obvious to readers of the class definition, we make the entire
class abstract.

Take a look at figure 69. It displays a fragment of the shape class hier-
archy with methods, including the full definition of AShape and an inter-
face that contains several method signature. For each signature you add to
IShape, you also need to add an abstract method to AShape.

18.3 Lifting Methods, Inheriting Methods

What applies to fields also applies to methods. If all concrete subclasses of
a union contain identical method definitions, we must lift them to the ab-
stract class. For a concrete example, consider a class hierarchy for modeling
a fleet of vehicles:

interface IVehicle {
// compute the cost of refueling this vehicle,
// given the current price (cp) of fuel
double cost(double cp);
}

abstract class AVehicle implements IVehicle {
double tank; // gallons
. . .
abstract double cost(double cp);
}
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inside of Car :
double cost(double cp) {

return this.tank ∗ cp;
}

inside of Truck :
double cost(double cp) {

return this.tank ∗ cp;
}

inside of Bus :
double cost(double cp) {

return this.tank ∗ cp;
}

The union has three variants: for cars, trucks, and buses. Since each variant
needs to describe the tank size of the vehicle, there is a common, abstract
superclass with this field. Each variant separately comes with a method
for calculating the cost of filling the tank.29 The cost methods have been
designed systematically and are therefore identical.

When the exact same method definition shows up in all the variants of
a union with a common superclass, you can replace the abstract method in
the superclass with the method definition from the variants:

abstract class AVehicle {
double tank;
. . .
double cost(double cp) {

return this.tank ∗ cp;
}
}

Furthermore, you can delete the methods from Car, Truck, and Bus because
the lifted cost method in AVehicle is now available in all three subclasses.

Naturally, after editing a class hierarchy in such an intrusive manner,
we must re-run the test suite just to make sure we didn’t accidentally in-
troduce a mistake. Since the test suites for AVehicle construct instances of
Car, Truck, and Bus and then use cost, and since all three classes inherit this
method, the test suite should run without error as before.

Exercise

Exercise 18.5 Develop examples for the original class hierarchy represent-
ing vehicles. Turn them into tests and run them. Then lift the common cost
method and re-run the tests.

For a second example, let’s return to plain geometric shapes:

29For illustrative purposes, the methods use double to represent the cost of a tank and the
price of gasoline. For realistic applications, doubles may not be precise enough.
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interface IShape {
// compute the area of this shape
double area();
// is this shape larger than that shape
boolean larger(IShape that);
}

abstract class AShape implements IShape {
CartPt loc;
. . .
abstract double area();
abstract boolean larger();
}

Here the interface specifies just two methods: larger and area. The former
determines whether this shape is larger than some other shape, and the
latter actually computes the area of a shape. Here are the definitions of area
and larger:

inside of Dot :

boolean larger(IShape
that) {

return

this.area()
>

that.area();
}

double area() {
return 0;
}

inside of Square :
int size;
. . .
boolean larger(IShape

that) {
return

this.area()
>

that.area();
}

double area() {
return

this.size ∗
this.size;

}

inside of Circle :
int radius;
. . .
boolean larger(IShape

that) {
return

this.area()
>

that.area();
}

double area() {
return

Math.PI ∗
this.radius ∗
this.radius;

}

We have seen area before and there is nothing new to it. The larger method
naturally takes advantage of the area method. It computes the area of this

shape and the other shape and then compares the results. Because this
follows the “one task, one function” rule of design, all three definitions of
larger are identical.
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Figure 70 shows the result of lifting larger to AShape. Now the abstract

superclass not only contains a shared CartPt field but also a shared method.
Interestingly the latter refers to another, abstract method in the same class
but this is acceptable because all shapes, abstract or concrete, implement
IShape, and IShape demands that shapes define an area method.

interface IShape {
// to compute the area of this shape
double area();

// to determine whether this
// is larger than other (in area)
double larger(IShape other);
}

abstract class AShape
implements IShape {

. . .
abstract double area();

double larger(IShape other) {
return this.area() > other.area();
}
}

class Dot
extends AShape {

// cons. omitted
. . .
double area() {

return .0;
}
. . .
}

class Square
extends AShape {
int size;

// cons. omitted
. . .
double area() {

return
this.size ∗
this.size;

}
. . .
}

class Circle
extends AShape {
int radius;

// cons. omitted
. . .
double area() {

return
Math.PI ∗
this.radius ∗
this.radius;

}
. . .
}

Figure 70: Geometric shapes with common lifted method

Methods don’t have to be identical for lifting. If at least some of the
methods in a union are identical, it is still possible to place one copy in the
abstract class and inherit—in most but not necessarily all subclasses. Those
that need a different version of the method define one and thus OVERRIDE

or replace the version from the superclass.

Take a look at the shape representation in figure 69. The three concrete
classes all define distTo0 methods. Compare the methods in Dot and Square.
The two are identical. The one in Circle, however, differs from those two,
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because the closest point to the origin is on the perimeter of the circle.30

interface IShape {
// to compute the distance of
// this shape to the origin
double distTo0();
. . .
}

abstract class AShape implements IShape {
CartPt loc;

double distTo0() {
return this.loc.distTo0();
}
. . .
}

class Dot
extends AShape {

// cons. omitted
. . .
}

class Square
extends AShape {
int size;

// cons. omitted
. . .
}

class Circle
extends AShape {
int radius;

// cons. omitted

double distTo0() {
return

this.loc.distTo0()
− this.radius;

}
. . .
}

Figure 71: Classes for geometric shapes with methods and templates

In object-oriented programming languages the common method may
be defined in the abstract class. As before, every subclass inherits this defi-
nition. For those subclasses for which this method definition is wrong, you
(the programmer) override it simply by defining a method with the same31

method signature. Figure 71 shows the result of transforming the classes in
figure 69 in this manner. The class AShape defines distTo0 as the distance of
loc to the origin. While Dot and Square inherit this method, Circle overrides
it with the one that makes sense for circles.

Of course, in some sense the distance to the origin of all shapes depends
on the distance to the origin of their anchor point. It just so happens that
the distance between the origin and the anchor point of, say, a Square is the

30Remember our assumption that the shapes are completely visible on the canvas.
31In Java, you can use a signature whose return type is a subtype of the overridden

method; in other object-oriented languages, the signatures have to be identical.
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interface IShape {
// to compute the distance of
// this shape to the origin
double distTo0();
. . .
}

abstract class AShape implements IShape {
CartPt loc;

double distTo0() {
return this.loc.distTo0();
}
. . .
}

class Dot
extends AShape {

// cons. omitted
. . .
}

class Square
extends AShape {
int size;

// cons. omitted
. . .
}

class Circle
extends AShape {
int radius;

// cons. omitted

double distTo0() {
return

super.distTo()

− this.radius;
}
. . .
}

Figure 72: Classes for geometric shapes with methods and templates

distance between the shape and the origin whereas the distance between
the origin and the center of a Circle is not. In a way, this is just what inher-
itance is about. The child is somewhat like the parents, but not the same.
As it turns out, this idea is important in programming too, and you can ex-
press this subtle but important relationship between children and parents
in object-oriented programming languages.

Figure 72 shows how to express this like-but-not-the-same relationship
in classes. The gray-shaded expression is a SUPER METHOD call. The super

refers to the superclass of Circle, which is AShape. The expression invokes
the distTo0 method in AShape (on this circle) and thus computes the distance
of the anchor point of the circle to the origin; the rest of the expression
subtracts the length of the radius, as before.

Because of the simplicity of distTo0, expressing the relationship as care-
fully as we have done here appears to be pedantic. These appearances are
deceiving, however. Programming is about subtleties and expressing them
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is important. It is natural in our profession that other people will read your
program later and modify it. The clearer you can communicate to them
what your program is about, the higher the chances are that they don’t
mess up these carefully thought-through relationships.

Exercise

Exercise 18.6 Complete the class hierarchy for overlapping shapes from
section 15.3: IComposite, Square, Circle, and SuperImp with all the methods:
area, distTo0, in, bb. Add the following methods to the class hierarchy:

1. same, which determines whether this shape is of equal size as some
other, given IShape up to some given small number delta;

2. closerTo, which determines whether this shape is closer to the origin
than some other, given IShape;

3. drawBoundary, which draws the bounding box around this shape.

Develop examples and tests for as many methods as possible. Then intro-
duce a common superclass for the concrete classes and try to lift as many
fields and methods as possible into this superclass. Make sure that the re-
vised classes function properly after this editing step.

18.4 Creating a Superclass, Creating a Union

When you develop independent classes for a program, you may end up
with two (or more) classes that look alike but aren’t the variants of a union.
Perhaps it wasn’t clear when you started out that the two classes of objects
belong together, except that a second look shows that they are related after
all. With a bit of renaming, they may have the same fields and a number of
similar methods. The only way to eliminate these similarities is to create a
union including a common superclass.

Recall the weather reporting example from figures 11 (page 26) and 22
(page 43). The class hierarchies in these figures are excerpts from a program
that records information about the weather. It always includes information
about the temperature (degrees, Fahrenheit) and precipitation (mm) but
often also information about the air pressure (hPa32). Each recording typi-
cally includes the historical high, the historical low, and today’s value.

32Air pressure is measured in hectopascal or hundreds of Pascals.
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// recording air pressure
// measurements [in hPa]
class Pressure {

int high;
int today;
int low;
Pressure(int high,int today,int low) {

this.high = high;
this.today = today;
this.low = low;
}

int dHigh() {
return this.high− this.today;
}

int dLow() {
return this.today− this.low;
}

String asString() {
return String.valueOf (high)

.concat("-")

.concat(String.valueOf (low))

.concat("hPa");
}
}

// recording temperature
// measurements [in F]
class Temperature {

int high;
int today;
int low;
Temperature(int high,int today,int low) {

this.high = high;
this.today = today;
this.low = low;
}

int dHigh() {
return this.high− this.today;
}

int dLow() {
return this.today− this.low;
}

String asString() {
return String.valueOf (high)

.concat("-")

.concat(String.valueOf (low))

.concat("F");
}
}

Figure 73: Recording weather information

Figure 73 shows an elaborated version of two classes in this program:
Pressure and Temperature. Each class comes with the three expected fields
and three methods. The first two methods compute the difference between
today’s measured value and the historical high and low, respectively. The
third method turns the recording into a String, which includes the historical
range and the physical unit of the measurement.

Clearly, the two classes have a similar purpose and are identical up to
the unit of measurement. With a common superclass, we can obviously
eliminate these similarities. The superclass introduces the three common
fields and the three common methods; the only remaining problem is how
to deal with asString, the method that renders the recording as text.
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class Recording {
int high;
int today;
int low;
Recording(int high,int today,int low) {

this.high = high;
this.today = today;
this.low = low;
}

int dHigh() {
return this.high− this.today;
}

int dLow() {
return this.today− this.low;
}

String asString() {
return

String.valueOf (high).concat("-").concat(String.valueOf (low));
}
}

class Pressure extends Recording {
Pressure(int high,int today,int low) {

super(high,today,low);
}

String asString() {
return super.asString()

.concat("mm");
}
}

class Temperature extends Recording {
Temperature(int high,int today,int low) {

super(high,today,low);
}

String asString() {
return super.asString()

.concat("F");
}
}

Figure 74: Recording weather information with a superclass (version 1)

The first solution is to mimic what we have seen in the previous section.
It is shown in figure 74, which displays the new common superclass and the
revised versions of the original classes. The latter two extend Recording and
thus inherit its three fields (high, today, and low) as well as its three methods
(dHigh, dLow, and asString). The asString method produces a string that
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class Recording {
int high;
int today;
int low;
String unit;
Recording(int high,int today,int low,String unit) {

this.high = high;
this.today = today;
this.low = low;
this.unit = unit;
}

int dHigh() { . . . }

int dLow() { . . . }

String asString() {
return

String.valueOf (high).concat("-").concat(String.valueOf (low)).concat(this.unit);
}
}

class Pressure extends Recording {
Pressure(int high,int today,int low) {

super(high,today,low,"mm");
}
}

class Temperature extends Recording {
Temperature(int high,int today,int low) {

super(high,today,low,"F");
}
}

Figure 75: Recording weather information with a superclass (version 2)

separates high and low with a dash (−). Each subclass overrides the asString
method to compute a representation that also includes the physical units.
Note how the two subclasses use a super constructor call to initialize the
objects. This creates an instance of Pressure or Temperature but initializes the
fields they inherit from Recording.

The use of the super constructor also suggests an alternative solution,
which is displayed in figure 75. For this second solution, Recording contains
a complete definition of asString and the additional, String-typed field unit.
The asString method uses this new field as the name of the physical unit.
The constructors in the subclasses have the same signature as those in the
original class but supply an appropriate unit name as the fourth argument
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to the super constructor.David says: the discussion
of the two alternative
developments of Recording
states that a disadvantage of
the second approach is that
the Recording can be used
in place of Pressure and
Temperature, and Java
cannot help to enforce
consistent use of these
classes. But this is a
disadvantage of the first
approach as well.

Compared to the first solution, this second solution has one advantage
and one disadvantage. The advantage of this second solution is that it forces
a programmer who introduces another subclass of Recordings to supply a
String for the physical units; nothing is left to voluntary action. In contrast,
the first solution relies on the programmers to override via a super call the
asString method to produce a proper String representation. The biggest dis-
advantage of this second solution is that programmers can use Recordings
in place of Temperature and Pressure (and other, yet-to-be-defined classes)
that represent recordings of measurements. In turn, Java can’t help check
whether your programs use Temperature and Pressure consistently. In short,
if you can use types to express distinctions, do so.use the word in iv, too.

using stateful classes or
applicative one is one of a
trade-off analysis

This DESIGN TRADE-OFF analysis shows that we really want a combina-
tion of the first and second solution. On one hand, we want a method in the
superclass that performs the rendering to text; on the other hand, we want
to force a subclassing programmer to supply the unit string. A moment’s
thought tells us that this is what abstract is all about. So one solution would
be to make Recording an abstract class, without any other change, and thus
disallow anyone from creating instances from it. But we can do even better
with the addition of an abstract method to this abstract class. Adding an
abstract method to a class forces the programmer who extends the class to
reflect on its purpose and to supply a definition.33

Figure 76 displays the abstract version of Recording. Like version 1, it
contains a definition of asString that glues together the high and the low
with a dash. Like version 2, it also supplies the string that represents the
unit, but via the invocation of the abstract method unit. Since ARecording
is abstract, it is no longer possible to represent measurements directly with
this class. Instead, a programmer must define a new subclass. To make the
subclass concrete, it must contain a definition of unit—just like Pressure and
Temperature. In short, this third solution really combines the advantages of
the first and second solution.

Over the years, this organization of methods and classes, which we al-
ready encountered in a simpler manner with larger and area in figure 70, has
become known as the “template and hook” pattern.34 The asString method

33We really just need an abstract field not method to hold the unit but Java and most
object-oriented languages don’t support this mechanism.

34The idea of collecting programming patterns emerged in the 1990s. Gamma, Helm,
Johnson, and Vlissides conducted “software archaeology,” uncovered recurring patterns
of programming, and presented them in a stylized manner so that others could benefit
from them. Our design recipes emerged during the same time but are based on theoretical
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abstract class ARecording {
int high;
int today;
int low;

ARecording(int high,int today,int low) {
this.high = high;
this.today = today;
this.low = low;
}

int dHigh() { . . . }

int dLow() { . . . }

String asString() {
return

String.valueOf (high).concat("-").concat(String.valueOf (low)).concat(this.unit());
}

abstract String unit();
}

class Temperature extends ARecording {
Temperature(int high,int today,int low) {

super(high,today,low);
}

String unit() {
return "F";
}
}

class Pressure extends ARecording {
Pressure(int high,int today,int low) {

super(high,today,low);
}

String unit() {
return "hPa";
}
}

Figure 76: Recording weather information with a superclass (version 3)

in the superclass is a template that lays out what the string basically looks
like, up to a hole; the unit method is a hook that empowers and forces sub-
classes to fill the hole.

The template-and-hook pattern can occur more than once in a class hi-

considerations mixed with our Scheme programming experience. The critical point is that
following the design recipe often produces code just like the one that software patterns
suggest in the same situation.



240 Section 18

+---------------+
| ARecording |
+---------------+
| int high |
| int today |
| int low |
+---------------+
| int dHigh() |
| int dLow() |
| String |
| asString() |
| String unit() |
+---------------+

| //
/ \ //
--- //
| //

---------------------------//-----------
| | // |

+-------------+ +---------------+ // +---------------+
| Pressure | | ATemperature | // | Precipitation |
+-------------+ +---------------+ // +---------------+
+-------------+ +---------------+ // +---------------+
|String unit()| | String unit() | // | String unit() |
+-------------+ | String name() | // +---------------+

+---------------+ //
| //

/ \ //
--- //
|

---------------------
| |

+-------------+ +---------------+
| Celsius | | Fahrenheit |
+-------------+ +---------------+
+-------------+ +---------------+
|String name()| | String name() |
+-------------+ +---------------+

Figure 77: A class hierarchy for recordings

erarchy, and a class hierarchy may contain more than one level of classes.
Suppose your manager wishes to supply temperature measurements in
both Fahrenheit and Celsius degrees. In that case, a simple Temperature
class is inappropriate. Instead, you should introduce two classes: one for
Celsius and one for Fahrenheit measurements. At the same time, the two
classes share a lot of things. If you were requested to add a temperature-
specific method, they would probably share it, too. Put differently, as far as
we can tell now, they share everything except for the name of the physical
unit. Thus, the best course of action is to turn Temperature into an abstract
class and extend it with a subclass Celsius and a subclass Fahrenheit.

Now take a look at the class diagram in figure 77. The diagram has three
levels of classes, the second level extending the first, and the third extend-
ing the second. Furthermore, the extension of ARecording to ATemperature
is a template-and-hook pattern, and so is the extension of ATemperature to
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Celsius or Fahrenheit.
Let’s inspect the actual code. Here is the new abstract class:

abstract class ATemperature extends ARecording {
ATemperature(int high,int today,int low) {

super(high,today,low);
}

String unit() {
return " degrees ".concat(this.name());
}

abstract String name();
}

The class defines unit but only as a template, with a hole of its own. The
hook for unit is name, a method that names the degrees in the string rep-
resentation. As before, making name abstract means that the entire class is
abstract and that a subclass must define the method, if it is to be concrete.
The Celsius and Fahrenheit classes are concrete:

class Celsius
extends ATemperature {

Celsius(int high, int today,int low) {
super(high,today,low);
}

String name() {
return "Celsius";
}
}

class Fahrenheit
extends ATemperature {

Fahrenheit(int high,int today,int low) {
super(high,today,low);
}

String name() {
return "Fahrenheit";
}
}

The two name methods in the two subclasses just return "Celsius" and
"Fahrenheit", respectively. Indeed, the two are so alike that they call for
more abstraction, except that most programming languages don’t have the
mechanisms for abstracting over these similarities.35

Once you have a properly organized program, modifications and ex-
tensions are often easy to add. Figure 77 indicates one possible extension: a

35Physical and monetary units are ubiquitous fixtures in data representations. In princi-
ple, a programming language should provide mechanisms for annotating values with such
units, but so far no mainstream programming language does. The problem of adding units
to languages is complex; programming language researchers have been working on this
problem for two decades.
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class for measuring Precipitation. Measuring the amount of rain and snow
is a favorite and basic topic of meteorology. Also, people love to know how
much it rained on any given day, or when they travel somewhere, how
much rain they may expect according to historical experience. There is a
difference between precipitation and temperature, however. While the for-
mer has a natural lower bound—namely, 0—the latter does not, at least as
far as people are concerned.36

Within the given framework of classes, creating Precipitation measure-
ments is now just a matter of extending ARecording with a new subclass:

// recording precipitation measurements [in mm]
class Precipitation extends ARecording {

Precipitation(int high,int today) {
super(high,today,0);
}

// override asString to report a maximum value
String asString() {

return "up to ".concat(String.valueOf (high)).concat(this.unit());
}

// required method
String unit() {

return "mm";
}
}

This supplies every field and method that comes with a recording. Still,
because of the special nature of precipitation, the constructor differs from
the usual one. It consumes only two values and supplies the third one to
the super constructor as a constant. In addition, it overrides the asString
method completely (without super), because an interval format is inappro-
priate for reporting precipitation.

Here is another possible change request:

. . . The string representation of intervals should be as mathe-
matical as possible: the low end followed by a dash and then
the high end of the interval. . . .

36Technically, 0oK is the absolute zero point for measuring temperatures, but we can
safely ignore this idea as far as meteorology information for people is concerned.
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In other words, the goal is to invert the presentation of the measurements.
Of course, now that we have a well-organized class hierarchy, you just
change the definition of asString in the top-most class and the rest follows:

inside of ARecording :

String asString() {
return String.valueOf (low)

.concat("-")

.concat(String.valueOf (high))

.concat(this.unit());
}

All subclasses—Pressure, ATemperature, Precipitation, Celsius, and Fahren-
heit—inherit the modified computation or override it appropriately.

The lesson of this exercise is again that creating a single point of control
for a single piece of functionality pays off when it is time to change the
program.

Exercises

Exercise 18.7 Figure 77 introduces a union from two classes that had been
developed independently. Create an interface for the union.

Exercise 18.8 Add a class for measuring precipitation to the class hierarchy
of recordings (version 1) in figure 74 . Also add a class for measuring pre-
cipitation to the second version of the class hierarchy (figure 75). Compare
the two hierarchy extensions and the work that went into it.

Exercise 18.9 Add a class for measuring the speed of the wind and its di-
rection to all three class hierarchies in figures 74 , 75, and 76.

Exercise 18.10 Design newLow and newHigh. The two methods determine
whether today’s measurement is a new historical low or high, respectively.

Exercise 18.11 Design the methods fahrenheitToCelsius and celsiusToFahren-
heit for Fahrenheit and Celsius in figure 77, respectively.

Exercise 18.12 A weather station updates weather recordings on a continu-
ous basis. If the temperature crosses a particular threshold in the summer,
a weather station issues a warning. Add the method heatWarning to the
class hierarchy in figure 77. The method produces true if today’s temper-
ature exceeds a threshold, false otherwise. For Fahrenheit measurements,
the threshold is 95oF, which corresponds to 35oC.
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Exercise 18.13 If the air pressure falls below a certain threshold, a meteo-
rologist speaks of a “low,” and if it is above a certaing level, the weather
map display “high.” Add the methods lowPressure and highPressure to the
class hierarchy in figure 77. Choose your favorite thresholds.

Abstracting is a subtle and difficult process. It requires discipline and
experience, acquired via practice. Let’s therefore look at a second example,
specifically the “star thaler” problem from chapter II:

. . . Develop a game based on the Grimms brothers’ fairy tale
called “Star Thaler.” . . . Your first task is to simulate the move-
ment of the falling stars. Experiment with a single star that is
falling to the ground at a fixed number of pixels per time unit
on a 100× 100 canvas. Once the star has landed on the ground,
it doesn’t move anymore. . . .

After some experimentation your programming team finds that the game
may sell better if something unforeseen can happen:

. . . Modify the game so that it rains red rocks in addition to
golden star thalers. If the girl is hit by one of the rocks, her
energy decreases. Assume that a red rock has the same shape
as a star but is red. . . .

It is your task to modify your program so that your managers can visualize
the game with thalers and red rocks.

Figure 78 shows the result in two columns. The left column is the class
of star thalers, as partially developed in chapter II; the right column con-
tains the class of red rocks. The classes have been arranged so that you can
see the similarities and the differences. Here are the obvious similarities:

1. Both classes have x and y of type int.

2. Both classes have identical landed methods.

3. Both classes have identical nearGround methods.

And there are also two less obvious connections between the classes:

4. The Star class contains a DELTA field for specifying how far a star
thaler drops at each step; the analogous field in RedRock is deltaY.
If we systematically rename DELTA to deltaY in Star (see gray high-
lighting), the two fields are also an obvious overlap between the two
classes.
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class Star {
int x = 20;
int y;
int DELTA = 5;

Star(int y) {
this.y = y;
}

boolean draw(Canvas canv) {
. . . new Yellow() . . . }
Star drop() {

if (this.landed()) {
return this; }

else { if (this.nearGround()) {
return

new Star(100); }
else {

return
new

Star(this.y + this.DELTA); }
}
}
boolean landed() {

return this.y == 100;
}
boolean nearGround() {

return this.y + this.DELTA > 100;
}
}

class RedRock {
int x;
int y;
int deltaX = 3;
int deltaY = 5;

RedRock(int x,int y) {
this.x = x;
this.y = y;
}
boolean draw(Canvas canv) {

. . . new Red()) . . . }
RedRock drop() {

if (this.landed()) {
return this; }

else { if (this.nearGround()) {
return

new RedRock(this.x,100); }
else {

return
new RedRock(this.x + this.deltaX,

this.y + this.deltaY); }
}
}
boolean landed() {

return this.y == 100;
}
boolean nearGround() {

return this.y + this.deltaY > 100;
}

boolean hit(Girl g) {
return

g.closeTo(new Posn(this.x,this.y));
}
}

Figure 78: Falling objects

5. Both classes also contain similar but not identical draw methods. One
uses yellow as the drawing color, the other one uses red.

What distinguishes the two classes are the drop methods. While a star thaler
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goes straight down, a rock drops in a diagonal line. For every five pixels
that a red rock drops, it moves three to the right. Finally, RedRock contains
one method more than Star: hit. It determines whether the rock has hit the
girl.

Exercises

Exercise 18.14 The code in figure 78 comes without any purpose state-
ments and without tests. Write down concise purpose statements for all
methods, and develop a test suite for both classes. Use this definition for
Girl:

class Girl {
Girl() { }
// is this girl close to Posn p?
boolean closeTo(Posn p) {

return false;
}

}

This is called a stub implementation.

Exercise 18.15 The method definitions for draw in figure 78 contain new

expressions for colors. Introduce a name for each of these colors. Don’t
forget to run the test suites from exercise 18.14.

The abstraction of these classes appear in figure 79. It is a superclass
that represents falling objects in general; the revised versions of Star and
RedRock are derived from this superclass and thus inherit its fields and
methods. Based on our comparison, the superclass contains three com-
mon methods: landed, nearGround, and draw. It also contains the following
common fields:

1. x and y, because they are common to both;

2. deltaY, which generalizes the DELTA in Star and the deltaY in RedRock;

Both fields name the rate at which the respective objects drop. To cre-
ate a common superclass, we have to rename one of them throughout
the class. Here we chose to rename DELTA to deltaY, and the renam-
ing is visible in the drop method in Star.
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class Falling {
int x;
int y;
int deltaY;
IColor c;

Falling(int x,int y,int deltaY,IColor c) {
this.x = x;
this.y = y;
this.deltaY = deltaY;
this.c = c;
}
boolean draw(Canvas canv) { . . . this.c . . . }
boolean landed() { . . . }
boolean nearGround() { . . . }
}

class Star {

Star(int y) {
super(20,y,5,new Yellow());
}
Star drop() {

if (this.landed()) {
return this; }

else { if (this.nearGround()) {
return

new Star(100); }
else {

return
new Star

(this.y + this.deltaY );}
}
}
}

class RedRock {
int deltaX = 3;

RedRock(int x,int y) {
super(x,y,5,new Red());
}
RedRock drop() {

if (this.landed()) {
return this; }

else { if (this.nearGround()) {
return

new RedRock(this.x,100); }
else {

return
new RedRock(this.x + this.deltaX,

this.y + this.deltaY); }
}
}
boolean hit(Girl g) {

return
g.closeTo(new Posn(this.x,this.y));

}
}

Figure 79: Falling objects, revised
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3. c, which represents the color of the falling object.

This last field, c, is completely new, though its introduction is compa-
rable to the renaming of DELTA to deltaY. Introducing c renders the
draw methods identical and thus allows us to lift then method into
the superclass. (See exercise 18.15.)

The signatures of the constructors of the two classes remain the same. Both
constructors then call the super constructor, with their parameters in ap-
propriate places and with appropriate constants elsewhere.

Not surprisingly, the revised RedRock still contains the method hit. Af-
ter all, it appears only in RedRock in the original program, and there is no
need for this method in general. The similarities in drop, however, are so
strong that you could have expected the method to be lifted into Falling.
The content of the two methods differ in one aspect: while Stars move only
along a vertical axis, RedRocks move in both directions. If Falling contained
deltaX and Star set it to 0, it would still drop along a straight line. Here is
the imaginary rewrite:

inside of Star :
Star drop() {
if (this.landed()) {

return this; }
else { if (this.nearGround()) {

return

new Star (this.x,100); }
else {

return

new Star
(this.x + this.deltaX,
this.y + this.deltaY); }

}
}

inside of RedRock :
RedRock drop() {
if (this.landed()) {

return this; }
else { if (this.nearGround()) {

return

new RedRock (this.x,100); }
else {

return

new RedRock
(this.x + this.deltaX,
this.y + this.deltaY); }

}
}

Unfortunately, lifting deltaX to Falling and generalizing drop accordingly
still doesn’t make the two methods look identical. The gray-shaded return
types and constructor names emphasize how the computational rules are
identical yet the method on the left uses Star and the right one uses RedRock
in analogous positions.37

37The problem is that Java’s type system—and that of almost all mainstream object-
oriented programming languages—is overly restrictive. This kind of problem is the sub-
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Exercises

Exercise 18.16 Use the test suite you developed in exercise 18.14 to test the
program in figure 79.

Exercise 18.17 Develop an interface for the newly created union of Stars
and RedRocks. Does drop fit in? Why? Why not?

Exercise 18.18 Modify the code in figure 79 so that the drop methods be-
come identical except for the return types and the class names in new ex-
pressions.

Once we can draw shapes onto a canvas, we can simulate the movement
of objects, too:

class ExampleMove {
Canvas c = new Canvas(100,100);
Star f = new Star(10);

ExampleMove() { }
boolean testDraw = check this.c.show()

&& this.f.draw(this.c)
&& this.f.drop().draw(this.c)
&& this.f.drop().drop().draw(this.c)

expect true;
}

This examples class creates two fields: a Canvas and a Star. Its one and only
test field displays the canvas, draws the Star, drops and draws it again,
and finally drops it twice and draws the result. At that point, the Canvas
contains three yellow circles, drawn at (10,20), (10,25), and (10,30).

Imagine now the addition of a method drawBackground, which draws a
white rectangle of 100 by 100 pixels at position (0,0) onto the canvas. Doing
so every time before draw is called leaves just one yellow circle visible. If
the method calls happen at a fast enough rate, the series of pictures that
ExampleMove draws in this manner creates the illusion of a moving picture:
a movie. A library that helps you achieve this kind of effect is a major
example in the next section.

ject of programming languages researchers. One of their objectives is to design powerful
yet safe type systems for languages so that programmers can express their thoughts in a
concise, abstract and thus cost-effective manner.
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// a point in the Cartesian plane
class CartPt {

int x;
int y;

CartPt(int x, int y) {
this.x = x;
this.y = y;
}

// to compute the distance of this
// point to the origin
double distTo0(){

return
Math.sqrt(

(this.x ∗ this.x) +
(this.y ∗ this.y));

}

// compute the distance between this
// CartPt and p
double distanceTo(CartPt p){

return
Math.sqrt(

(this.x− p.x) ∗ (this.x − p.x) +
(this.y− p.y) ∗ (this.y − p.y));

}

// create a new point that is deltaX,
// deltaY off-set from this point
CartPt translate(int deltaX, int deltaY) {

return
new CartPt(this.x + deltaX,

this.y + deltaY);
}
}

+-------------------------+
| Posn |
+-------------------------+
| int x |
| int y |
+-------------------------+

|
/ \
---
|
|

============================
|
|
|

+---------------------------------+
| CartPt |
+---------------------------------+
+---------------------------------+
| double distanceTo() |
| double distTo0() |
| CartPt translate(int dX, int dY)|
+---------------------------------+

Figure 80: CartPt vs. Posn

18.5 Deriving Subclasses

In the preceding section we learned to abstract over similar classes with a
superclass. To use these abstractions, we turned the original classes into
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subclasses. It is often impossible, however, to reorganize a class hierarchy
in this manner because it isn’t under your control.

Figure 80’s left column presents such a situation. The CartPt class (from
section 12) represents the points in the Cartesian plane with two coordi-
nates (x and y). In addition, CartPt provides three methods: distanceTo,
distTo0, and translate. We developed those methods while we developed a
representation for geometric shapes.

The Posn class in the draw package serves the same purpose as CartPt.
It too represents Cartesian points, and the drawing methods in the pack-
age accept instances of Posn. These methods in the draw.* package do not,
however, accept instances of CartPt. Thus, it appears impossible to draw
shapes and to have some new computational methods on representations
of Cartesian points.

In section 14.1 we solved the problem with the addition of one more
method to CartPt: toPosn. This additional method converts instances of
CartPt into Posns and thus allows programs to draw shapes at this position.

The right column in figure 80 shows an alternative solution via a dia-
gram: the derivation of a subclass of Posn. Deriving CartPt from the Posn
library class has the immediate and obvious advantage that from a type
checking perspective, every CartPt is a Posn. If a method specifies the type
of a parameter as Posn, it also accepts an instance of a subclass. In short,
this way of (re)organizing classes and fragments class hierarchies solves
this problem of using program libraries and tailoring them to a special pur-
pose. We resume and expand on this idea in the next section.

19 Designing Class Hierarchies with Methods

In the preceding section, we discussed examples of abstracting over classes
via superclasses and using these abstractions via subclassing. This section
formulates a design recipe that helps with the abstraction process in general
and identifies conditions that describe when reusing existing abstractions
is appropriate and how to go about it.

As you work through this chapter, keep in mind that our primary goal
is a program that some other programmer can easily read and change. Get-
ting to that point isn’t as a one-step process, as you should recall the lesson
from How to Design Programs; it is a process that requires many iterations.
Every time you recognize a chance to abstract or to use an abstraction, edit
the program and ensure that it still works with your existing test suite.
If you haven’t built one, do so before you edit; otherwise you may acci-
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dentally introduce a mistake into a perfectly working program and fail to
discover it for a long time.

The section starts with two reminders of simple but important ways
to establish single points of control—a key goal of abstraction in general—
within and across methods: local variables and abstraction of methods. The
rest is new material.

// represent a Cartesian point
class CartPt {

int x;
int y;

CartPt(int x, int y) {
this.x = x;
this.y = y;
}

// the distance between this and other
double distanceTo(CartPt other) {

return
Math.sqrt(

((this.x− other.x) ∗ (this.x− other.x)
+
(this.y − other.y) ∗ (this.y− other.y)));

}
}

class Examples {
CartPt origin = new CartPt(0,0);
CartPt other = new CartPt(3,4);

boolean test =
check

this.origin.distanceTo(this.other)
expect 5.0
within .001;

Examples() {}
}

Figure 81: Points and distance

19.1 Local Variables and Composition

Figure 81 displays a definition of the CartPt class. Unlike the definition
in the preceding section, this one provides the method distanceTo, whose
purpose is to compute the distance between this instance and some other
distance. To understand the computation in distanceTo’s method body, you
need to know a bit of domain knowledge:

given Cartesian points (x1, y1) and (x2, y2), their distance is

√

(x1 − x2)2 + (y1 − y2)2
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Equipped with this knowledge, reading the body of distanceTo should be
straightforward.

Nevertheless, the method body of distanceTo is complex and doesn’t
reveal the underlying knowledge. Such deeply nested expressions are a
strain on the reader. From How to Design Programs, you know that we
use method composition and/or local variable definitions to simplify such
methods. Let’s try both ideas here, one at a time.

Let’s start with a closer look at the domain knowledge. If you looked
it up in a mathematics book, you may know that the distance between two
points is equivalent to the length of the line between them. If you think of
this latter line as something that starts at the origin, then the length of the
line is equal to the distance of the other end point to the origin.

Given that the original definition of CartPt in figure 44 comes with dis-
tance0, we can define distanceTo via the composition of two methods:

inside of CartPt :
double distanceTo(CartPt other) {

return this.line(other).distance0();
}

First, the line method computes the imaginary endpoint of the line between
the two points. Second, the distance0 method computes the distance of this
endpoint to the origin, which is the desired length.

While distance0 is already available in CartPt, we still need to design
line:

inside of CartPt :
// the imaginary endpoint of the line between this and other
CartPt line(CartPt other) {

. . . this.x . . . other.x . . . this.y − other.y . . .
}

From this template and the original formula (or a tiny bit of domain knowl-
edge), we can define the actual method:

inside of CartPt :
// the imaginary endpoint of the line between this and other
CartPt line(CartPt other) {

return new CartPt(this.x − other.x, this.y − other.y);
}
Composition often helps with such situations, though it also leads to the

inclusion of lots of little methods in a class. In our example, we now have
three methods. Two of them are clearly useful for everyone: distance0 and
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distanceTo; the third one just exists for bridging the gap between distanceTo
and distance0.

An alternative to the addition of a method is the definition of LOCAL

VARIABLES:

inside of CartPt :
double distanceTo(CartPt other) {

int deltaX = this.x − other.x;
int deltaY = this.y − other.y;
CartPt p = new CartPt(deltaX,deltaY);
return p.distance0();
}

Here we see three of them: deltaX, deltaY, and p. At first glance, the defi-
nition of a local variable looks like a field definition with an initialization
“equation.” The difference is that a local variable definition is only visible
in the method body, which is why it is called local.

In distanceTo, the local variables are initialized to the following values:

1. deltaX stands for the difference between the x coordinates;

2. deltaY stands for the difference between the y coordinates;

3. and p is a point created from the two differences.

As these definitions show, the expression on the right-hand side of initial-
ization “equations” can use a number of values: those of the class’s fields,
the parameters, the fields of the parameters, and local variables whose def-
initions precedes the current one. Like fields, the name of the variable
stands for this value, though only through the body of the method.

Based on this explanation of local variables, we can also perform a
calculation to validate the equivalence of the intermediate version of dis-
tanceTo and the third one:

1. Since deltaX stands for the value of this.x− other.x, we can replace the
occurrence in the third initialization “equation:”

inside of CartPt :
double distanceTo(CartPt other) {

int deltaY = this.y − other.y;
CartPt p = new CartPt(this.x − other.x,deltaY);
return p.distance0();
}
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2. This works also for deltaY:

inside of CartPt :
double distanceTo(CartPt other) {

CartPt p = new CartPt(this.x − other.x,this.y − other.y);
return p.distance0();
}

3. Finally, we can replace p in the rest of the method body with this new

expression:

inside of CartPt :
double distanceTo(CartPt other) {

return new CartPt(this.x − other.x,this.y − other.y).distance0();
}

The rest is a short argument using the substitution model of computation
that we know so well.

Exercises

Exercise 19.1 Can you argue that the second and first version of distanceTo
are equivalent?

Exercise 19.2 Transform the CartPt class provided in figure 81 into the sec-
ond and then the third version, maintaining the Examples class as you go.

19.2 Abstracting with Methods

According to How to Design Programs, abstracting over functions starts from
concrete examples. When you recognize that two functions are similar, you
highlight the differences, abstract over them with additional parameters,
and re-define the originals from this general version (if applicable). Once
you have those you can use the original tests to ensure that the abstraction
process hasn’t introduced any problems.

When you see two similar methods in the same class, we suggest you
proceed in the same manner. Figure 82 displays a simple example. The
class represents a push-button light switch. The flip method changes the
on-off status of the switch. The draw method fills a canvas with an image
appropriate to the switch’s state. If it is on, the push-button is lit and the
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class LightSwitch {
boolean on;
int width = 100;
int height = this.width;
int radius = this.width/2;
Canvas c = new Canvas(this.width,this.height);
Posn origin = new Posn(0,0);
Posn center = new Posn(this.radius,this.radius);
IColor light = new Yellow();
IColor dark = new Blue();

LightSwitch(boolean on) {
this.on = on;
this.c.show();
}

// turn this switch off, if on; and on, if off
LightSwitch flip() {

return new LightSwitch(!this. on);
}

// draw this light
boolean draw() {

if (on) {
return this.paintOn(); }

else {
return this.paintOff (); }

}

boolean paintOff () {
return this.c.drawRect(this.origin,this.width,this.height, this.light

1
)

&& this.c.drawDisk(this.center, this.radius, this.dark 2);
}

boolean paintOn() {
return this.c.drawRect(this.origin,this.width,this.height, this.dark 1)

&& this.c.drawDisk(this.center, this.radius, this.light
2
);

}
}

Figure 82: Similar methods in one class
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surrounding background is dark; otherwise, the push-button is off and the
surrounding background is lit. Since the two drawing actions consist of
several expressions each, the developer has separated them into auxiliary
methods, which look alike.

The four gray-shaded areas in figure 82 highlight the two pairwise dif-
ferences between these auxiliary methods. The two boxes labeled with
subscript 1 are the color arguments to the rectangle-drawing method that
determine the background color; likewise, the two boxes labeled with sub-
script 2 are the color arguments to the disk-drawing method that determine
the color of the button. Other than those two pairs of differences, the two
methods are the same.

Following the design recipe from How to Design Programs, you abstract
over such methods by replacing the analogous differences with two addi-
tional parameters—one per pair—in a new definition:

inside of LightSwitch :
// auxiliar painting method for this light
boolean paint(IColor front,IColor back) {

return this.c.drawRect(this.origin,this.width,this.height,back)
&& this.c.drawDisk(this.center, this.radius,front);

}

In Java, we need to name the parameters and specify their types, which is
IColor for both.

Next we must show that we can define the paintOn and the paintOff
methods via paint:

inside of LightSwitch :

boolean paintOn() {
return this.paint(this.light, this.dark);
}

boolean paintOff () {
return this.paint(this.dark, this.light);
}

Given that each of these methods is used only once in draw, we can just
change its definition by replacing the invocations of paintOn and paintOff
with their bodies:
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inside of LightSwitch :

boolean draw() {
if (on) {

return this.paint(this.light,this.dark); }
else {

return this.paint(this.dark,this.light); }
}

Now all that remains is to run some examples and inspect the appearances
of the canvases before and after abstracting.

Exercise

Exercise 19.3 Develop an example class for figure 82 and then transform
the class to use the paint abstraction. Why is this not a proper test?

+---------------+
| IClass |
+---------------+
| m |
+---------------+

|
/ \
---
|

... ----------------- ...
| |

+------+ +---------+
| One | | Another |
+------+ +---------+
| f | | f |
+------+ +---------+
| | | |
| m(x) | | m(x) |
| .x. | | .x. |
+------+ +---------+

+---------------+ +---------------+
| IClass |__/|____| AClass |
+---------------+ \| +---------------+
| m | | f |
+---------------+ +---------------+

| m(x) |
| .x. |
| |
+---------------+

|
/ \
---
|

... ----------------- ...
| |

+------+ +---------+
| One | | Another |
+------+ +---------+
+------+ +---------+
| | | |
+------+ +---------+

Figure 83: Lifting methods

19.3 Abstracting within Unions of Classes

Our simplest example of abstraction concerns the lifting of similar methods
within unions. Figure 83 sketches the essence of this form of abstraction.
When you recognize that the variants contain identical field or method def-
initions, you create a common abstract superclass and move the common
definitions from the subclasses to the superclass. Here are the exact steps:
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The comparison After you have finished designing a union hierarchy, look
for identical field definitions or method definitions in the variants
(subclasses). The fields should occur in all variants; the methods
should be in at least two variants.

The abstraction Create the abstract class AClass and have it implement the
union interface with abstract methods. Replace the implements spec-
ification in the subclasses with extends specifications, pointing to the
superclass.

Eliminate the common field definitions from all variants; add a single
copy to the superclass. Modify the constructors in the subclasses to
use super for the initialization of shared fields.

Introduce a copy of the shared method m in the superclass and elimi-
nate the methods from all those subclasses where the exact same code
appears.

The super call For all those variants that contain a method definition for m
that differs from the one in the superclass, consider reformulating the
method using super. We have seen an example of this in section 18.3,
and it is indeed a reasonably common scenario. If it is possible, ex-
press the method in this manner because it helps your successor un-
derstand the precise relationship between the two computations.

As long as you do not have sufficient experience with abstraction in
an object-oriented setting, you may wish to skip this step at first and
focus on the basic abstraction process instead.

The test Re-run the test suite. Since subclasses inherit the methods of the
abstract class that represents the union, the subclasses did not really
change, especially if you skipped the third step. Still, every modifi-
cation may inadvertently introduce a mistake and therefore demands
testing. Since you have a test suite from the original development,
you might as well use it.

This first design recipe for abstraction is extremely simple in compari-
son to the one we know from How to Design Programs. The reason is that it
assumes that the methods in the two variants are identical. This assump-
tion is is of course overly simplistic. In general, methods are similar, not
identical. If this is the case, you can often factor out the common pattern
between those methods and then lift the common method.

Figure 84 is a sketch of the first step in this modified abstraction process.
Its left column indicates that two variants of a union contain similar method
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+---------------+ +---------------+
| IClass |__/|__| AClass |
+---------------+ \| +---------------+
| m | +---------------+
+---------------+ | abstract m |

| |
+---------------+

|
/ \
---
|

... ---------- ...
| |

+------+ +---------+
| One | | Another |
+------+ +---------+
+------+ +---------+
| | | |
|m(x) | |m(x) |
| .x.o.| | .x.p. |
| | | |
+------+ +---------+

+---------------+ +---------------+
| IClass |__/|__| AClass |
+---------------+ \| +---------------+
| m | +---------------+
+---------------+ | abstract m |

| |
+---------------+

|
/ \
---
|

... ---------- ...
| |

+-------+ +---------+
| One | | Another |
+-------+ +---------+
+-------+ +---------+
| | | |
|n(x,y) | |n(x,y) |
| .x.y. | | .x.y. |
|m(x) | |m(x) |
| n(x,o)| | n(x,p) |
| | | |
+-------+ +---------+

Figure 84: Lifting nearly identical methods

definitions. More specifically, the definitions differ in one place, where they
contain different values: o and p, respectively. The right column shows
what happens when we apply the design recipe for abstraction from How
to Design Programs. That is,

The comparison Highlight the differences between m in class One and m
in class Another.

The abstraction Define method n just like method m (in both classes) with
two differences: it specifies one additional parameter (y) and it uses
this parameter in place of the original values (p and o).

The test, 1 Reformulate the body of m in terms of n; more precisely, m now
calls n with its arguments and one extra argument: o in One and p in
Another.

The test, 2 Re-run the test suite to confirm that the m methods still function
as before. You may even want to strengthen the test suite so that it
covers the newly created method n.

At this point you have obtained two identical methods in the two classes.
You can now follow the design recipe for abstraction to lift n into the com-
mon superclass.

A similar design recipe applies when you discover that the variants con-
tain fields with distinct names but the same purpose. In that case, you first
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rename the fields consistently throughout one class, using the correspond-
ing field name from another variant. You may have to repeat this process
until all names for fields with the same purpose are the same. Then you lift
them into the common superclasses. Of course you can only do so if you
have complete control over the classes, i.e., if you are in the middle of the
design process, or if you are guaranteed that other pieces of the program
use the interface of the union as the type and do not use individual variant
classes. Otherwise people may already have exploited the fact that your
classes contain fields with specific names. In this case, you are stuck and
can’t abstract anymore without major problems.

+---------+ +---------+
| ClassAA | | ClassBB |
+---------+ +---------+
| f . g | | f . g |
+---------+ +---------+
| | | |
| m ... | | m ... |
| | | |
+---------+ +---------+

+---------------+ +---------+
| IClass |__/|__| SuperCC |
+---------------+ \| +---------+
| m | | f . g |
+---------------+ +---------+

| |
| m ... |
| |
+---------+

|
/ \
---
|

+----------+
| |

+---------+ +---------+
| ClassAA | | ClassBB |
+---------+ +---------+
+---------+ +---------+
| | | |
| | | |
+---------+ +---------+

Figure 85: Creating a union retroactively

19.4 Abstracting through the Creation of Unions

On occasion, you will develop or extend a program and then find that two
independent classes are structurally similar. The classes will have a sig-
nificant overlap in fields, methods, and purpose. In other words, you will
notice after the fact that you need a union.

Take a look at the left of figure 85, which represents the situation graph-
ically. The right shows your goal: the creation of a common superclass. The
process of going from the left to the right column consists of three steps:

The comparison When you discover two similar classes without super-
classes,38 such as ClassAA and ClassBB, inspect the commonalities
closely.

38In some object-oriented languages, a class may have multiple superclasses and then
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Before you proceed, also re-consider the purpose statement of each
class and determine whether the two classes are related in spirit. In
other words, ask yourself whether the two classes represent related
kinds of objects. If they don’t, stop.

Note 1: The two classes may have subclasses, that is, they themselves
may represent a union.

Note 2: If you control all uses of a class, you may systematically
rename fields and methods throughout the program to make two
classes as similar as possible. Do so to enable abstraction as much
as possible.

If you are dealing with the fragment of a program instead and oth-
ers use your classes, you probably don’t have the freedom to rename
your fields or methods.39

The abstraction If you can confirm an overlap in purpose, methods, and
fields, you create a union, that is, you introduce an interface (IClass)
and a common superclass (SuperCC).

The interface contains the common method specifications of the two
classes.. As long as two methods in ClassAA and ClassBB have the
same purpose and compatible signatures, they belong into the inter-
face of the union, which represents the union to the rest of the pro-
gram.

The superclass contains the common field and method definitions
from the two original classes. Formulate a general purpose statement
that clarifies how this new class represents objects from both classes.
Finally, turn the given classes into derived classes. In particular, you
should now eliminate the fields and methods that SuperCC introduces
and reformulate the constructors using super.

Note: Introduce an interface only if you believe that the class hierar-
chy represents a union and if you anticipate that you or others will
deal with all instances of these classes from one (union) perspective.

The test Re-run the test suite for ClassAA and ClassBB. If you believe that
SuperCC is useful in its own right, create a test suite for SuperCC that
generalizes the examples from ClassAA and ClassBB.

you can abstract in all cases. Since this isn’t common and Java doesn’t support it, we ignore
this possibility.

39None of the existing object-oriented programming languages truly separate the inter-
nals of a class from the visible interface; otherwise this would not be a problem.
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Sometimes the creation of a common superclass for two classes may
eliminate the need for the two original classes. This is particularly true if,
after lifting, the two classes contain nothing but constructors. The only rea-
son for maintaining the two is to ensure that the language itself can check
the distinction. Figuring out whether this is needed takes common sense
and a lot experience.

// a set of integers:
// contains an integer at most once
class Set {

ILin elements;

Set(ILin elements) {
this.elements = elements;

}

// add i to this set
// unless it is already in there
Set add(int i) {

if (this.in(i)) {
return this; }

else {
return

new Set(new Cin(i,this.elements));
}

}

// is i a member of this set?
boolean in(int i) {

return
this.elements.howMany(i) > 0;

}
}

// a bag of integers
class Bag {

ILin elements;

Bag(ILin elements) {
this.elements = elements;
}

// add i to this bag
Bag add(int i) {

return
new Bag(new Cin(i,this.elements));

}

// is i a member of this bag?
boolean in(int i) {

return
this.elements.howMany(i) > 0;

}

// how often is i in this bag?
int howMany(int i) {

return
this.elements.howMany(i);

}
}

Figure 86: Collections of integers

Exercises

Exercise 19.4 Compare the two classes in figure 86. A Set is a collection of
integers that contains each element at most once. A Bag is also a collecion
of integers, but an integer may show up many times in a bag.
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Your tasks are:

1. The two class definitions use lists of integers to keep track of ele-
ments. Design a representation of lists of integers with this interface:

// a list of integers
interface ILin {

int howMany(int i);
}

The constructors are MTin for the empty list and Cin for constructing
a list from an integer and an existing list.

2. Develop examples of Sets and Bags.

3. Develop functional examples for all methods in Set and Bag. Turn
them into tests.

4. The two classes clearly share a number of similarities. Create a union
and lift the commonalities into an abstract superclass. Name the
union interface ICollection. Don’t forget to re-run your test suite at
each step.

5. Develop the method size, which determines how many elements a
Bag or a Set contain. If a Bag contains an integer n times, it contributes
n to size.

6. Develop the method rem, which removes a given integer. If a Bag
contains an integer more than once, only one of them is removed.

Exercise 19.5 Banks and international companies worry about keeping the
various kinds of moneys separate. If you work at such a company, your
manager might request that you implement separate classes for represent-
ing US Dollars and Euros, thus making sure that the programming lan-
guage enforces this separation. That is, assuming all amounts of money
are represented via objects, your program will then never accidentally add
euros to dollars (or vice versa).

Implement the classes Dollar and Euro. To keep things simple, let’s as-
sume that all amounts are integer amounts and that the only two opera-
tions that matter add currencies (of the same kind) and translate them into
String.
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The two classes obviously share a lot of code. Abstract a common super-
class, say AMoney, from the two classes. Lift as many methods and fields
as possible.

Add a class Pound for representing amounts in British Pounds.

19.5 Deriving Subclasses from “Library” Classes

As we know from How to Design Programs, using existing abstractions is
much more an art than a design discipline. This is equally true for the
reuse of functions as it is for the reuse of classes. In both cases, it is critical
to discover that an existing abstraction can be used for a given problem
situation. Here we provide a process like a design recipe that helps to stay
on track with this difficult part of programming but it is not a recipe per se:

Library:

+-------------------------+
| LibCC |
+-------------------------+
| ///// |
| ... |
+-------------------------+
| +++++ |
+-------------------------+

============================

+-------------------------+
| AA |
+-------------------------+
| ///// |
| ... |
+-------------------------+
| +++++ |
| ... |
+-------------------------+

Library:

+-------------------------+
| LibCC |
+-------------------------+
| ///// |
| ... |
+-------------------------+
| +++++ |
+-------------------------+

/ \
---
|
|
|

============================
|
|
|

+-------------------------+
| AA |
+-------------------------+
| ... |
+-------------------------+
| ... |
+-------------------------+

Figure 87: Using a “library” class

1. When your task is to design a class, follow the recipe for designing
a class and its methods—up to a certain point. At a minimum, write
down the purpose statement for the class, the fields for the class, and
some sample instances. Then develop the signatures and purpose
statements of the methods; ideally, you should also develop examples
for the methods.
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Going through the design recipe in this way helps you understand
what this new class of data is all about. Now you are in a position
where you can determine whether this class should be an extension
of an existing class. Here are two situations that suggest such an ex-
tension:

(a) You already have a class that has a related but more general pur-
pose statement. Also, the existing class provides several of the
fields and methods that you need for the new class, if not by
name then in spirit.

The derivation of Precipitation from ARecording exemplifies this
situation. It represents the extension of an existing union of
classes with an additional variant. This step is common, because
we often don’t think of all the variants when we first design a
union.

Note: When we extend a class that is not a union, we often really
want a union not just one variant of an existing class.

(b) The collections of software that are available to you on your
computer or at your workplace contain a potential superclass
LibCC whose purpose fits the bill. Furthermore, the collection
contains other classes that rely on LibCC. If you derive your new
class from LibCC, you benefit not just from the fields and meth-
ods in the class but also from methods in other classes in this
collection.

Deriving CartPt from Posn in the drawing package is an instance
of this situation. As mentioned, every instance of CartPt can now
play the role of a Posn when it comes to drawing an object that
needs more methods on positions than Posn offers.

Note: In many cases, such libraries are designed to be extended.
Some times they provide abstract classes; the abstract methods
in these classes specify what you need to define yourself. At
other times, the classes are also fully functional, with methods
that specify some reasonable default behavior. In this case, the li-
braries tend to come with specific prescriptions of what the pro-
grammer must override to exploit the functionality.

In both cases, the superclass is outside of your reach, that is, you can’t
modify it. Because this is most common with so-called software li-
braries we dub this situation the “library” class situation.
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The left-hand side of figure 87 characterizes the situation pictorially
with a diagram. The right side is an idealization of the next step.

2. The rest of the process is relatively straightforward. You identify
three critical points:

(a) the fields that the superclass (LibCC) provides and those that the
new class (AA) must add;

(b) the methods that the superclass provides with the proper func-
tionality;

(c) the methods that the superclass provides without or with the
wrong functionality; you need to override those methods if you
want your new class to play its role properly;

(d) the methods that you must supply from scratch.

3. For the design of the new and the overridden methods, follow the de-
sign recipe. Develop examples, templates, and then define the meth-
ods. Finally, run the tests.

Once you fully understand the overridden methods, you may wish to
figure out how to reformulate the method in terms of super calls. This
will help other programmers understand in what sense the subclass
is like the superclass and how it differs.

The next two subsections present another two examples of class derivation,
one example per situation.

19.6 Creating Subclasses for Special Objects

The preceding section suggests to derive classes when an existing class
doesn’t quite fit the purpose. This suggestion implies that we create sub-
classes of a class if some of the objects have a special status. Here is a
concrete example:

. . . Tetris was a popular computer game. Your company’s man-
ager is thinking of a revival edition and suggests to start with a
simple “block world” program. In the “block world” scenario,
a block drops down from the top of the computer canvas—at a
steady rate—until it lands on the ground or on blocks that have
landed before. A player can steer the dropping block with the
“left” and “right” arrow keys. When a stack of blocks reaches
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the ceiling of the world, the game is over. The objective of this
game is to land as many blocks as possible.

The two screen shots illustrate the idea. In the left one, you
can see how one block, the right-most one, has no support; it
is falling. In the right one, the block has landed on the ground;
an additional block has landed on top of the stack near the left
perimeter of the screen shot. This stack now reaches the top of
the canvas, which means that the game is over. . . .

A Tetris program definitely needs to represent blocks. Hence your first
task is to design a class for this purpose. These blocks obviously need to
include information about their location. Furthermore, the game program
must be able to draw the blocks, so the class should come with at least one
method: draw, which draws a block on a canvas at the appropriate location.

+---------------------------+
| Block |
+---------------------------+
| int down |
| int right |
+---------------------------+
| boolean draw(Canvas w) |
+---------------------------+

+---------------------------+
| Block |
+---------------------------+
| int down |
| int right |
+---------------------------+
| boolean draw() |
+---------------------------+

|
/ \
---
|
|

+---------------------------+
| DrpBlock |
+---------------------------+
| int deltaY |
+---------------------------+
| DrpBlock drop() |
| boolean landed(IBlocks r) |
| DrpBlock steer(String ke, |
| IBlocks r) |
+---------------------------+

Figure 88: A class diagram for a class extension

The left column of figure 88 contains a class diagram that summarizes
the result of this data analysis. The location is expressed as a pair of int
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fields, which record how far down (from the top) and how far to the right
(from the left border) the block is. The draw method consumes the canvas
into which it is supposed to draw; all other information comes from the
block itself.

Exercises

Exercise 19.6 Design the Block class, including a draw method. Include an
example class with a test field that demonstrates that the draw method func-
tions.

Exercise 19.7 Instances of Block represent blocks resting on the ground or
on each other. A game program doesn’t deal with just one of those blocks
but entire collections. Design a data representation for lists of blocks. In-
clude a method that can draw an entire list.

Of course, the Block class isn’t enough to play the game. First, your
game program needs lists of such blocks, as exercise 19.7 points out. Sec-
ond, the problem statement itself identifies a second class of blocks: those
that are in the process of dropping down to the ground. Since we already
have Block for representing the class of plain blocks and since a dropping
block is like a block with additional properties, we next consider deriving
an extension of Block.

The derived class has several distinguishing properties. The key dis-
tinction is that its instances can drop. Hence, the class comes with a method
that simulates the drop and possibly an additional field that specifies how
fast an instance can drop as a constant:

1. drop, a method that creates a block that has dropped by some pixels;

2. deltaY, a field that determines the rate at which the block drops.

Furthermore, a dropping block can land on the ground or on the blocks
that are resting on the ground and the player can steer the block to the left
or right. This suggests two more methods:

3. landed, which consumes a list that represents the resting blocks and
determines whether this block has landed on the ground or one of
the other blocks;
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4. steer, which also consumes the list of resting blocks and a String, and
moves the block left or right. Whether or not the block can move in
the desired direction depends of course on the surrounding blocks.

The right column of figure 88 displays the revised class diagram. It
consists of two concrete classes, with Block at the top and DrpBlock, the
extension, at the bottom. The diagram assumes the existence of IBlocks, a
representation of a list of blocks.

Exercises

Exercise 19.8 Define the DrpBlock class and design all four methods on the
wish list.

Hint: You may wish to employ iterative refinement. For the first draft,
assume that the list of resting blocks is always empty. This simplifies the
definitions of landed and steer. For the second draft, assume that the list of
resting blocks isn’t empty. This means that you need to revise the landed
and steer methods. As you do so, don’t forget to maintain your wish list.

Exercise 19.9 Add test cases to your example class from exercise 19.8 that
exercise the draw methods of Block, DrpBlock, and IBlocks.

At first glance, the derivation of DrpBlock from Block is a natural reflec-
tion of reality. After all, the set of dropping blocks is a special subset of the
set of all blocks, and the notion of a subclass seems to correspond to the no-
tion of a subset. A moment’s thought, however, suggests another feasible
program organization. If we think of the set of all blocks as one category
and the set of all dropping blocks as a special kind of block, the question
arises what to call all those blocks that are not dropping. As far as the game
is concerned, the remaining blocks are those that are already resting on the
ground and each other. Put differently, within the collection of blocks there
are two kinds of blocks: the resting ones and the dropping ones; and there
is no overlap between those two sets of blocks.

Figure 89 translates this additional analysis into a modified class dia-
gram. The class hierarchy has become a conventional union arrangement.
In particular, Block has become an abstract class with two concrete sub-
classes: Resting and DrpBlock. The diagram also shows that DrpBlock comes
with one additional method: onLanding, which produces an instance of
Resting from a DrpBlock as the dropping block lands on the ground or on
one of the resting blocks.
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+---------------------------+
| ABlock |
+---------------------------+
| int down |
| int right |
+---------------------------+
| boolean draw(Canvas c) |
+---------------------------+

|
/ \
---
|

----------------
| |

+---------+ +--------------------------+
| Resting | | DrpBlock |
+---------+ +--------------------------+
+---------+ | Resting convert() |

| DrpBlock drop() |
| boolean landed(IBlocks r)|
| DrpBlock |
| steer(String ke, |
| IBlocks r) |
| Resting onLanding() |
+--------------------------+

Figure 89: Two distinct classes of blocks

An interesting aspect of the revised diagram is that Resting comes with-
out any additional fields or methods. All the features it needs are inherited
from ABlock, where they are defined because they are also needed in Drp-
Block. Still, representing blocks as a union of two disjoint classes has an
advantage. Now IBlocks can represent a list of resting blocks, that is, it is a
list of instances of Resting rather than Block. Using Resting instead of Block
signals to the (future) reader that these blocks cannot move anymore. No
other part of the program can accidentally move these resting blocks any-
more or perform some operation on them that applies to dropping blocks
only. Furthermore, as an instance of DrpBlock lands, it must become a mem-
ber of the list of Resting blocks. This can only happen, however, if it is first
converted into an instance of Resting. Thus, it is totally clear to any reader
that this block has ceased to move.

In summary, the development of a subclass is often justified when we
can identify a special subset of the information that we wish to represent.
Pushing this analysis further, however, tends to reveal advantages of the
creation of a full-fledged union rather than a single subclass. Always con-
sider this option when you believe you must derive a subclass from an
existing class in your program.

Exercises

Exercise 19.10 Develop an interface for ABlock for the methods that all vari-
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ants in figure 89 have in common.

Exercise 19.11 Modify your result of exercises 19.8 and 19.9 so that they
implement the class diagram in figure 89.

In the process, implement the suggestion of changing IBlocks so that it
represents a list of instances of Resting.

19.7 How Libraries Work, Part 2: Deriving Classes

While you have significant freedom with the derivation of a class from your
own classes, you usually have no choice when it comes to classes in li-
braries. The designers of object-oriented libraries often want you to derive
classes and override methods to get the desired effect.

// to represent a world with its visual part drawn on a canvas
abstract class World {

Canvas theCanvas = new Canvas();

// open a width by height canvas,
// start the clock, and make this world the current one
boolean bigBang(int width, int height, double s) { . . . }

// process a tick of the clock in this world
abstract World onTick() { . . . }

// process a keystroke event in this world
abstract World onKeyEvent(String ke) { . . . }

// draw this world
abstract boolean draw() { . . . }

// stop this world’s clock
World endOfWorld(String s) { . . . }
}

Figure 90: Animated Worlds

The draw package, which was introduced in section 14.1, is such a li-
brary. Recall that it provides Canvas, Posn, IColor, and several concrete im-
plementations of the last one. The most complex class in this library is Can-
vas (see figure 50 (page 136)). It provides a number of methods for drawing
shapes on a (computer) canvas as well as erasing them from there.
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A drawing library such as draw has the proper ingredients for creating
the illusion of an item dropping from the top to the bottom of a canvas.
Recall from the end of the previous section that on a computer canvas, a
dropping block is a block that is drawn over and over again at different
positions on a brand new background. Consider these two images:

In the right image, the block appears at a lower place than in the left one. If
the transition from left to right is fast, it appears as if the block is moving.
Hence, drawing the background, drawing a block on this background, and
repeating those actions in a predictable rhythm is our goal.

Drawing libraries such as draw abstract over this pattern of repetition
with a mechanism that allows something to happen on every tick of a clock.
To this end, our draw package provides an additional abstract class: World.
Figure 90 contains the outline of World’s definition. It provides one field
(theCanvas), two methods (bigBang, endOfWorld) and three abstract meth-
ods. The field refers to the canvas on which the world appears. The first
concrete method, bigBang creates the world, makes the canvas appear, and
starts the clock, and makes it click every s seconds. The second one, endOf-
World stops the clock and thus all animations. The three abstract methods
in World are onTick, onKeyEvent, and draw. The first two are called EVENT

HANDLERS because they react to events in the “world.” The onTick method
is invoked for every tick of the clock; it returns a new world. Similarly, on-
KeyEvent is invoked on the world and a keystroke, every time a person hits
a key on the keyboard; the String parameter specifies which key has been
hit. Like onTick, onKeyEvent returns a new world when it is done. The draw
method draw this world.

The purpose of World is to represent animated mini-worlds. To use it,
you define a subclass of World. Furthermore, since World itself is abstract,
you must override the four abstract methods if you want to create worlds.
Then, as soon as a call to bigBang starts the clock, the World’s canvas be-
comes alive. At each clock tick, the code in the library calls your onTick to
create the next world and then uses draw for re-drawing this new world.
The process continues until the clock is stopped, possibly with endOfWorld.
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In short, your subclass and World collaborate according to the template-
and-hook pattern.

The following table illustrates the workings of onTick graphically:

clock tick 0 1 2 . . . n n + 1

this current world a b c . . . w x
result of this.onTick() b c d . . . x . . .

The first row denotes the number of clock ticks that have happened since
a.bigBang() started the clock. The invocation of a.onTick() produces b, which
becomes the current world. This means, in particular, that the next clock
tick triggers a call to onTick in b. In general, the result of the nth call to
onTick becomes the n + 1st world.

So, if your goal is to create an animated block world where a single
block drops to the bottom of the canvas, you must define a class, say Block-
World, that extends World and overrides: onTick, onKeyEvent, and draw. The
simplest such subclass is sketched in figure 91:

1. the field block of type DrpBlock (see previous section) refers to the one
block that is dropping in this world;

2. onTick drops the block and creates a new world from the resulting
block;

3. draw draws the block onto this world’s canvas via the block’s draw
method and its own drawBackground method; and

4. onKeyEvent returns just this world.

The last point is surprising at first, but remember that without a definition
for onKeyEvent BlockWorld would be an abstract class. The definition in
figure 91 means that hitting a key has no effect on the current world; it is
returned “as is.”

Now that you have an extension of World with working onTick, and draw
methods you can run your first animation:

DrpBlock aBlock = new DrpBlock(10,20);
World aWorld = new BlockWorld(aBlock);
aWorld.bigBang(aWorld.WIDTH,aWorld.HEIGHT,.1)

The first line creates the representation of a block, located 10 pixels to the
right from the origin and 20 pixels down. The second one constructs a
BlockWorld with this DrpBlock. The last one finally starts the clock and thus
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// the world of a single dropping block
class BlockWorld extends World {

IColor BACKGROUND = . . . ;

DrpBlock block;
BlockWorld(DrpBlock block) {

this.block = block;
}

// drop the block in this world
World onTick() {

return new BlockWorld(this.block.drop());
}

// drop the block in this world
World onKeyEvent(String ke) {

return this;
}

// draw this world’s block into the canvas
boolean draw() {

return this.drawBackground()
&& this.block.draw(this.theCanvas);

}

// paint the entire canvas BACKGROUND
boolean drawBackground() {

return this.theCanvas.drawRect(new Posn(0,0),. . . ,. . . ,. . . );
}
}

Figure 91: An animated world with one dropping block

the mechanism that calls onTick and draw every .1 seconds. If you want the
block to move faster, shorten the time between clock ticks. Why?

This first success should encourage you for the next experiment. Mov-
ing an object each tick of the clock is only one possibility. In addition, we
can also have the object react to keystrokes. Remember that our dropping
blocks from the preceding section should also be able to move left and right.
Hitting the right arrow key should move the block to the right, and hitting
the left arrow key should move it to the left. As the documentation for
World says, each such keystroke triggers an invocation of the onKeyEvent



276 Section 19

+----------------------+ +---------------------------+ +----------------------+
| Canvas |<-+ | World | # | Block |
+----------------------+ | +---------------------------+ # +----------------------+
| boolean drawRect(Posn) +--| Canvas theCanvas | # | int down |
+----------------------+ +---------------------------+ # | int right |

| World onTick() | # +----------------------+
| World onKeyEvent(String k)| # | boolean draw(Canvas c)|
| boolean draw() | # +----------------------+

+----------+ +---------------------------+ # |
| Posn | | # |
+----------+ | # |
| int x | | # |
| int y | | # |
+----------+ / \ # / \

--- # ---
+--------+ | # |
| IColor | | # |
+--------+ | # | +-----------------------+

| | # | | IBlocks |
/ \ | # | +-----------------------+
--- | # | | boolean draw(Canvas c)|
| | # | | boolean atop(Block b) |

... ------------------------ ... | # | | boolean left(Block b) |
| | | | # | | boolean right(Block b)|

... ... ... | # | +-----------------------+
| # |

============================================================# |
| |

+---------------------------+ |
| BlockWorld | +-----------------------+
+---------------------------+ +--->| DrpBlock |
| DrpBlock block |----+ +-----------------------+
| IColor BACKG | | int deltaY |
+---------------------------+ +-----------------------+
| World onTick() | | DrpBlock drop() |
| World onKeyEvent(String k)| | DrpBlock steer( |
| boolean draw() | | String ke) |
| boolean drawBackground() | +-----------------------+
+---------------------------+

Figure 92: Animating dropping blocks

method in the current world. Since this current world is an instance of
BlockWorld, it uses the method from that class, which currently just returns
the current world. If it instead passes the string on to block’s steer method,
players get to control its drop:

inside of BlockWorld :
// what happens to this world on every tick of the clock
World onKeyEvent(String ke) {

return new BlockWorld(this.block.steer(ke));
}

Like onTick, onKeyEvent first creates a new block, using its steer method on
ke (see figure 89). Next it constructs a new world from this block and re-
turns it as its response to the key event. Of course, this design is just the
result of following the design recipe for containment and nothing unex-
pected. Make up examples for onKeyEvent and test it before you run the
animation again. When you do so, use the arrow keys to control the block
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as it drops.
From here it is a short step to a program that drops many blocks, lands

them on the ground and each other, and allows the player to move the cur-
rently dropping block left or right. Figure 92 sketches the class diagram
for this program, including both the library and the “block world” classes.
Both parts consist of many interfaces and classes. On “our” side, you see
Block and DrpBlock as designed in the previous section; BlockWorld special-
izes World to our current needs across the library boundary. For simplicity,
the diagram omits the color classes in draw and the context of blocks on
which an instance of DrpBlock may land. Refer to this diagram as you solve
the following exercises and finish this simple game.

Exercises

Exercise 19.12 Finish the class definitions for the block world program.
Start with drawBackground; it is a method that colors the entire background
as needed. Change the colors of the world and the block.

Exercise 19.13 Modify BlockWorld—and all classes as needed—so that the
animation stops when the bottom of the dropping block touches the bottom
of the canvas. Hint: Check out endOfWorld from draw.

Exercise 19.14 Add a list of resting blocks to BlockWorld based on your im-
plementation of IBlocks in exercise 19.11. The program should then draw
these blocks and land the dropping block either on the bottom of the can-
vas or on one of the resting blocks. When the player steers, make sure that
the dropping block cannot run into the resting block.

Exercise 19.15 Design the class Blink, which represents blinking objects. A
blinking object is a 100 by 100 square that displays two different colors at
a rate of one switch per second. The Blink method should contain a run
method that starts the clock and the blinking process.

Hint: Naturally Blink is an extension of World.
Your example class should test the onTick method before it invokes the

run method expecting true. It should also create at least two distinct in-
stances of Blink and display them at the same time.

19.8 Case Study: Fighting UFOs, All the Way

In sections 6.2 and 16.3 we developed the core of a simple interactive game
with UFOs and anti-UFO platforms. Thus far we have developed classes
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that represent the various pieces of the game and methods that can draw
them or move them one step at a time. What is missing from the game
is real action: a UFO that is landing; shots that are flying; an AUP that is
moving. Since we now know how this works, it’s time to do it.

+------------------------+
+------------------+ # +------------------>| IShots |<--------------------+
| World | # | +------------------------+ |
+------------------+ # | | IShots move() | |
| Canvas theCanvas | # | | boolean draw(Canvas c) | |
+------------------+ # | | boolean hit(UFO u) | |
| World onTick() | # | +------------------------+ |
| World onKeyEvent(| # | | |
| String ke) | # | / \ |
| boolean draw() | # | --- |
+------------------+ # | | |

# | ------------------------------- |
| # | | | |

/ \ # | +------------------------+ +------------------------+ |
--- # | | MtShots | | ConsShots | |
| # | +------------------------+ +------------------------+ |

========================= | | Shot first |----+
| | | IShots rest |----+
| | +------------------------+ |
| | |

+------------------+ | |
| UFOWorld | | |
+------------------+ | |
| int WIDTH | | |
| int HEIGHT | | v
| IColor BACKG | | +------------------------+ +------------------------+
| UFO ufo |----|-------------> | UFO | | Shot |
| AUP aup |----|---+ +------------------------+ +------------------------+
| IShots shots |----+ | | IColor colorUFO | | IColor colorShot |
+------------------+ | | Posn location | | Posn location |
| World move() | | +------------------------+ +------------------------+
| ??? | | | UFO move() | | Shot move() |
+------------------+ | | boolean draw(Canvas c) | | boolean draw(Canvas c) |

| | boolean landed() | | boolean hit(UFO u) |
| | boolean isHit(Posn s) | +------------------------+
| +------------------------+
v

+------------------------+
| AUP |
+------------------------+
| IColor aupColor |
| int location |
+------------------------+
| AUP move() |
| boolean draw(Canvas c) |
| Shot fireShot() |
+------------------------+

Figure 93: The World of UFOs: Class diagrams

Following the design recipe in section 19.5 and the specification of World
in section 19.7, we must turn UFOWorld into a subclass of World and over-
ride the three abstract methods. Figure 93 displays the revised class dia-
gram for our game program. The most important part of the diagram is the
refinement arrow from UFOWorld to World across the library boundary. It
reminds the reader immediately that UFOWorld uses a package and, in this
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specific case, that the subclass must override onTick, onKeyEvent, and draw
to achieve the desired effects.

Of these to-be-overridden methods we already have draw:

inside of UFOWorld :
boolean draw(Canvas c) {

return

c.drawRect(new Posn(0,0),this.WIDTH,this.HEIGHT, this.BACKG)
&& this.ufo.draw(c) && this.aup.draw(c) && this.shots.draw(c);

}
We developed this method in section 16.3 just so that we could see what the
world of UFOs looks like. Its definition reflects our thinking back then that
a drawing method must consume an instance of Canvas. Now we know,
however, that a UFOWorld is also a World, which already contains a canvas:

inside of UFOWorld :
boolean draw() { // (version 2)

return

this.theCanvas
.drawRect(new Posn(0,0),this.WIDTH,this.HEIGHT,this.BACKG)

&& this.ufo.draw(this.theCanvas)
&& this.aup.draw(this.theCanvas)
&& this.shots.draw(this.theCanvas);

}
Since draw is defined within UFOWorld, it has access to this inherited can-
vas and can use it to display the world. Furthermore, it passes this canvas
to the draw methods of the various objects so that they can draw themselves
onto the canvas.

Exercise

Exercise 19.16 The draw method can benefit from local variable declara-
tions, especially if the names are suggestive of the desired action:

inside of UFOWorld :
boolean draw() { // (version 2, with local variables)

boolean drawBgd = this.theCanvas
.drawRect(new Posn(0,0),this.WIDTH,this.HEIGHT,this.BACKG);

boolean drawUFO = this.ufo.draw(this.theCanvas);
. . .
return true;
}
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Explain how this version of the method works. Reformulate the rest of the
method and use it to ensure it still works.

// the world of UFOs, AUPs, and Shots
class UFOWorld extends World {

. . .
// move the ufo and the shots of this world on every tick of the clock
World onTick() {

if (this.ufo.landed(this)) {
return this.endOfWorld("You lost."); }

else { if (this.shots.hit(this.ufo)) {
return this.endOfWorld("You won."); }

else {
return this.move(); }
}
}

// what happens to this world on a key event
World onKeyEvent(String k) {

if (k.equals("up")) {
return this.shoot(); }

else { if (k.equals("left") || k.equals("right")) {
return this.new UFOWorld(this.ufo,this.aup.move(this,k),this.shots); }

else {
return this; }
}
}

// draw this world
boolean draw() {

return this.theCanvas.drawRect(. . . ) // draw background
// draw the objects
&& this.ufo.draw(this.theCanvas)
&& this.aup.draw(this.theCanvas)
&& this.shots.draw(this.theCanvas);

}
. . .
}

Figure 94: Animating the UFOWorld

The onTick method is the next method that needs an overriding defi-
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nition. Its purpose is to compute the next world. In our case study, this
next world is a world in which the UFO has dropped a little bit more and
in which the shots have risen a little bit, too. Except that if the UFO has
landed or if one of the shots has hit the UFO, the game is over. Put differ-
ently, the method must distinguish three different scenarios:

• in the first scenario, the UFO has reached the ground and has landed;

• in the second scenario, one of the shots has gotten close enough to the
UFO to destroy it;

• the third scenario is the typical one; the UFO didn’t land and no shot
got close to it.

Turning this case distinction into a method is routine work. Still it is
worth considering how to get to its definition from the template:

inside of UFOWorld :
World onTick() {

return . . . this.ufo.move() . . . this.aup.move() . . . this.shots.move()
}

The template’s expressions remind us that a UFOWorld consists of a ufo, an
aup, and a list of shots. Each of these comes with its own methods, which
the template doesn’t indicate here but it reminds us of this fact. When we
consider the purpose statement and our discussion of it, however, every-
thing makes sense. We can use this.ufo.landed() to find out whether we are
in the first scenario. Similarly, if an invocation of this.shots.hits yields true,
we know that we are in the second scenario. Lastly if neither of these condi-
tions hold, everything proceeds normally. In the first two cases, the world
stops; in the last one all the objects move along.

Figure 94 displays the complete definition of onTick. At this point, the
class definition is complete enough to observe the animation. Specifically,
the UFO should descend and the shots should fly, though the AUP won’t
react to keystrokes yet. Try it out! (Don’t forget to supply a simplistic defi-
nition of onKeyEvent.)

With a first success under our belt, we can turn our attention to the
player’s actions. So far, your manager imagines these actions:

1. hitting the up-arrow key fires a shot;

2. hitting the left or right arrow key moves the AUP to the left or right;

3. and hitting any other key affects nothing.
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While the second kind of action concerns the AUP, the first one uses the
AUP and affects the collection of shots as a whole.

Here is the template that distinguishes these three arguments:

inside of UFOWorld :
World onKeyEvent(String k) {

if (k.equals("up")) {
return . . . this.ufo . . . this.aup . . . this.shots; }

else { if (k.equals("left") || k.equals("right")) {
return . . . this.ufo . . . this.aup . . . this.shots; }

else {
return . . . this.ufo . . . this.aup . . . this.shots; }
}
}

As before, the expressions in the branches remind us of what data to which
the method has access.

The rest of the development proceeds as before:

1. In the first scenario, the player hits the up-arrow key, which means
that onKeyEvent has to use the shoot method for firing a shot.

2. In the second scenario, the player hits a left-arrow key or a right-
arrow key; in that case, the key event is forwarded to the AUP, which
interprets the key stroke and moves the AUP appropriately.

3. Otherwise, nothing happens.

The resulting method definition is included in figure 94.
The game is ready for you to play. Even though it is a minimalist game

program, it does display a canvas; the UFO is landing; the shots are flying;
and the AUP is moving under your control. You can win and, if you really
want and try hard, you can lose. Enjoy, and read the rest of the section to
find out how you can add some spice to the game.

Exercises

Exercise 19.17 Collect all code fragments for the classes UFOWorld, UFO,
AUP, IShots, MtShots, and ConsShots.

Develop tests for the onTick and onKeyEvent methods. That is, create
simple worlds and ensure that onTick and onKeyEvent create correct worlds
from them.
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Add the following line to your Examples class from figure 34:

inside of Examples :
boolean testRun = check this.w2. bigBang(200,500,1/10) expect true;

This displays a 200 by 500 canvas; starts the clock; and ticks it every 1/10th
of a second. You should see the UFO descend and, when it gets close
enough to the ground, you should see it “land.” The two shots of w2 should
fly. If you press the up arrow, you should see a shot leaving the AUP. Watch
it fly. Add another shot. And another one. Now press a left or a right arrow
key. The AUP should move in the respective direction.

Lastly, add a run method to UFOWorld so that you can run the game
easily from the interactions window.

// randomness in the world
class Random . . . {

. . .
// returns the next pseudorandom, uniformly distributed boolean
// value from this random number generator’s sequence
boolean nextBoolean() { . . . }

// returns a pseudorandom, uniformly distributed int value between
// 0 (inclusive) and the specified value (exclusive), drawn from this
// random number generator’s sequence
int nextInt(int n) { . . . }
. . .
}

Figure 95: The Random class

Exercise 19.18 As is, the game is rather boring. The UFO descends in a
straight manner, and the AUP shoots straight up. Using random numbers,
you can add an element of surprise to the game.

Modify the method move in UFO so that the object zigzags from left to
right as it descends. Specifically, the UFO should move to the left or right
by between 0 and 3 pixels every time it drops a step. As the UFO swerves
back and forth, make sure that it never leaves the visible part of the world.
Think hard as you create examples and reasonable tests. Even though you
cannot predict the precise result once you add randomness, you can predict
the proper range of valid results.
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ProfessorJ and Java provide random values via the Random class. Fig-
ure 95 displays the relevant excerpt from this class for this exercise. You can
use it after you import the package java.util.Random just like you import
geometry and colors.

Hint: You may wish to employ iterative refinement. For the first draft,
design a UFO that swerves back and forth regardless of the world’s bound-
aries. For the second draft, design an auxiliary method that tests whether
the new UFO is outside the boundaries; if so, it rejects the movement and
tries again or it just eliminates the side-ways movement. Note: the tech-
nique of generating a candidate solution and testing it against some criteria
is useful in many situations and naturally calls for method composition. In
How to Design Programs, we covered it under “generative recursion.”

Exercise 19.19 In addition to random movements as in the preceding ex-
ercise (19.18), you can also turn the AUP into something that acts like a
realistic vehicle. In particular, the AUP should move continuously, just like
the UFO and the shots.

Implement this modification. Let the design recipe guide you. Hint:
Start by removing the move method from the AUP class and add a speed
field to the AUP. A positive speed moves the AUP to the right; a negative
speed moves it left.

The meaning of a key stroke changes under this scenario. Hitting the
left or right arrow key no longer moves the vehicle. Instead, it accelerates
and decelerates the vehicle. For example, if the AUP is moving to the right
and the player hits the right arrow key, then the AUP’s speed should in-
crease. If the player hits the left key, the AUP’s speed should decrease.

Exercise 19.20 During a brainstorming session, your team has come up
with the idea that a UFO should defend itself with AUP-destroying charges.
That is, it should drop charges on a random basis and, if one of these
charges hits the AUP, the player should lose the game.

Implement this modification after completing exercise 19.18. A charge
should descend at twice the speed of the UFO, straight down from where
it has been released.

Now that we have a tested, running program, the time has come to edit
it. That is, we look for replications, for chances to eliminate common pat-
terns, for opportunities to create a single point of control. The best starting
point for this exercise is always the class diagram. Start with a look in-
side unions for common fields and methods; create a common superclass
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where possible. Then compare classes that have similar purposes and ap-
pearances; check whether introducing a union makes sense.

In the “War of the Worlds” program, there is little opportunity for either
kind of abstraction. It definitely lacks a union that can benefit from lifting
fields and code, though the revised diagram (see figure 93) suggests one
pair of similar classes: UFO and Shot. Both contain two fields with the
same type. We also know that both contain draw and move methods, so
perhaps they deserve some cleanup. For the exercise’s sake, let’s see how
far abstraction takes us here.

// represent a descending UFO
+-------------------------+
| UFO |
+-------------------------+
| Posn location |
| IColor colorUFO |
+-------------------------+
| boolean draw(Canvas c) |
| UFO move() |
+-------------------------+

// represent an ascending shot
+------------------------+
| Shot |
+------------------------+
| Posn location |
| IColor colorShot |
+------------------------+
| boolean draw(Canvas c) |
| Shot move() |
+------------------------+

Figure 96: Comparing UFOs and shots

Once you have identified two (or more) candidates, refine the class di-
agrams and juxtapose them. Also remind yourself of their purpose, just
as the design recipe says. For our two candidates, figure 96 displays the
refined class diagrams. The diagram lists all fields and those methods that,
based on their purpose, may have a common abstraction. Based on this
comparison, it is clear that both classes represents strictly vertically moving
objects; that they overlap in two fields with identical types and purposes;
and that they have two similar-looking methods. The remaining methods
in these classes have obviously nothing to do with each other, so they have
been eliminated from the diagram to keep things simple.

An actual revision of the class diagram requires a close look at the
method definitions. The draw methods are definitely distinct, but a moving
object in UFOWorld should definitely have one. It is therefore possible to
add an abstract method in the common superclass that requires one from
every subclass. In contract, the move methods are required and similar to
each other, yet they don’t even agree on their return types. For that reason
alone, we cannot lift the methods to a new, common class.

Given this analysis, figure 97 shows a revision of the relevant portion
of the class diagram. The new AMovable class introduces the common color
and location fields, though of course, we had to perform some renaming in
the process.

The two revised classes look approximately like this now:
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+---------------------------------+
| AMovable |
+---------------------------------+
| Posn location |
| IColor color |
+---------------------------------+
| abstract boolean draw(Canvas c) |
+-------------------------------- +

|
/ \
---
|

+-------------------------+
| |

+------------+ +-------------+
| UFO | | Shot |
+------------+ +-------------+
| UFO move() | | Shot move() |
+------------+ +-------------+

Figure 97: Abstracting over movable objects

class UFO {
UFO(Posn loc) {

super(loc,new Green());
}

// move this UFO down by 3 pixels
UFO move() {

return
new UFO( this.loc.translate(0,3) );

}
. . .
}

class Shot {
Shot(Posn loc) {

super(loc,new Yellow());
}

// move this Shot up by 3 pixels
Shot move() {

return
new Shot( this.loc.translate(0,−3) );

}
. . .
}

The gray-shaded expressions stand out because they are nearly identical
and suggests an abstraction. Both produce a new location, a Posn to be
precise, for the new objects. Hence, we should naturally think of actually
adding a method to Posn that accomplishes this translation of a point.

Although we cannot modify Posn itself, because it belongs to the un-
modifiable draw package, we can create a subclass of Posn that provides
this service:

class Location extends Posn {
Location(int x,int y) { super(x,y); }

Location moveY(int delta) {
return new Location(this.x,this.y+delta);
}
}
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In turn, AMovable should use Location for the type of location, and UFO and
Shot can then use moveY with 3 and −3 to move the respective objects:

class UFO {
. . .
// move this UFO down by 3 pixels
UFO move() {

return
new UFO(this.location.moveY(3));

}
. . .
}

class Shot {
. . .
// move this Shot up by 3 pixels
Shot move() {

return
new Shot(this.location.moveY(−3));

}
. . .
}

Figure 98 displays the class diagram with all the changes. In this diagram,
you can now see two places where the actual program extends a class from
the draw package: World and Posn. Study it well to understand how it
differs from the diagram in figure 93.

Exercises

Exercise 19.21 Define an interface that specifies the common methods of
the Shot and UFO classes.

Exercise 19.22 Collect all code fragments for the classes UFOWorld, UFO,
AUP, IShots, MtShots, and ConsShots and develop tests. Then introduce
AMovable; make sure the tests still work. Finally define Location; again
make sure the tests still work.

Exercise 19.23 Exercises 19.18 and 19.20 spice up the game with random
movements by the UFO and random counter-attacks. Create a union of
movable objects in this context, starting with UFO and Shot. Then turn the
class representing charges into a subclass of the AMovable class, too.

Compare the list of shots and the list of charges. Is there anything to
abstract here? Don’t do it yet. Read chapter V first.

19.9 Mini Project: Worm

“Worm” is one of the oldest computer games; depending on when you
were young and where you grew up, you may also know the game as
“Snake.” The game is straightforward. When you start it, a worm and a
piece of food appear. The worm is moving toward a wall. Don’t let it run
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# #
draw: # # draw:

# #
+------------------+ # +--------+ #
| World | # +-----------> | IShots |<-------------+ #
+------------------+ # | +--------+ | # +------+
| Canvas theCanvas | # | | | # | Posn |
+------------------+ # | / \ | # +------+

| # | --- | # | int x|
| # | | | # | int y|
| # | ------------------ | # +------+
| # | | | | # |
| # | +---------+ +-------------+ | # |
| # | | MtShots | | ConsShots | | # |
| # | +---------+ +-------------+ | # / \

/ \ # | +---------+ | IShots rest |----+ # ----
--- # | | Shot first |----+ # |
| # | +-------------+ | # |

========================= | | ==================
| | +---------------+ | |
| | | AMovable | | |
| | +---------------+ | |

+------------------+ | | IColor color | | +------------------+
| UFOWorld | | | Location loc |-------->| Location |
+------------------+ | +---------------+ | +------------------+
| int WIDTH | | | | +------------------+
| int WIDTH | | / \ | | Location moveY() |
| int WIDTH | | --- | +------------------+
| int WIDTH | | | |
| int HEIGHT | | +--------------------+ |
| IColor BACKG | | | | |
| UFO ufo |----|--+ | | v
| AUP aup |----|-+| +----------------+ +---------------+
| IShots shots |----+ |+-->| UFO | | Shot |
+------------------+ | +----------------+ +---------------+

v
+----------------+
| AUP |
+----------------+
| IColor aupColor|
| int location |
+----------------+

Figure 98: The Revised World of UFOs: Class diagrams

into the wall; otherwise the game is over. Instead, use the arrow keys to
control the worm’s movements.

The goal of the game is to have the worm eat as much food as possible.
As the worm eats the food, it becomes longer; more and more segments
appear. Once a piece of food is digested, another piece appears. Of course,
the worm’s growth is dangerous. It can now run into itself and, if it does,
the game is over, too.

This sequence of screen shots illustrates how the game works in prac-
tice:
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On the left, you see the initial setting. The worm consists of a single seg-
ment, its head. It is moving toward the food, which is a rectangular block.
The screen shot in the center shows the situation after some “feedings.” The
worm now has eight segments (plus the head) and is squiggling toward a
piece of food in the lower right corner. In the right-most screen shot the
worm has run into the right wall. The game is over; the player scored 11
points.

The following exercises guide you through the design and implemen-
tation of a Worm game. They follow the design recipe and use iterative
refinement. Feel free to create variations.

Exercises

Exercise 19.24 Design a WormWorld class that extends World. Equip the
class with onTick and onKeyEvent methods that do nothing. Design the
method draw, which should draw a yellow background for now.

Assume that neither the Food nor the Worm class has any attributes or
any properties. Draw a class diagram anyway; maintain it throughout the
exercise.

Make sure that the following example class works:

class Examples {
Worm w = new Worm();
Food f = new Food();
WormWorld ww = new WormWorld(this.f ,this.w);

boolean testRun = check this.ww.run() expect true; // keep last test
}

That is, design a method run that starts the clock, displays the canvas, and
invokes draw.
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Exercise 19.25 Design a data representation for a one-segment worm that
continuously moves. The worm should move in a cardinal direction. Draw
the worm segment as a disk and ensure that the worm moves exactly one
diameter per step. Represent directions with Strings.

Integrate your worm with WormWorld from exercise 19.24 and ensure
that it can display a moving worm.

For this exercise, you need not worry about the worm running into the
walls of the world.

Exercise 19.26 Modify the program from exercise 19.25 so that the anima-
tion stops, when the worm moves runs into the walls of the world.

Exercise 19.27 Design the method steer for the Worm class of exercise 19.26.
Assume the method consumes a direction and sends the worm into this
direction; it does not change the worm’s location or speed.

Integrate your new class with WormWorld of exercise 19.26 so that the
player can control the worm’s movements with the four arrow keys. Hint:
The onKeyEvent method should change the worm’s direction only if it re-
ceives a cardinal direction as input.

Exercise 19.28 Design a data representation for a multi-worm that contin-
uously moves and that the player can control with arrow keys. Hints: The
worm should now consist of a distinct head segment and an optionally
empty tail of segments that are like the head except for appearances. Think
of the worm’s movement as a two-step process: first the head moves into
the desired direction and then the segments of the tail move into the po-
sition of the preceding segment, with the first segment moving into the
position of the head segment.

You may safely assume that the worm runs into the walls of the world
only if the head hits the wall. For your first design, ignore the possibility
that the worm may run into itself. Then create a second design that takes
this possibility into account.

Integrate your worm with WormWorld from exercise 19.27 and ensure
that it can display a moving worm.

Exercise 19.29 Design a data representation for food particles. In addition
to the usual draw method, it should have two other methods:

• eatable, which is given the position of the worm’s head and deter-
mines whether it is close enough to eat this food particle;
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• next, which creates the next food particle and ensures that it is not at
the same spot as this one.

Hint: This design requires a modicum of “generative recursion” (see
How to Design Programs(Part V) or exercise 19.18).

Integrate it with the WormWorld from exercise 19.28, so that the display
shows the food. You do not need to worry about what happens when the
worm gets close to, or runs over, the food.

Exercise 19.30 Design the method eat for Worm from exercise 19.28. Eating
means that the head moves another step in the same direction in which the
worm was moving and the worm’s tail grows by one segment. Explain the
assumption behind this description of “eating.”

Integrate the modified Worm class with the WormWorld class from exer-
cise 19.29. A worm should eat only if the food particle is eatable.

Exercise 19.31 Design the class Game, which sets up a worm game with a
random initial position for a piece of food and a worm with just a head,
and a method for starting the game.

Exercise 19.32 Edit your program, i.e., look for opportunities to abstract.

20 State Encapsulation and Self-Preservation

Programs come with all kinds of assumptions. For example, the Date class
in the first section of the first part of this book assumes that the given num-
bers represent a real date. Our dealings with the geometric shapes of chap-
ter II assume that they are entirely in the quadrant represented by a can-
vas, and we state so several times. And, concerning the world of dropping
blocks, we want this assumption to hold:

BlockWorld displays a block that is dropping from near the top
of the canvas to the bottom.

When an assumption concerns an entire program execution, especially one
in which objects move and work, we speak of assumptions about the STATE

of the program; the attributes of each object are the STATE of the object.
Establishing and maintaining such assumptions becomes an issue of

self-preservation when many programmers work on many inter-related
classes (for a long time). Starting in section 13.2 we assumed that because
of this, our programs should include design information and possibly in
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easily checkable form. Back then we explained that this is what types are
all about. Types for fields and method signatures aren’t enough though. In
this section, we introduce three essential linguistic mechanisms from Java
for establishing invariants, for maintaining them, and for protecting them.

20.1 The Power of Constructors

Here is the Date class with informal constraints:

class Date {
int day; // between 1 and 31
int month; // between 1 and 12
int year; // greater than or equal to 1900

Date(int day, int month, int year) {
this.day = day;
this.month = month;
this.year = year;
}
}

It represents dates via the common numeric notation, e.g., new Date(5, 6,
2003) stands for June 5, 2003. The problem is, however, that some other
part of the program can—accidentally or intentionally—create an instance
like new Date(45, 77, 2003), which has no meaning in the real world.

The programmer has dutifully documented this assumption but the
code does not enforce them. By choosing int as the type for the fields, the
programmer ensures that the Date always consists of Java-style integers,
but this specification cannot even ensure that the given ints are positive
numbers. Thus, new Date(−2,77,3000) is also an instance of the class.

In Professor’s Intermediate language we can address this problem with
a conditional constructor for the class: see figure 99. The constructor in
this revised Date class consists of an if statement. The test ensures that
the value of day is between 1 and 31, the value of month is between 1 and
12, and year is greater than 1900. If so, the constructor sets up the object
via initialization “equations” as usual; otherwise, it signals an error with
Util.error. Put differently, the constructor expresses the informal comments
of the original design via a test and thus guarantees that each instance of
Date satisfies the desired conditions.

Figure 100 shows a similar revision of the data representation of shapes,
illustrated with the case of circles. The inside-the-quadrant assumption for
shapes is attached to the interface. It is relevant, for example, for computing
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class Date {
int day;
int month;
int year;

Date(int day, int month, int year) {
if ((1 <= day && day <= 31)

&& (1 <= month && month <= 12)
&& (1900 <= year)) {

this.day = day;
this.month = month;
this.year = year; }

else {
Util.error("the given numbers do not specify a date"); }

}
}

Figure 99: A conditional constructor for the Date class

the distance of a shape to the origin. Based on this assumption, we compute
the distance of a circle like this:

inside of Circle :
double distTo0() {

return this.loc.distTo0() − this.radius;
}

This method computes the distance between the origin and the center and
then subtracts the radius, because the closest point to the origin is on the
circle when the circle is inside the quadrant.

The left side in figure 100 presents a revision similar to the one for the
Date class. As for Date, the constructor consists of an if statement that tests
whether certain conditions are satisfied. Specifically, the test ensures that
radius is positive and that the center is at least far enough from the corners
of the canvas.

The right side presents an equivalent alternative that employs an aux-
iliary boolean-typed method to check whether the given values are valid.
A call from the constructor is curious because until now, we have assumed
that the object exists only after the constructor has finished its work. Here,
however, the constructor uses a method from within the class before it even
sets up the fields with proper values. Indeed, the auxiliary method cannot
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// the class of all geometric shapes
// (completely inside the quadrant)
interface IShape {

// draw this shape into the given canvas
boolean drawn(Canvas c);
}

class Circle implements IShape {
Posn loc;
int radius; // positive

Circle(Posn center, int radius) {

if (

(radius > 0)
&& (center.x − radius >= 0)
&& (center.y − radius >= 0) ) {

this.center = center;
this.radius = radius; }

else {
Util.error("invalid circle!"); }

}

boolean draw(Canvas c) {
return c.drawDisk(. . . )
}
}

class Circle implements IShape {
Posn loc;
int radius;

Circle(Posn center, int radius) {
if (this.valid(center, radius)) {

this.center = center;
this.radius = radius; }

else {
Util.error("invalid circle!"); }

}

// is this circle inside the quadrant?
boolean valid(Posn center, int radius) {

return

(radius > 0)
&& (center.x − radius >= 0)
&& (center.y − radius >= 0) ;

}

boolean draw(Canvas c) {
return c.drawDisk(. . . )
}
}

Figure 100: A conditional constructor for the Circle class

use the fields in ProfessorJ and, if it did, things would go wrong.40

For a third example, consider the following problem statement:

. . . In the world of dropping blocks, a block appears at location
(10,20) and drops from there at the rate of one pixel per clock

40A method that doesn’t use the fields of the class—and shouldn’t use the fields of the
class—is not really a method. It is a plain function and should be declared as such. Java
empowers the programmer to express such a fact with the keyword static.



State Encapsulation and Self-Preservation 295

tick. A player can control the block with keystrokes . . .

If you ignore the remark on where these blocks should appear, the design
of the class and its drop method is straightforward. Figure 101 displays the
result on the right side.

Naturally ignoring the remark is wrong, because it violates the rules of
the imagined game. Coming up with a solution, however, is impossible in
the language that you know. Here are two ideas:

1. It is possible to initialize fields via “equations” directly:

class DrpBlock {
int x = 10;
int y = 20;
. . .
}

Unfortunately, doing so means in ProfessorJ’s Intermediate language
that these attributes are the same for all possible instances of DrpBlock,
which is not what we want. The drop method must be able to create
instances of the class whose y field is larger than 10.

2. Since we can have initialization equations for a field either with the
field declaration or in the constructor but not both, the second idea is
an obvious consequence of the first, rejected one:

class DrpBlock {
int x;
int y;
DrpBlock() {

this.x = 10;
this.y = 20;
}
}

As we have seen, the constructor can compute the initial values of a
field from its parameters or just use constants. In particular, it could
just use the desired constants for an initially created block: (10,20). Of
course, this solution is equivalent to the first because it, too, creates
nothing but blocks with fixed coordinates.
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It turns out that the second solution isn’t completely wrong, though this is
a topic for the next section and an improved language.

Exercises

Exercise 20.1 Refine the constructor for the Date class in figure 99 even
more. Specifically, ensure that the created Date uses a value of 31 for day
field only if the given month has that many days. Also rule out dates such
as new Date(30,2,2010), because the month of February never has 30 days
and therefore such a Date should not be created.

Hint: Remember that only January, March, May, July, August, October,
and December have 31 days.

If you are ambitious, research the rules that govern leap years and en-
force the proper rules for 30-day months and February, too.

Exercise 20.2 Rectangles like circles are supposed to be located within the
quadrant that the canvas represents. Determine conditions that ensure that
a rectangle respects this constraint. Design a constructor that ensures that
the given initial values satisfy these conditions.

20.2 Overloading Constructors

If you change ProfessorJ’s language to Intermediate + access, you gain sev-
eral new ways of expressing your thoughts on design.

ProfessorJ:
. . . + access

The first and relevant one here is the power of OVERLOADING a con-
structor.41 To overload a constructor means to define several constructors,
each consuming different types of arguments. You can also overload meth-
ods in this manner. While this concept is also useful for methods, we ex-
plain it exclusively with constructors here. Overloading for methods works
in the exact same manner; we introduce it later when needed.

Figure 101 shows on the right side a version of DrpBlock that includes
two constructors:

1. the original one, which is needed for the drop method;

2. and the new one, discussed above, which creates blocks according to
the original problem statement.

41Other object-oriented languages allow programmers to name constructors, which
solves the problem in a more elegant manner than overloading.
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class DrpBlock {
int x;
int y;
int SIZE = 10;

DrpBlock(int x, int y) {
this.x = x;
this.y = y;
}

DrpBlock drop() {
return

new DrpBlock(this.x,this.y+1);
}
}

class DrpBlock {
int x;
int y;
int SIZE = 10;

DrpBlock() {
this.x = 10;
this.y = 20;

}

DrpBlock(int x, int y) {
this.x = x;
this.y = y;
}

DrpBlock drop() {
return

new DrpBlock(this.x,this.y+1) ;

}
}

class Example {
DrbBlock db1 = new DrpBlock()

1
;

boolean test1 = check this.db1.drop() expect new DrpBlock(10,21)
2
;

}

Figure 101: Multiple constructors for one class

Code outside of DrpBlock can use the no-argument constructor to create
blocks and code inside of DrpBlock can use both constructors, depending
on what is needed.

Once you have two (or more) constructors, your language also needs a
way to choose one of them for evaluation. Java uses the types of the argu-
ments to choose from among the available constructors. First, it enforces
that the parameter types of any two constructors differ somewhere. Sec-
ond, as it type-checks the expressions in the program, it also determines
the types of the arguments at each constructor call site. It matches the ar-
gument types to the parameter types, and because the latter are distinct,
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picks the one, matching constructor as the intended one for future program
evaluations.42

The example in figure 101 illustrates this point directly. The two con-
structors have distinct signatures. The first one consumes no arguments;
the second consumes two ints. Next take a close look at the three gray-
shaded constructor expressions in the figure. The one in the class itself use
two ints as arguments; hence it refers to the second constructor. The con-
structor expression with subscript 1 takes no arguments, meaning it is a
reference to the first constructor in the class. Finally, the expression with
subscript 2 takes two ints again and therefore uses the second constructor.

Sadly, the introduction of overloading doesn’t solve the problem com-
pletely. We need even more expressive power. While code outside of Drp-
Block can utilize the no-argument constructor and thus obtain an appropri-
ate block in the desired initial state, nothing forces the use of this construc-
tor. Indeed, as the figure shows the two-argument constructor is usable
and used in the Example class. In other words, the introduction of over-
loaded constructors opens possibilities for violating unspoken or informal
assumptions that we cannot just ignore if we wish to reason about code.

20.3 Encapsulating and Privacy

Programming language designers have known about this problem for a
long time. Therefore most programming languages provide a mechanism
for ENCAPSULATING the state of an object. Encapsulating state means hid-
ing fields, constructors, and methods from other classes as well as their
programmers, a group that may include you. Presumably, the creator of a
class knows how everything works and won’t misuse the pieces of the class
accidentally; in contrast, outsiders don’t know all of our assumptions that
the programmers wishes to hold for the attributes of a class. If they can’t
use them in any way, they can’t misuse them either.

Concretely Java and many other object-oriented languages provide PRI-
VACY SPECIFICATIONS, which means markers that make the features of a
class private or public (or something in between). From a programmer’s
perspective, these privacy specifications tell Java which pieces of the pro-
gram (and thus who) can manipulate a part of a class. While Java and Pro-
fessorJ type check a program, they also check the privacy specifications.
If one class accidentally refers to a part of some other class in violation of
the privacy specifications, Java signals an error and doesn’t evaluate the

42Don’t confuse overloading with overriding, which is entirely different.



State Encapsulation and Self-Preservation 299

class DrpBlock {
private int x;
private int y;
private int SIZE = 10;

public DrpBlock() {
this.x = 10;
this.y = 20;

}

private DrpBlock(int x, int y) {
this.x = x;
this.y = y;
}

public DrpBlock drop() {
return new DrpBlock(this.x,this.y+1);
}
}

class ExampleBad {
DrbBlock db1 = new DrpBlock()

1
;

boolean test1 =
check this.db1.drop()

expect new DrpBlock(10,21)
2
;

}

Figure 102: Privacy specifications for classes

program. Like types, privacy specifications are approximations of what
programmers really want to say and don’t provide perfect protection, but
without them, your classes can quickly get into a trouble once they become
a component of a system of classes.

A privacy specification is an adjective—that is, a descriptive (and of-
ten optional) word—for the features of a class: a field, a constructor, or a
method. Java uses four privacy specifications:

private means the respective piece is accessible only inside the class;

public allows every class to use this part of the class;

protected makes the piece visible inside this class, its subclasses, their sub-
classes, and so on.

If privacy specifications are omitted, the feature is package-private, a no-
tion that we ignore in this book.43

43In Java, a package is a linguistic mechanism for organizing classes and interfaces. Just
like constructors, fields, and methods can be visible only within a certain class, classes and
interfaces can be visible only within certain packages. A package-private feature is thus
visible only within the package, not outside.
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The left column in figure 102 illustrates how to use these adjectives to let
every reader and Java know that the argument-less constructor is useful for
everyone—the world outside the current class as well as the class itself—
and that the second constructor is only useful for use within the class. If
some other class or the Interactions Window in ProfessorJ now contains
code such as new DrpBlock(−30,40)), Java does not run the program.

With this in mind, take a look at the right column. It contains a sample
class for testing the only method of DrpBlock: drop. The class contains two
gray-shaded constructor expression with subscripts; one is legal now, the
other one is not. Specifically, while the expression with subscript 1 is le-
gal because it uses the constructor without arguments, the expression with
subscript 2 is illegal given that the constructor of two arguments is private.
Thus, the EampleBad class does not “type check,” i.e., ProfessorJ highlights
the expression and explains that it is inaccessible outside of DrpBlock.

In addition, the code in the figure labels every field as private so that
other classes can’t exploit the internal data representation of the field. Thus,
neither x nor y are accessible attributes outside the class. As a result, it is
impossible to write the following tests in a sample class:

check new DrpBlock().drop().x expect 10
&&
check new DrpBlock().drop().y expect 21

Put differently, the method in DrpBlock is not testable given the current
privacy specifications and method interface. In general, in the presence
of privacy specifications it occasionally becomes necessary to equip a class
with additional methods, simply so that you can test some existing classes.

Still, we can reason about this code and argue why it enforces the basic
assumption from the problem statement:

DrpBlock represents dropping blocks, which enter the world at
(10,20) and move straight down.

Because of the privacy adjectives, the first and public constructor is the only
way to create an instance of DrpBlock. This instance contains a block that is
at (10,20). An invocation of drop creates a block with the same x coordinate
and a y coordinate that is one larger than the one in the given block. Hence,
on a computer canvas, this new block would be drawn one pixel below the
given one. No other class can use the second constructor to create blocks at
random places, meaning we know that the described scenario is the only
one possible.



State Encapsulation and Self-Preservation 301

// the world of a dropping block
class BlockWorld extends World {

private int WIDTH = 100;
private int HEIGHT = 100;
private IColor BACKGROUND = new Red();

private DrpBlock block;

// initial constructor
public BlockWorld() {

this.block = new DrpBlock();
}

// update constructor
private BlockWorld(DrpBlock block) {

this.block = block;
}

// what happens to this
// world on every tick of the clock
public World onTick() {

return new BlockWorld(this.block.drop());
}
. . .
}

Figure 103: Privacy and inheritance

Privacy specifications also interact with inheritance and subclassing. If
some class A extends some other class B, then the privacy specifications in
A must make a feature equally or more visible than B.

Take a look at figure 103, which presents the world of dropping blocks
with privacy specifications. Its attributes, including the falling block, are
private. Its two overloaded constructors are public and private, just like in
DrpBlock. In contrast, the inherited methods are public because that is how
the World superclass labels its corresponding methods.

Exercises

Exercise 20.3 Design a method (or methods) so that you can test the drop
method in DrpBlock in the presence of the given privacy specifications.
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// to represent a world with its visual part drawn on a canvas
abstract class World {

protected Canvas theCanvas = new Canvas();

// open a width by height canvas,
// start the clock, and make this world the current one
public boolean bigBang(int width, int height, double s) { . . . }

// process a tick of the clock in this world
public abstract World onTick() { . . . }

// process a keystroke event in this world
public abstract World onKeyEvent(String ke) { . . . }

// draw this world
public abstract boolean draw() { . . . }

// stop this world’s clock
public World endOfWorld(String s) { . . . }
}

Figure 104: Animated Worlds

Exercise 20.4 Complete the transliteration of figure 92 into the definitions
of figure 103 and add appropriate privacy specifications.

Exercise 20.5 Suppose you wanted to enforce this revised assumption:

The block in BlockWorld is always within its boundaries. Visu-
ally, the program displays a block that is dropping from near
the top of the canvas to the bottom and stops there.

How do you have to change the class?

The third privacy adjective (protected) is useful for fields and meth-
ods in classes that serve as superclasses. Let’s look at World from draw.ss,
which is intended as a superclass for different kinds of world-modeling
classes. Figure 104 displays a view of this World class with privacy specifi-
cations. As you can see, the class labels its canvas with protected, making it
visible to subclasses but inaccessible to others; after all, we don’t want arbi-
trary methods to accidentally draw the wrong kind of shape on the canvas.
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If an extension wishes to have some other class or method to have the can-
vas, then the methods in the subclasses must hand it out explicitly as an
argument to other classes. For an example, look at the draw in BlockWorld
(see figure 91); it uses this.theCanvas as an argument when it calls the draw
method of DrpBlock. When a method hands out the value of a protected

field, its programmer assumes responsibility (to the community of all pro-
grammers on this project) for the integrity of the associated assumptions.

+---------------------------------+ # +-------------------------------+
| World | # | Block |
+---------------------------------+ # +-------------------------------+
| protected Canvas theCanvas | # | protected int down |
+---------------------------------+ # | protected int right |
| public World onTick() | # +-------------------------------+
| public World onKeyEvent(String) | # | public boolean draw(Canvas) |
| public boolean draw() | # | private boolean paint(Canvas) |
| ... | # +-------------------------------+
+---------------------------------+ # |

| # |
| # |
| # |

/ \ # / \
--- # ---
| # |

======================================# +-------+--- ...
| |

+-----------------------------------+ |
| BlockWorld | |
+-----------------------------------+ +---------------------------+
| private DrpBlock block |----->| DrpBlock |
| private IColor BACKG | +---------------------------+
| public int WIDTH | | private int deltaY |
| public int HEIGHT | +---------------------------+
+-----------------------------------+ | DrpBlock drop() |
| public World onTick() | | DrpBlock steer(String ke) |
| public World onKeyEvent(String k) | +---------------------------+
| public boolean draw() |
| private boolean drawBackground() |
+-----------------------------------+

Figure 105: Animating dropping blocks

For a second, diagramtic example of protected status, see figure 105. It
re-displays the diagram of blocks, dropping blocks, worlds of blocks from
figure 92. The figure recalls that Block defines the coordinates for a block
and methods for drawing them. Naturally, the draw is public because Block-
World must use it; paint, however, is private because it is just an auxiliary.

The fields in Block are protected. Clearly, no outside class needs to know
about the coordinates, but subclasses of Block must be able to refer to them
and create instances with different values for x and y. Therefore choosing
protected is again the correct choice for these fields.
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20.4 Guidelines for State Encapsulation

Once you start designing programs that you may keep around for a long
time or that other people may read and modify, it becomes important to
protect the integrity of your (assumptions about) objects. The purpose of
an object is to represent information about the world. As the world evolves,
the objects evolve too. If possible, your objects should initially represent the
world’s information properly, and as your program and its methods create
new objects from the existing ones, these transitions should create objects
that can be interpreted in the real world.

When objects can accidentally—or intentionally—misuse the pieces of
other objects, we have no guarantees that our collection of objects represent
the state of the world properly. To address this problem partly, we recom-
mend that from now on, you always encapsulate the state of your objects
via privacy specifications and well-designed constructors.

As far as privacy is concerned, our guideline is simple: equip all con-
structors, fields, and methods in a class with privacy attributes. To make
this concrete, we suggest you choose as follows:

1. If in doubt, use private;

2. A method must be public if it is visible through an interface.

3. A method is decorated with public even if it isn’t visible through an
interface but some unrelated class must use it.

4. A field is protected if only subclasses should refer to it. The same
holds for a method.

5. A field is public if some unrelated class must refer to this field, e.g.,
fields that describe global attributes of a program. This is rare.

6. A constructor in an abstract class is protected, because subclasses
(may) need to refer to it.

7. A constructor is private unless it is acceptable that some other class
creates instances with these properties.

Keep in mind that these are guidelines. Even though experience shows
that they are valid in many, if not most, situations, you may encounter a
class hierarchy one day where you need specifications different from those
suggested. If so, analyze the situation carefully.
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// the world of worms
class WormWorld extends World {

public int WIDTH = 200;
public int HEIGHT = 200;
Segment head;

public WormWorld() {
this.head = new Segment(this)
}

private WormWorld(Segment s) {
this.head = s;
}

public World onTick() { . . . }

public World onKeyEvent(String ke) {
return

new WormWorld(
this.head.move(this)) ;

}

public boolean draw() { . . . }
}

// one segment of the worm
class Segment extends Posn {

IColor SEGCOL = new Red();
int RADIUS = 5;

public Segment(WormWorld w) {
this.x = w.WIDTH / 2;
this.y = w.HEIGHT /2;
}

private Segment(Segment s) {
this.x = s.x;
this.y = s.y;
}

public Segment move(Segment pre) {
return

new Segment(pre) ;

}

public Segment restart(
WormWorld w) {

return
new Segment(w) ;

}
}

Figure 106: Resolving constructor overloading

20.5 Finger Exercises on Encapsulation

Exercise 20.6 The two class definitions in figure 106 each contain two con-
structors. Determine for each gray-shaded use of a constructor in figure 106
to which constructor definition it refers. What are the values of x and y in
the resulting Segment objects?

Exercise 20.7 The LightSwitch class in figure 82—or the one you obtained
after abstracting out the commonalities (exercise 19.3)—employs a single
constructor. Hence, every time the flip function is invoked, a new canvas is
created and a new light switch is drawn.

Modify the class so that only one them creates a canvas and the other
one exists exclusively so that flip can function. Add appropriate privacy
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specifications.
Finally, modify the class so that it extends World and so that every

keystroke on the spacebar flips the switch.

Exercise 20.8 Take a look at the sketches of Select, Presentation, and Factory
in figure 107. Each refers to constructors in Item, the class on the left.

class Item {
int weight;
int price;
String quality;

public Item(int w,int p,String q) {
this.weight = w;
this.price = p;
this.quality = q;
}

public Item(int w,int p) {
this.weight = w;
this.price = p;
this.quality = "standard";
}

public Item(int p,String q) {
this.weight = 0;
this.price = p;
this.quality = q;
}
. . .
}

class Select {
. . . new Item(w,p,q) . . .

}

class Presentation {
int p;
. . .
boolean draw(String s) {

. . . new Item(p,s) . . .
}
. . .
}

class Factory {
. . .
int inquireInt(String s) { . . . }

Item create(. . . ) {
. . . new Item(

inquireInt("pounds"),
inquireInt("cents")) . . .

}
. . .
}

Figure 107: Resolving constructor overloading, again

Determine for each use of the constructor to which of the constructors
in Item it refers. Determine the values of the fields for the resulting object.

Exercise 20.9 The left column of figure 108 sketches a class definition for
Set (exercise 19.4) with privacy specifications. The right column displays
the class diagram for ILin, Cin, and MTLin, a list of ints. Assume appropri-
ate class definitions exist.

Which constructor should the add method employ? Which constructor
should a class employ that contains a Set?
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class Set {
private ILin elements;

public Set() {
this.elements = new MTLin();

}

private Set(ILin elements) {
this.elements = elements;

}

// add i to this set
// unless it is already in there
public Set add(int i) { . . . }

// is i a member of this set?
public boolean in(int i) { . . . }
}

+------+
| ILin |<------------+
+------+ |
+------+ |

| |
/ \ |
--- |
| |

---------------- |
| | |

+-------+ +-----------+ |
| MTLin | | Cin | |
+-------+ +-----------+ |
+-------+ | ILin more |----+

| int one |
+-----------+

Figure 108: Enforcing assumptions

Argue that the following assumption holds, if add and in are completed
appropriately:

Lin does not contain any int twice.

Or show how to construct a set with the given constructors so that the as-
sumption is wrong.

Complete the definition of Set with a public remove method.

Exercise 20.10 Design the class SortedList with the following interface:

interface ISortedList {
// add i to this list so that the result is sorted
ISortedList insert(int i);
// the first item on this list
int first();
// the remainder of this list
ISortedList rest();
}

The purpose of the class is to keep track of integers in an ascending manner:

check new SortedList().insert(3).insert(2).insert(4).first() expect 2
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What does

new SortedList().insert(3).insert(2).insert(4).rest().first()

produce? Make more examples!

Exercise 20.11 Re-visit the “War of the Worlds” project with encapsulation
in mind. Make sure that the UFO first appears at the top of the canvas,
that the AUP doesn’t leave the canvas, that only those shots are in the list
of shots that are still within the UFOWorld. Can you think of additional
properties in this project that encapsulation can protect?

Exercise 20.12 Inspect your solution for the “Worm” game. Add privacy
specifications and ensure that you can still run all the tests.

21 Extensional Equality, Part 1

Up to this point, we have relied on check . . . expect . . . to compare objects
for us, without a good understanding of how it performs those compar-
isons. Now that we (may) have both deep, nested hierarchies of interfaces
and classes as well as (partially) hidden features of objects, we should take
a first, close look at the problem to appreciate at least some of its subtlety.
At the end of the next chapter, we return to the idea of equality and study
it in even more depth than here and an alternative view.

21.1 Equality for Plain Classes

Recall the very first class definition. It introduced the class of objects that
represent bulk coffee sales. Suppose we simplify this example a bit still and
just represent the kinds of coffees that are for sale:

class Coffee {
String origin;
int price; // in cents per pound
. . .
}

In this business, each kind of coffee is identified via its origin country and,
for sales purposes, its current price.

The question is when two instances of this class are the same. Let’s see
where following the design recipe gets us:



Extensional Equality, Part 1 309

// represents bulk coffee for sale
class Coffee {

private String origin;
private int price;

public Coffee(String origin, int price) {
this.origin = origin;
this.price = price;
}

// is this the same Coffee as other?
public boolean same(Coffee other) {

return this.origin.equals(other.origin) && this.price==other.price;
}
}

Figure 109: The sameness of Coffee

inside of Coffee :
// is this the same Coffee as other?
boolean same(Coffee other)

The purpose statement phrases the problem as a direct question about this

object and the other instance of Coffee. After all, the idea of sameness is
about a comparison of two objects.

Given that Coffee has two fields, creating the template is also straight-
forward:

inside of Coffee :
// is this the same Coffee as other?
boolean same(Coffee other) {

. . . this.origin.mmm() . . . other.origin.mmm() . . .

. . . this.price . . . other.price . . .
}

It contains four expressions because two Coffee objects contain four fields.
The first two indicate that it is possible to invoke another method on the
value in the origin field because its type is String. From the template alone,
however, you cannot figure out what sameness could mean here. You need
examples, too:
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class EqExamples {
Coffee ethi = new Coffee("Ethiopian",1200);
Coffee kona = new Coffee("Kona",2095);
Coffee ethi1300 = (new Coffee("Ethiopian",1300));

boolean test1 = check this.ethi.same(this.ethi) expect true;
boolean test2 = check this.kona.same(this.ethi) expect false;
boolean test3 = check this.ethi.same(this.ethi1300) expect false;
}

The first example compares two instances of Coffee that have the exact same
attributes: both are from Ethiopia and both cost $12 per pound. Naturally,
you would expect true here. The second one compares two objects with
different origins and different prices. Unsurprisingly, the expected answer
is false. Last, even if two Coffees share the origin but have distinct prices,
they are distinct objects.

Together, the examples and the template suggest a point by point—that
is, a field by field—comparison of the objects: see figure 109. For each kind
of value, you use the appropriate operation for comparisons. Here same
uses == for ints and equals for Strings. If you solved such exercises as 10.4
or recall the design of same for Cartesian points in chapter II, the definition
of same in Coffee is no surprise.

Given the presence of privacy specifications in the definition of Coffee,
you may wonder whether the field access in same works out as obviously
desired. Since these instructions for hiding the features of an object concern
the class, i.e., the program text, it turns out that one instance of Coffee can
access the secret, hidden fields of another instance of Coffee just fine.

Following philosophers, we call this notion of sameness EXTENSIONAL

EQUALITY.44 Roughly speaking, a method that implements extensional
equality compares two objects on a point by point basis. Usually, it just
compares the object one field at a time, using the equality notion that is
appropriate for the types of the fields. When you design an extensional
equality method, however, it is important to keep in mind what your class
represents and what this representation is to mean to an external observer.
Because this is what extensional equality is truly about: whatever you want
external observers to be able to compare.

A representation of mathematical sets via classes illustrates this point
well. To keep things simple, let’s look at sets of two ints. Obviously, such

44Frege (1848–1925) was the first logician to investigate the idea of a predicate’s extension
and extensional equality.
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// represents a set of two numbers
class Set2 {

private int one;
private int two;

public Set2(int one, int two) {
this.one = one;
this.two = two;
}

// does this set contain x?
public boolean contains(int x) {

return (x == this.one) || (x == this.two);
}

// is this the same Set2 as other?
public boolean same(Set2 other) {

return
other.contains(this.one)
&& other.contains(this.two)
&& this.contains(other. one)
&& this.contains(other. two);

}
}

Figure 110: The sameness of sets

a class needs two fields and, at a minimum, a method that determines
whether some given int is a member of this set, i.e, whether the set con-
tains the int. Designing this kind of data representation is easy for you at
this point (see figure 110).

The problem of sameness for sets is quite different from that for Coffee.
As you may recall from mathematics, two sets are the same if every element
of the first set is a member of the second set and vice versa:

sets S1 and S2 are equal, notation: S1 = S2,
means that

for all e, e ∈ S1⇔ e ∈ S2 .

Given the contains method from Set2, this bit of mathematics has an obvious
translation into Java:
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other.contains(this.one)
&& other.contains(this.two)
&& this.contains(other. one)
&& this.contains(other. two)

For the full definition of same for Set2, see figure 110.
A quick comparison shows that same in Set2 isn’t just a field-by-field

comparison of the given objects. Instead, each field in this set is compared
to both fields of the other set. The success of one of these comparisons suf-
fices. Thus, this notion of equality is significantly weaker than the field-by-
field notion of equality for, say, Coffee. Here, it is the mathematics of sets
that tells you what sameness really means. In other cases, you will have to
work this out on your own. The question you will always need to ponder
is whether someone who doesn’t know how you designed the class and
the method should be able to distinguish the two given objects. The an-
swer will almost always depend on the circumstances, so our advice is to
explore the problem with as many examples as you need until you know
what others want from the class.

Exercises

Exercise 21.1 Develop data examples for Set2 and turn them into behav-
ioral examples for contains and same. Translate them into a test suite and
run them. Be sure to include an example that requires all four lines in same.

Exercise 21.2 Design the method isSubset for Set2. The method determines
whether this instance of Set2 contains all the elements that some given in-
stance of Set2 contains.

Mathematicians use s ⊆ t to say that “set s is a subset of set t.” They
sometimes also use the notion of “subset” to define extensional set equality
as follows:

S1 = S2 means (S1 ⊆ S2 and S2 ⊆ S1)

Reformulate the same method using this definition.

Exercise 21.3 Design a class called Factoring. A factoring is a pair of ints.
What matters about a factoring is the product of the two numbers; their
ordering is irrelevant. Equip the class with one method: prod, which com-
putes the product of the two ints.

Design two sameness methods:
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1. sameFactoring, which determines whether one factoring is the same as
some other factoring;

2. sameProduct, which determines whether one factoring refers to the
same product as some other factoring.

Can you imagine situations in which you would use one of the methods
but not the other?

21.2 Equality for Inheritance

Imagine for a moment an extension of Coffee with a class for decaffeinated
coffee in the spirit of figure 111. The class adds one private field to the
two inherited ones; it records the percentage to which the coffee is decaf-
feinated. Its constructor calls super with two values to initialize the inher-
ited fields and initializes the local field directly.

class Decaf extends Coffee {
private int quality; // between 97 and 99

Decaf (String origin, int price, int quality) {
super(origin,price);
this.quality = quality;
}
}

Figure 111: The sameness for inheritance

By inheritance, the class also contains a method for comparing instances
of Decaf with instances of Coffee. This method, however, does not properly
compare two instances of Decaf . More precisely, the inherited same method
compares two instances of Decaf as if they were instances of Coffee. Hence, if
they differ to the degree that they have been decaffeinated, the comparison
method reports that they are equal even though they are distinct instances:

class InhExamples {
. . .
Decaf decaf1 = new Decaf ("Ethiopian",1200,99);
Decaf decaf2 = new Decaf ("Ethiopian",1200,98);

boolean testD1 = check this.decaf2.same(this.decaf1) expect false;
boolean testD2 = check this.decaf1.same(this.decaf1) expect true;
}
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In this case, ProfessorJ would report one failed test, namely testD1. The
computed result is true while the expected result is false.

Of course, when you do compare a Coffee with an instance of Decaf , the
best you can do is compare them as Coffees. Conversely, a comparison of a
Decaf with a Coffee should work that way, too:

inside of InhExamples :
Coffee ethi = new Coffee("Ethiopian",1200);

boolean testCD = check this.ethi.same(this.decaf1) expect true;
boolean testDC = check this.ethi.same(this.decaf1) expect true;

Based on this analysis and the examples, you should realize that you
want (at least) two methods for comparing objects in Decaf:

inside of Decaf :
// is this Decaf the same as other when viewed as Coffee?
public boolean same(Coffee other)

// is this the same Decaf as other?
public boolean same(Decaf other)

The first is the inherited method. The second is the proper method for
comparing two instances of Decaf properly; we use the name same again
and thus overload the method. The type comparison that selects the proper
method thus decides with which method to compare coffees.

The method definition itself is straightforward:

inside of Decaf :

public boolean same(Decaf other) {
return super.same(other) && this.quality == other.quality;
}

It first invokes the super method, meaning the one that compares the two
instances as Coffees. Then it compares the two local fields to ensure that the
instances are truly the same as Decaf s.

In general, you will have to decide what a comparison means. In any
case, you will want to ensure that comparing objects is symmetric, that is,
no matter in what order you compare them, you get the same result. Keep
in mind, however, that your derived subclass always inherits the equality
method from its superclass so this form of comparison is always legal from
a type perspective. If you do not add an equality comparison for two in-
stances of the subclass, you will get the inherited behavior—even if you do
not want it.
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Exercises

Exercise 21.4 Design a complete examples class for comparing instances
of Coffee and Decaf . Evaluate the tests with the class definitions from fig-
ure 111 and 109. Then repeat the evaluation after adding the overloaded
same method to Decaf .

// a sale of bulk coffee
class Sale {

Coffee c;
int amount;

Sale(Coffee c, int amount) {
this.c = c;
this.amount = amount;
}

// is this Sale the same as the other Sale?
boolean same(Sale other) {

return this.amount == other.amount
&& this.c.same(other.c) ;

}
}

Figure 112: The sameness for containment

21.3 Equality for Containment and Unions

The first subsection explains the basics of extensional equality but not the
whole story. It suggests that the design recipe helps a lot with the design
of same methods, and you can probably see how sameness works for class
containment. If class C contains a field whose type is that of another class
D, the design rules apply: to compare the D-typed field of one object to that
of another, use same from D.

Figure 112 displays a concrete example. The class Sale represents the
sales of bulk coffee. Each sale comes with two attributes: the number of
pounds sold and the coffee sold. The former is a plain int; the latter is,
however, an instance of Coffee. Naturally, the same method of Sale uses ==
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to compare the int fields and same from Coffee to compare the Coffees (see the
gray-shaded box).

+-----------------------+
| IItem |
+-----------------------+
+-----------------------+
| boolean same(IItem x) |
+-----------------------+

|
/ \
---
|

------------------------------
| |

+-----------------------+ +-----------------------+
| Coffee | | Tea |
+-----------------------+ +-----------------------+
| String origin | | String kind |
| int price | | int price |
+-----------------------+ +-----------------------+
+-----------------------+ +-----------------------+

Figure 113: Coffee and tea

In the language you know, the design of an extensional equality method
for unions is far more complicated than that. To make things concrete, let’s
consider the specific example of all items on sale in figure 113. The interface
IItem represents the union of Coffee and Tea, i.e., it represents all the items
that tea-and-coffee houses sell. The Coffee class is as above; the Tea class
keeps track of the kind (a String) of the tea and its price.

Adding a method to a union requires the addition of a method header
and purpose statement to the interface:

inside of IItem :
// is this the same IItem as other?
boolean same(IItem x)

To make up behavioral examples, we first need to agree on the nature of
extensional equality in a union. The simplest kind of extensional equality
has these two characteristics:

1. An object of type IItem can only be the same as an instance of the same
class. In other words, the method compares Coffees with Coffees and
Teas with Teas but not Coffees with Teas (or vice versa). For the latter it
reports false.

2. When same compares an instance of Tea with another Tea, it compares
them field by field, just like same in Coffee.
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These two points explain the expected results of the following examples:

class ItemsExamples {
IItem ethi = new Coffee("Ethiopian",1200);
IItem blck = new Tea("Black",1200);

boolean test1 = check this.ethi.same(this.ethi) expect true;
boolean test2 = check this.ethi.same(this.blck) expect false;
boolean test3 = check this.blck.same(this.blck) expect true;
}

You can easily make up others; the idea should be clear.

The true nature of this design problem begins to show when you write
down the templates :

inside of Tea:
boolean same(IItem other) {

. . . this.kind . . . this.price . . .

. . . other.mmm() . . .
}

inside of Coffee:

boolean same(IItem other) {
. . . this.kind . . . this.price . . .
. . . other.mmm() . . .
}

Both classes contain two fields each, so the templates contain the two ap-
propriate selector expressions. Since the arguments have a non-basic type,
the templates also contain a reminder that the methods can call an auxiliary
method on the argument.

Unfortunately, other itself has type IItem, which is an obstacle to making
progress. On one hand, we don’t even know whether it makes sense to
compare this instance of Coffee, for example, with other; after all, other could
just be a Tea. On the other hand, even if we could validate that other is an
instance of Coffee, it is impossible to access its fields because the IItem type
doesn’t provide any methods that access the fields of the implementing
classes. Indeed, thus far it only allows a method call to same or mmm, i.e.,
an auxiliary method.

What we really need then is two methods: one that checks whether an
IItem is an instance of Tea and another one that converts an IItem to a Tea, if
it is an instance of Tea. After the conversion, the same method can use the
familiar ways of comparing two Teas. Analogously, we need such methods
for Coffee, too:
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// some grocery items
interface IItem {

// is this the same IItem as other?
boolean same(IItem x);
// is this Coffee?
boolean isCoffee();
// convert this to Coffee (if feasible)
Coffee toCoffee();
// is this Tea?
boolean isTea();
// convert this to Tea (if feasible)
Tea toTea();
}
This complete interface (and wish list) shows the need for four auxil-

iary methods overall but it also suggests immediately how to compare two
IItems:

inside of Tea :
boolean same(IItem other) {

return other.isTea() && other.toTea().same(this);
}

The method invokes isTea on other to determine whether it is an instance of
Tea. If it isn’t, someone attempted to compare Tea and Coffee; otherwise, the
method uses toTea to convert other and then uses an auxiliary method same
for comparing just two Teas:

inside of Tea :
// is this the same Tea as other?
boolean same(Tea other)

The overloading of same is easy to resolve here because the result type of
toTea is Tea and so is the type of this; at the same time, reusing the name
conveys the intention behind the method and points to its connection with
the original version. Designing this auxiliary method is also easy; it is just
like any other method for comparing two instances of a plain class.

Figure 114 contains the full definitions of IItem, Tea, and Coffee. The
auxiliary methods for comparing Tea with Tea and Coffee with Coffee are pri-
vate. While hiding the method isn’t necessary, the method isn’t advertised
via the IItem interface and is thus not useful for the union as a whole. Since
the rest of the program deals with the union and not its individual cases,
hiding it is the correct solution here.
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class Coffee implements IItem {
private String origin;
private int price;

Coffee(String origin, int price) {
this.origin = origin;
this.price = price;

}

public boolean isCoffee() {
return true;
}

public boolean isTea() {
return false;
}

public Coffee toCoffee() {
return this;

}

public Tea toTea() {
return Util.error("not a tea");
}

public boolean same(IItem other) {
return (other.isCoffee())

&& other.toCoffee().same(this);
}

// is this the same Coffee as other?
private boolean same(Coffee other) {

return
this.origin.equals(other.origin)
&& this.price == other.price;

}
}

class Tea implements IItem {
private String kind;
private int price;

Tea(String kind, int price) {
this.kind = kind;
this.price = price;
}

public boolean isTea() {
return true;
}

public boolean isCoffee() {
return false;
}

public Tea toTea() {
return this;
}

public Coffee toCoffee() {
return Util.error("not a coffee");
}

public boolean same(IItem other) {
return other.isTea()

&& other.toTea().same(this);
}

// is this the same Tea as other?
private boolean same(Tea other) {

return
this.kind.equals(other.kind)
&& this.price == other.price;

}
}

Figure 114: The sameness of unions

Exercises
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Exercise 21.5 Our chosen examples for the classes in figure 114 do not
cover all possible cases. Design additional test cases to do so.

Exercise 21.6 Add Chocolate as a third variant to the IItem union. The class
should keep track of two attributes: sweetness (a String) and price (an int).
What does it take to define its sameness method?

Exercise 21.7 Abstract over the commonalities of Coffee and Tea. Don’t for-
get to use the tests from exercise 21.5. When you have completed this step,
repeat exercise 21.8. How does the abstraction facilitate the addition of new
variants? How is it still painful?

Exercise 21.8 Pick any self-referential datatype from chapter I and design
a same method for it. Remember the design recipe.

Exercise 21.9 On occasion, a union representation employs a string per
variant that uniquely identifies the class:

interface IMeasurement { }

class Meter implements IMeasurement {
private String name = "meter";
int x;

Meter(int x) {
this.x = x;
}
}

Add a variant to the union that measures distances in feet just like Meter
measures them in meters. Then add a method for comparing IMeasurements
that ignores the actual distance; in other words, it compares only the kind
of measurement not the value.

Similarly, a union may come with a method that converts an object to
a string. In that case, the comparison method can employ this method
and then compare the results. Equip IMeasurement with a toString method
whose purpose is to render any measurement as a string. Then add an
equality method to the union that compares complete measurements.
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Todo

discrepancies between book and ProfessorJ: can we get overridden method
signatures with subtypes? is assignment still in Intermediate?

discuss overloading in this intermezzo
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Intermezzo 3: Abstract Classes, Privacy

Abstract Classes and Class Extensions

1. abstract classes

abstract class ClassName [ implements InterfaceName ] {
. . .

}

2. abstract methods in abstract classes:

abstract Type methodName(Type parameterName, . . . );

3. subclassing

class ClassName extends ClassName {
. . .

}

4. a super constructor call:

super(Expression,. . . )

5. a super call:

super.methodName(Expression,. . . )

[ abstract ] class ClassName
[ extends ClassName ]
[ implements InterfaceName ] {
. . .
}

extends, super, overriding

purpose: the syntax of intermediate student that is used in chapter III

type checking in this context
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Privacy for Methods

abstract methods in abstract classes:

abstract [ private | public ] Type methodName(Type parameterName, . . . );

methods in classes:

[ private | public ] Type methodName(Type parameterName, . . . ) {
Statement
}

Overloading Constructors and Methods



PICTURE: should be on even page, and even pages must be on the left
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Purpose and Background

The purpose of this chapter is to introduce the idea of assignment state-
ments, to learn when to use them, and to provide a version of the design
recipe that accommodates assignments.

After studying this chapter, students should be able to design classes
with two-way connections (through assignment statements) and to design
imperative methods analogous to those in chapter II.

The development is similar to HtDP chapters VII and VIII, which will
disappear from HtDP/2e. The chapter does not assume that the student
understands these chapters.
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TODO

– add stacks and queues to the exercises (deck of cards looks like an ideal
place to do so)

– the following works:

class Circular {
Circular one = this;

}

and creates a circular Object; I need to explain this



IV Circular Objects, Imperative Methods

When you go to a book store and ask a sales clerk to look up a book whose
author you remember but whose title you have forgotten, the clerk goes to
a computer, types in the name of the author, and retrieves the list of books
that the author has written. If you remember the title of the book but not
the author, the clerk enters the title of the book and retrieves the author’s
name. Even though it is feasible for the program to maintain two copies of
all the information about books, it is much more natural to think of a data
representation in which books and authors directly refer to each other in a
circular manner.

So far, we haven’t seen anything like that. While pairs of data definitions
may refer to each other, their instances never do. That is, when an instance O
of class C refers to another object P, then P cannot—directly or indirectly—
refer back to O; of course, P may refer to other instances of C, but that is
not the same as referring to O. With what you have learned, you simply
cannot create such a collection of objects, as desirable as it may be. Bluntly
put, you cannot express the most natural representation of the book store
program.

The purpose of this chapter is to expand the expressive power of your
programming language. To this end, it introduces a new mechanism for
computing, specifically, the ability to change what a field represents. This is
called an assignment statement or assignment for short. Using assignments,
your methods can create pairs of objects that refer to each other. Your new
powers don’t stop there, however. Once your methods can change the
value of a field, you also have another way of representing objects whose
state changes over time. Instead, of creating a new object when things
change, your methods can just change the values in fields. This second
idea is the topic of the second half of this chapter.
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+------------+ +--------------+
| Author | <--+ +--> | Book |
+------------+ | | +--------------+
| String fst | | | | String title |
| String lst | +-|---+ | int price |
| int dob | | | | int quantity |
| Book bk |--+ +--------| Author ath |
+------------+ +--------------+

// represent authors of books
class Author {

String fst;
String lst;
int dob;
Book bk;

Author(String fst, String lst,
int dob, Book bk) {

this.fst = fst;
this.lst = lst;
this.dob = dob;
this.bk = bk;

}
}

// represent books
class Book {

String title;
int price;
int quantity;
Author ath;

Book(String title, int price,
int quantity, Author ath) {

this.title = title;
this.price = price;
this.quantity = quantity;
this.ath = ath;
}
}

Figure 115: The author of a book, the book of an author (version 1)

23 Circular Data

Let’s turn the problem of looking up books and authors into a program-
ming scenario, based on the bookstore problem 11.1 (page 113):

. . . Design a program that assists bookstore employees. For
each book, the program keeps a record that includes informa-
tion about its author, its title, its price, and its publication year.
In turn, the data representation for the author includes the au-
thor’s first name, last name, year of birth, and the book written
by this author. . . .

The problem simplifies the real world a lot. Many authors write more than
one book. Similarly, many books have more than a single author; this book
has six, some have many more than that. Eventually we will have to asso-
ciate an author with a list of books and a book with a list of authors.

Figure 115 displays a first-guess data representation, including a class
diagram and two class definitions. The class diagram differs from every-
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thing we have seen so far in that it contains two classes, mutually connected
via containment arrows. Naturally, each of the two classes has four fields.
The Author class comes with four fields: a first name, a last name, an integer
that records the year of birth, and the book that the author wrote; the fields
in Book are for the title of the book, the sales price, the number of books in
the store, and the author of the book.

The next step in our design recipe calls for an exploration of examples.
Here, doing so proves again the value of a systematic approach. Consider
the following concrete example, a classic book in our discipline:

Donald E. Knuth. The Art of Computer Programming. Volume 1.
Addison Wesley, Reading, Massachusetts. 1968.

If we were to use the data representation of figure 115 and start with the
author, we easily get this far:

new Author("Donald",
"Knuth",
1938,
new Book("The Art of Computer Programming (volume 1)",

100,
2,
??? ))

Now the ??? should be replaced with the Author, but of course, that means
we would be starting all over again and there would obviously be no end
to this process. If we start with the book, we don’t get any further either:

new Book("The Art of Computer Programming",
100,
2,
new Author("Donald",

"Knuth",
1938,
??? ))

In this case, the ??? should be replaced with a representation of the book
and that leads to an infinite process, too. At first glance, we are stuck.

Fortunately, we are not confronted with a chicken-and-egg problem; be-
fore authors are born, they can’t write books. This suggests that an Author
should be created first and, when the book is created later, the program
should connect the instance of the given Author with the instance of the
Book. Figure 116 displays new versions of Author and Book that work in
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// represent authors of books
class Author {

String fst;
String lst;
int dob;
Book bk = null ;

Author(String fst, String lst,
int dob, Book bk) {

this.fst = fst;
this.lst = lst;
this.dob = dob;
}
}

// represent books
class Book {

String title;
int price;
int quantity;
Author ath;

Book(String title, int price,
int quantity, Author ath) {

this.title = title;
this.price = price;
this.quantity = quantity;
this.ath = ath;

this.ath.bk = this ;
}
}

Figure 116: The author of a book, the book of an author (version 2)

the suggested manner. A comparison with figure 115 shows two distinct
differences (gray-shaded):

1. The bk field in Author initially stands for null, an object that we haven’t
seen yet. In some way, null is unlike any other object. Its most distin-
guishing attribute is that it has all class and interface types. Hence,
any variable with such a type can stand for null. Think of null as a
wildcard value for now.

ProfessorJ:
Advanced 2. More surprisingly, the constructor for Book consists of five “equa-

tions” even though the class contains only four fields. The last one
is the new one. Its left-hand side refers to the bk field in the given ath;
the right-hand side is this, i.e., the instance of Book that is just being
created.

This situation is unusual because it is the very first time two “equa-
tions” in one program—the gray-shaded ones— refer to the same field
in the same object. The implication is that equations in Java aren’t re-
ally mathematical equations. They are instructions to evaluate the right-
hand side and to change the meaning of the field (variable) on the
left-hand side: from now on the field stands for the value from the
right-hand side—until the next such instruction (with the same field
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on the left side) is evaluated. Computer scientists and programmers
refer to these “equations” as ASSIGNMENT STATEMENTS or ASSIGN-
MENTS, for short.

Concretely: the meaning of this.ath.bk = this in the constructor of
Book is to change the value that bk represents. Until this assignment
statement is evaluated, bk represents null; afterwards, it stands for
this book.

before:

auth -
fst: last: dob: bk:

"Donald" "Knuth" 1938 null

book -
title: price: quantity: ath:

"TAOCP" 100 2 •

this.ath.bk = this

after:

auth -
fst: last: dob: bk:

"Donald" "Knuth" 1938 •

book -
title: price: quantity: ath:

"TAOCP" 100 2 •

Figure 117: An object-box diagram

Creating instances of these revised classes looks just like before. The
constructor of the class is called with as many values as needed, and its
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result is an instance. For example, to represent the computer science classic
mentioned above, you write:

Author auth = new Author("Donald","Knuth",1938);

Book book = new Book("TAOCP",100,2,auth);

The difference is that the evaluation of the second line affects what auth
represents. Before the second line is evaluated, auth’s bk stands for null;
afterwards it refers to book.

Figure 117 illustrates with the box diagrams from How to Design Pro-
grams what happens during the construction of the book object. Before the
gray-shaded assignment statement is evaluated, two boxes have come into
existence: the one for auth, with a null in the bk field, and the one for book,
which contains auth in the ath field. The top half of the picture shows the
two boxes and their four compartments. Instead of placing the box for auth
into the compartment labeled ath, an arrow from the compartment to the
auth box says that auth is in this compartment. The bottom half of the pic-
ture shows the boxes after the assignment has been evaluated. As you can
see, the assignment places the box for book into the bk compartment of the
auth box. Again, the figure uses an arrow from the latter to the book box to
indicate this relationship. Indeed, now that there are arrows from the boxes
to each other, it has become impossible to draw nested box diagrams.

For this reason, a Java implementation cannot easily present auth and
book to programmers. When you request that ProfessorJ display auth, it
shows the following:

Author(
fst = "Donald",
lst = "Knuth",
dob = 1938,
bk = Book(

title = "TAOCP",
price = 100,
quantity = 2,
ath = Author))

meaning that auth contains a Book bk and, in principle, the instance of Book
contains auth. The latter, however, is just marked as Author in the ath field.

In general, a constructor can call other methods, especially those in
other classes, to change fields elsewhere. Ideally these calls take place after
the fields have been set to the given values; that is, they are located at the
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// represent authors of books
class Author {

String fst;
String lst;
int dob;
Book bk = null;

Author(String fst, String lst,
int dob, Book bk) {

this.fst = fst;
this.lst = lst;
this.dob = dob;
}

void addBook(Book bk) {
this.bk = bk;
return ;

}
}

// represent books
class Book {

String title;
int price;
int quantity;
Author ath;

Book(String title, int price,
int quantity, Author ath) {

this.title = title;
this.price = price;
this.quantity = quantity;
this.ath = ath;

this.ath.addBook(this) ;

}
}

Figure 118: The author of a book, the book of an author (version 3)

bottom of the constructor. These calls typically involve this, the newly cre-
ated and previously unavailable object. Other objects may have to know
the new object (this) and informing them about it during the construction
of this is the most opportune time.

Figure 118 demonstrates this point with a modification of the running
example. The revised constructor ends in a call to the method addBook of
ath, the given author. This new method has a novel return type: void. This
type tells any future reader that the method’s purpose is to change the field
values of the object and nothing else. To signal the success of the operation,
such methods return a single value, which has no other significance and is
therefore invisible.

The body of addBook also has a novel shape for methods, though it looks
almost like a simple constructor. Like a constructor, it consists of an assign-
ment statement separated from the rest via a semicolon (;). Unlike a con-
structor, the method body ends with a return ; statement; it reminds the
reader again that the method produces the single, invisible void value and
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that its computational purpose is to change the object.45

The use of such methods is preferable to direct assignments such as in
figure 116 when there is more to do than just set a field. For example, we
may not want the addBookk method to change the bk field unless this field
stands for null:

void addBook(Book bk) {
if (this .bk == null) {

this.bk = bk;
return ;
}
else

Util.error("adding a second book");
}

The if statement checks this condition with (this .bk == null), which asks
whether bk in this object is equal to null. If so, it changes what the field
represents and returns void; if not; it signals an error.

+----------------+
| Author |<--+
+----------------+ |
| String first | |
| String last | |

+----------+ | int dob | |
| IBooks |<--------------------------| IBooks books | |
+----------+<----------------+ +----------------+ |

| | |
/ \ | |
--- | |
| | |

+--+------------+ | |
| | | +---------------+ |

+---------+ +--------------+ | +---->| Book |----+
| MTBooks | | ConsBooks | | | +---------------+
+---------+ +--------------+ | | | String title |

| | | | | int price |
| Book fst |-----+ | int quantity |
| IBooks rst |-+ | Author author |
+--------------+ +---------------+

Figure 119: Classes for books and authors

Signaling an error in addBook says that an author can write only one
book. It should remind you of the discussion following the initial problem
statement. To accommodate authors who write many books, let’s look at a
data representation that associates an author with a list of books instead of a
single book: see figure 119. In this new data representation, the Author class
contains a field that contains lists of books, dubbed IBooks in the figure. This

45Many people omit such “empty” return statements; we believe it helps readers and
therefore use it.
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interface is the type of all lists of books. Thus, Author doesn’t directly refer
to Book but indirectly, through ConsBook and its first field. Of course, Book
still refers to Author. Otherwise this class diagram doesn’t differ much from
those we have seen plus the new element of a cycle of containment arrows.

Translating the class diagram of figure 119 into class definitions poses
the same problem as translating the class diagram at the top of figure 115
into code. Like then, let’s agree that the constructor for Author doesn’t con-
sume a list of books. Instead, the books field is initially set to new MTBooks(),
the empty list of books. As books are added to the collection of data, the
list must be updated.

// authors of books
class Author {

String fst;
String lst;
int dob;
IBooks books = new MTBooks();

Author(String fst, String lst,
int dob) {

this.fst = fst;
this.lst = lst;
this.dob = dob;
}

void addBook(Book bk) {
this.books = new ConsBooks(bk, this.books);
return ;
}

}

// lists of books
interface IBooks { }

class MTBooks
implements IBooks {

MTBooks() {}
}

class ConsBooks
implements IBooks {
Book fst;
IBooks rst;

ConsBooks(Book fst,
IBooks rst) {

this.fst = fst;
this.rst = rst;
}
}

Figure 120: An author of many books, the many books of an author

We can implement the rest of the changes to the data definition with
the usual interfaces and classes for a list of books and a small change to
the addBook method in Author (see gray-shaded method in figure 120). The
revised method still receives a book, which it is to add to the list of books
for the author. To accomplish this, it forms a new, extended list from the
given book bk and the current list of books:

new ConsBooks(bk, this.books)
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Afterwards, it assigns this value to the books field in Author. In other words,
from now on the books field stands for the newly created list. The rest of
Book class remains the same.

Exercises

Exercise 23.1 Explain why the definition of Book remained the same when
we changed Author to be associated with an entire list of Books.

Exercise 23.2 Create data representations for the following list of classics
in computer science:

1. Donald E. Knuth. The Art of Computer Programming. Volume 1. Addi-
son Wesley, Reading, Massachusetts. 1968.

2. Donald E. Knuth. The Art of Computer Programming. Volume 2. Addi-
son Wesley, Reading, Massachusetts. 1969.

3. Donald E. Knuth. The Art of Computer Programming. Volume 3. Addi-
son Wesley, Reading, Massachusetts. 1970.

Draw a box diagram like the one in figure 117 for this example.

Or, do it for these books:

1. Henk Barendregt. The Lambda Calculus. North Holland, Amsterdam,
The Netherlands. 1981.

2. Daniel P. Friedman. The Little LISPer. SRA Press, Chicago, Illinois.
1974

3. Guy L. Steele Jr. Common LISP, the Language. Digital Press, Bedford,
Massachusetts. 1990.

Computer scientists should know (about) them, too.

Exercise 23.3 Modify the data representation for authors and books in fig-
ure 120 so that a new book is added to the end of an author’s list.

Exercise 23.4 Encapsulate the state of Book and Author for the code in fig-
ures 116 and 118.
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23.1 Designing Classes for Circular Objects, Constructors

The examples in this section suggest that designing classes whose instances
refer to each other in a circular manner follows mostly the same process as
the design of classes in general:

1. Read the problem statement and determine how many classes of in-
formation there are and how they are related. Make up examples of
information and how people will use it. This should help you deter-
mine whether there is a need to access a piece of information I from
some piece of information J and vice versa.

2. Develop the interface and class diagram.

Doing so gives you a second chance to discover the existence of object
cycles. Specifically, inspect the class diagram for cycles of contain-
ment arrows. Sometimes the cycle is direct and uninterrupted, as in
figure 115. In this case, you are almost guaranteed to have pieces of
data that are in a circular relationship. What you need to confirm is
an intention that each instance points to some other object that points
back. Other times, such as in figure 119, there is no direct cycle; in-
stead you must traverse an inheritance arrow in the reverse direction
to construct a cycle. In those cases, you may or may not have to con-
struct circular collections of objects. Only examples from the first step
can help here.

3. Translate the class diagram into class definitions naively. Don’t forget
to add a purpose statement to each class as usual.

4. Now modify your class definitions so that they can accommodate cir-
cular relationships among objects, if needed.

First, try to translate the examples of circular information into data.
If you can translate all the information examples into data (using the
regular constructors), you don’t need circularity. If there are some
that you can’t translate, you have confirmed the need for circularity.

Second, determine the class C whose objects should come into exis-
tence first. In our running example at the beginning of the section,
this class was Author. Then determine the field that would create a
circular relationship; call it cf and let its type be CT.

Third, initialize the cf field with an object of type CT that contains no
fields of the type C (or its interface). In our running example, we used
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the empty list of books for this purpose. Sometimes we need to use
the value of last resort: null.

Fourth, define an add method that assigns new values to cf . For now,
use the examples from this section as templates; they either replace
the value of cf with a given value or create a list of values. You will
soon learn how to design such methods in general.

Last, modify the constructors of the classes that implement CT. They
must call the add method with this so that the circular references can
be established.

5. Lastly, translate the circular examples of information into data, using
just the constructors in the enforced order. Check whether the circular
references exist by looking at it.

Exercises

Exercise 23.5 Design a data representation for a hospital’s doctors and pa-
tients. A patient’s record contains the first and last name; the patient’s gen-
der; the blood type; and the assigned primary physician. A doctor’s record
should specify a first and last name, an emergency phone number (int), and
the assigned patients.

Exercise 23.6 Design a data representation for your registrar’s office. Infor-
mation about a course includes a department name (string), a course num-
ber, an instructor, and an enrollment, which you should represent with a
list of students. For a student, the registrar keeps track of the first and last
name and the list of courses for which the student has signed up. For an
instructor, the registrar also keeps track of the first and last name as well as
a list of currently assigned courses.

Exercise 23.7 Many cities deploy information kiosks in subway stations to
help tourists choose the correct train. At any station on a subway line, a
tourist can enter the name of some destination; the kiosk responds with
directions on how to get there from here.

The goal of this exercise is to design and explore two different data rep-
resentations of a straight-line subway line. One way to represent a line for
an information kiosk is as a list of train station. Each station comes with
two lists: the list of stops (names) from this one to one end of the line and
the stops from this one to the other end of the line. Another way is to think
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of a subway stop as a name combined with two other stops: the next stop
in each direction. This second way is close to the physical arrangement; it is
also an example of a doubly linked list. Hint: Consider designing the method
connect for this second representation of a subway station. The purpose of
this method is to connect this station to its two neighbors. The end stations
don’t have neighbors.

class StrangeExample {
int x;

StrangeExample() { this.x = 100; }

boolean test = check this.x expect 100;
}

StrangeExample(
x = 100,
test = false)

before the initialization of test this -
x: test:

0 ???

check this.x expect 100

before the constructor invocation this -
x: test:

0 false

this.x = 100

the constructed object this -
x: test:

100 false

Figure 121: The behavior of constructors

Design both representations. Represent the Boston red line, which con-
sists of the following stops: JFK, Andrew, Broadway, South Station, Down-
town Crossing, Park Street, MGH, Kendall, Central, Harvard, Porter, Davis,
and Alewife.
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23.2 The True Nature of Constructors

A full understanding of circular objects also demands a full explanation of
the true nature of constructors. Until now, we have acted as if a constructor
creates instances of a class. In reality, the new operation creates the ob-
jects; the constructor assigns values to fields and performs other actions.
This just begs the question then what values the fields contain before the
constructor is invoked.

In Java and ProfessorJ (Advanced), each field is initialized based on its
type. Specifically, each int field is initially set to 0; each boolean field to
false; each double field to 0.0; and each field with a class or interface type—
including String—is set to null, the wildcard value.

Not surprisingly, the initialization process and its assignments can pro-
duce strange results. For one example, take a look at figure 121. Its top-left
side displays a class with two fields whose constructor initializes the int
field to 100 and whose test field compares the int field with 100. The top-
right side shows how ProfessorJ displays an instance of this class, an object
with two fields: x, which equals 100, and test, which equals false. Consid-
ering that test is the result of comparing x and 100 and that x is indeed 100,
the false value in test demands some explanation.

The bottom half of figure 121 explains how the object is created. First,
the fields are initialized, based on their type; x is set to 0, and test is false.
Second, the right-hand side of the test field declaration is evaluated. Since x
is 0 at this point, comparing this.x with 100 produces false, which remains
the of test. Finally, the constructor is invoked. It contains a single assign-
ment to this.x, which changes the value to 100. Thus, the x field ends up as
100 even though test is set to false. Naturally, this behavior has serious con-
sequences for testing, and we encourage you to read the notes on testing
before you continue.

Testing in
Advanced

23.3 Circularity and Encapsulation

If you go back to chapters I and II, you will find cycles in all self-referential
class diagrams. There is (almost) no other way to create a piece of data
without pre-determined limit on its size. The left side of figure 122 displays
the class diagram for a list of ints; the right side shows the interface and
class definitions for this list.

The cycle in the diagram suggests that creating a circular list of ints is
possible. And indeed, now that we know about assignment statements, it
is possible and relatively straight forward. Take a look at this class:
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+-------+
| IList |<----------+
+-------+ |

| |
/ \ |
--- |
| |

+------+------+ |
| | |

+------+ +-----------+ |
| MT | | ConsLog | |
+------+ +-----------+ |

| int fst | |
| IList rst |-+
+-----------+

interface IList {}

class MT implements IList {}

class Cons implements IList {
int fst;
IList rst;

Cons(int fst, IList rst) {
this.fst = fst;
this.rst = rst;
}
}

Figure 122: Creating Circular Lists

class Example {
Cons alist = new Cons(1,new MT());

Example() {
this.alist.rst = alist;
}
}

It has a single field: alist, which has the initial value new Cons(1,new MT()).
The constructor then assigns the value of alist to the rst field of alist, which
makes it a circular list.

We can visualize Example’s alist and the assignment to alist using the
box diagram for structures from How to Design Programs:

before:

alist-
fst: rst:

1 new MT()

alist.rst = rst after:

alist-
fst: rst:

1 •�

The boxes have two compartments, because Cons has two fields. Initially
the content of the first compartment is 1; new MT() is in the second com-
partment. The box itself is labeled alist, which is its name. When the con-
structor assigns alist to rst of alist, it sticks the entire box into itself. We
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can’t draw such a box, because it would take us forever; but we can indi-
cate this self-containment with an arrow that goes from the inside of the
compartment back to the box, the exact same place that is called alist.

Exercise

Exercise 23.8 Design the method length for IList. The method counts how
many ints this IList contains. After you test the method on regular exam-
ples, run it on alist from Example on the previous page:

new Example().alist.length()

What do you observe? Why?

class Cons implements IList {
private int fst;
private IList rst;

public Cons(int fst, IList rst) {
this.fst = fst;
this.rst = rst;
}
}

Figure 123: Privacy declarations to prevent unintended circularities

The example suggests that assignment statements not only add neces-
sary power; they also make it easy to mess up. Until now we didn’t need
circular lists, and there is no obvious reason that we should be able to create
them unless there is an explicit demand for it. Otherwise we can get truly
unwanted behavior that is difficult to explain and, when it shows up later
by accident, is even more difficult to find and eliminate.

Our solution is to use privacy declarations for all fields and for all meth-
ods as advertised at the end of the preceding part. In this case, we just
need to protect the two fields in Cons and publicize the constructor: see
figure 123. With this protection in place, it is possible to create instances of
Cons and impossible to assign new values to these fields from the outside.
Hence, it is also impossible to create circular lists.
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In short: if you want circular collections of data, design them explicitly
and intentionally. Use privacy declarations so others don’t create circular
data by chance.

23.4 Example: Family Trees

Carl (1926)

Eyes: green

Bettina (1926)

Eyes: green

Adam (1950)

Eyes: yellow

����������

Dave (1955)

Eyes: black

HHHHHHHHHH

Eva (1965)

Eyes: blue

HHHHHHHHHH

XXXXXXXXXXXXXXXXXXXX

Fred (1966)

Eyes: pink

Gustav (1988)

Eyes: brown

@
@

@
@

@

�
�
�
�
�

Figure 124: A sample family tree

In How to Design Programs, we studied both ancestor and descendant fam-
ily trees. The idea was to write software that assists genealogists and others
who study family trees. At the time our programs could answer such ques-
tions as “list all your ancestors” or “list all the descendants of this person”
or “is there someone with blue eyes in your ancestor tree.” Let’s revisit this
problem now:

. . . Your company has agreed to create software for a genealogy
department at a research hospital. Your manager has asked you
to design the data representation for family trees. To help you
design this data representation, your manager has also posed
two sample design problems concerning methods:

1. Locate an ancestor of this person with a given name.

2. Determine the names of the siblings of this person.
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Finally, your manager has also provided a sample family tree:
see figure 124. . . .

Here are the two data definitions from How to Design Programs for an-
cestor trees and descendant trees:

1. (define-struct child (father mother name age eye-color))

A Family-Tree-Node (short: FTN) is either

(a) ’unknown; or

(b) (make-child FTN FTN String Number String)

2. (define-struct parent (children name age eye-color))

A Parent is a structure:
(make-parent LOC String Number String)

A list-of-children (short: LOC) is either

(a) empty; or

(b) (cons Parent LOC)

To create the ancestor family tree of a newborn child, we call the constructor
with information about the child and representations of the mother’s and
father’s family tree:

(define father . . . )
(define mother . . . )
(define child (make-child father mother "Matthew" 10 "blue"))

That is, the data for the ancestors must exist before child is created. In con-
trast, to create a descendant tree for a mother, we create a representation of
her family tree using the list of her children and other personal information:

(define loc (list . . . ))
(define mother (make-parent loc "Wen" 30 "green"))

Thus, in an ancestor tree, it is easy to find all ancestors of a given person in
the tree; in a descendant tree, it is easy to find all descendants.

Even if we didn’t have any experience with family tree representations,
just replacing the lines in figure 124 with arrows from children to parents
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would give us the same insight. Such arrows lead to containment arrows
in a class diagram, meaning a node in the family tree contains fields for
parents (father, mother). This, in turn, means a method can follow these ar-
rows only in the ancestor direction. Conversely, if we point the arrows from
parents to children, the nodes contain lists of children, and the methods can
easily compute facts about descendants.

+-------------+<-----------------+
| IFamilyNode |<----------------+|
+-------------+ ||

| ||
/ \ ||
--- ||
| ||

+--------------------------------+ ||
| | ||

+-------------------+ +-------------------+ ||
+->| Person | | UnknownPerson | ||
| +-------------------+ +-------------------+ ||
| | String name | | IPersons children | ||
| | | +-------------------+ ||
| | | ||
| | FamilyNode father |---------------------------------+|
| | FamilyNode mother |----------------------------------+
| | | +----------+
| | IPersons children |------>| IPersons |<----------------+
| +-------------------+ +----------+ |
| | |
| / \ |
| --- |
| | |
| +--+------------+ |
| | | |
| +-----------+ +--------------+ |
| | MTPersons | | ConsPersons | |
| +-----------+ +--------------+ |
| | | |
+------------------------------------------| Person fst | |

| IPersons rst |-+
+--------------+

Figure 125: A family tree representation for computing siblings

What this all means is that one problem is easy and one is difficult with
what we know:

• Finding all the ancestors of a given person is easy with a plain ances-
tor tree. The node that represents the given family member contains
the family trees for mother and father, and designing a plain recursive
traversal solves the problem.

• In contrast, the second problem requires more than one-directional
arrows from our data representation. After all, the siblings of a node
are all the immediate descendants of the parents (minus the node it-
self). Put differently, from each node, a sibling-computing method
must be able to go up and down in the family tree.
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Figure 125 translates this problem analysis into a class diagram. Most of
the class diagram is straightforward. The upper half is the class-based
equivalent of the FTN definition (ancestor family tree) above: the interface
IFamilyNode is the type and the two implementing classes—Person and Un-
knownPerson—are the variants. The lower half is the class-based equivalent
of the Parent and LOC definitions above: Person corresponds to Parent and
IPersons corresponds to LOC.

// a family tree in which we can
// compute the siblings of a node
interface IFamilyTree {

// add a child to this
// node’s list of children
void addChild(Person child);
}

class Person
implements IFamilyTree {

String name;
IFamilyTree mother;
IFamilyTree father;

IPersons children =
new MTPersons();

Person(String name, IFamilyTree father,
IFamilyTree mother) {

this.name = name;
this.mother = mother;
this.father = father;

this.mother.addChild(this);
this.father.addChild(this);
}

void addChild(Person child) {
this.children =

new ConsPerson(child, this.children);
}
}

class Unknown
implements IFamilyTree {

IPersons children = new MTPersons();

Unknown() {}

void addChild(Person child) {
this.children =

new ConsPerson(child, this.children);
}
}

// list of Persons
interface IPersons {}

class MTPersons
implements IPersons {

MTPersons() {}
}

class ConsPerson
implements IPersons {

Person fst;
IPersons rst;
ConsPerson(Person fst, IPersons rst) {

this.fst = fst;
this.rst = rst;
}
}

Figure 126: Classes for a family tree representation
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In the context of this diagram, the second programming problem can be
expressed in concrete terms:

. . . Design the method siblings that, given an instance of Person,
finds all siblings. . . .

The Person class contains two fields for the immediate ancestor trees, both
of type IFamilyNode. In turn, both of its implementing classes contain lists
of immediate descendants. In short, it is possible to go up and down in such
a family tree, and this means that a Person can be in a circular relationship
to another Person.

It is now time to determine which nodes should exist first and which
nodes are added later via add methods. If we follow our instinct, we say
parents exist first, and children are added later. This is how it works in
nature, and if our program implements this solution, it is natural.

Using this decision and following the new design recipe requires that
we fix a good initial value for children in Person. Again, the natural choice is
new MTPersons(), the empty list of children. Next we must add a method
for adding new children to a family tree node. So, imagine a genealogist
who has entered the data for Bettina and Carl from figure 124. The first
child is Adam, which would be created via

new Person("Adam",carlFT,bettinaFT)

assuming carlFT and bettinaFT are names for the family trees of Carl and
Bettina. As the constructor is evaluated, it should add the new object for
representing Adam to both parent nodes. Conversely, we need a method to
add a child to the list of children:

inside of IFamilyTree :
// add a child to this node’s list of children
void addChild(Person child);

The actual method definition looks almost identical to the addBook in Au-
thor. It shows up in both UnknownPerson and Person because both can have
children; for an instance of UnknownPerson, we just don’t know the name
or the parents.

Last but not least we must decide where to call addChild. Since a child
is represented as an instance of Person, the only possible place is within the
constructor for Person, i.e., after the constructor has initialized the mother
and father fields, it calls the addChild method for both connecting the parents
to their children.

Figure 126 displays all interface and class definitions. The left column
is all about the ancestor tree; the right column is the representation of the
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list of children. The last step in the design recipe is to ensure that we can
represent information examples properly, including the circular ones. We
leave this to an exercise.

Exercises

Exercise 23.9 Use the class definitions in figure 126 to represent the infor-
mation in figure 124 as data. Ensure that you can navigate from one sibling
to another via the existing methods and fields. Draw a box diagram for the
resulting objects.

Exercise 23.10 Create an instance of Person whose parent fields point to
itself. Add privacy declarations to the classes in figure 126 so that the state
of all objects is encapsulated and hidden from the rest of the program. Can
these declarations prevent self-parenting instances of Person?

Exercise 23.11 Abstract over the common patterns (see the Person and Un-
known classes) in figure 126.

Exercise 23.12 Design a data representation for a file system like the one
found on your computer. Make sure you can implement methods for listing
all files and folders in a folder; for changing the focus to a folder that is
inside the current folder; and for changing the focus to the parent of the
current folder. Which of the potential design tasks, if any, require you to
design circular relationships into the data representation?

Exercise 23.13 Design a data representation for a representing a river sys-
tem. You must be able to go back and forth along the river, including from
the confluence where a tributary joins to both of the preceding points. See
section 5.2 for a simple representation of river systems.

24 Methods on Circular Data

Now that we can create circular (collections of) objects, we must learn to
design methods that process them. Let’s return to the bookstore problem
for this purpose:

. . . The “bookstore” program assists bookstore employees with
the task of finding books and authors. . . . Assume that a book-
store maintains a list of authors and their books as in figure 127.
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+----------+
| IAuthors |<------------------+ +------------+ +--------------+
+----------+ | +--->| Author |<---+ +-->| Book |

| | | +------------+ | | +--------------+
/ \ | | | String fst | | | | String title |
--- | | | String lst | +--/2/-+ | int price |
| | | | int dob | | | | int quantity |

+--+------------+ | | | Book bk |--+ +--/1/---| Author ath |
| | | | +------------+ +--------------+

+-----------+ +--------------+ | |
| MTAuthors | | ConsAuthors | | |
+-----------+ +--------------+ | |

| Author fst |-|----+
| IAuthors rst |-+
+--------------+

Figure 127: A simplistic bookstore: the class diagram

Design the method findTitle, which given an author’s last name,
finds the title of the author’s book. . . .

The extension is a method design problem that we encountered many times
in the first three chapters of the book. Indeed, if it weren’t for the mutual
references between Book and Author—labeled with 1 and 2 in figure 127—
the problem would be straightforward.

To understand the problem with processing circular references, let’s fol-
low the regular design recipe until we get stuck. The problem statement
calls for the addition of a single method signature to the IAuthors interface:

inside of IAuthors :
// retrieve the title of last’s book from this author list; "" if none
String lookupTitle(String last);

If the list contains a record for Knuth’s The Art of Computer Programming
(volume 1), then

check authorList.lookupBookByAuthor("Knuth")
expect "The Art of Computer Programming (volume 1)"

The inheritance arrow between IAuthors and its implementing classes
shows us where the templates go and what they look like:

inside of MtAuthors :
String lookupTitle(String last) {

. . .
}

inside of ConsAuthors :
String lookupTitle(String last) {

. . . this.fst.lookupTitle(last) . . .

. . . this.rst.lookupTitle(last) . . .
}

In turn, the containment arrow from ConsAuthors to Author suggests the
addition of a lookupTitle method to that class:
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inside of Author :
String lookupTitle(String last) {

. . . this.fst . . . // String

. . . this.lst . . . // String

. . . this.dob . . . // int

. . . this.bk.lookupTitle(last) . . .
}

Because Book contains a reference to he Author, we get a link back to Author
if we now proceed naively:

inside of Book :
String lookupTitle(String last) {

. . . this.title . . . // String

. . . this.price . . . // int

. . . this.quantity . . . // int

. . . this.ath.lookupTitleAgain(last)

}
After all, there is a containment arrow from Book to Author, labeled with 1
in figure 127.

Then again, a moment of reflection tells us that this link back from the
book to its author brings us back to the very same author. Perhaps it is best
to ignore this field and to proceed as if it didn’t exist. In that case, the prob-
lem looks just like a lot of the problems in chapter II. As a matter of fact,
the templates—without the gray-shaded method call—work out perfectly;
turning them into full-fledged methods is straightforward.

Exercises

Exercise 24.1 Figure 128 displays the portion of the program that deals
with a list of authors. In the bottom left corner, the figure displays a one-
item wish list. Modify the class definitions of Author and Book from fig-
ure 116 or 118 to work with the fragment of figure 128.

Exercise 24.2 The lookupTitle method returns "" if the list doesn’t contain
an instance of Author with the given last name. While this trick is possibly
justifiable for the lookupTitle method in IAuthors, it does not produce well-
designed programs in general.

At this point it is important to remember that the design recipe for
methods does not demand a method of the same name in a contained class.
It just suggests that you might need some auxiliary method (or several) in
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interface IAuthors {
// retrieve the title of last’s book from this author list
// return "" if no author with this last name exists
String lookupTitle(String last);
}

class MTAuthors
implements IAuthors {

MTAuthors() {}

public String lookupTitle(String l) {
return "";
}
}

wish list:

inside of Author :
// return title of the book if
// this author has the name last;
// return "" otherwise
String lookupTitle(String last)

class ConsAuthors
implements IAuthors {

Author fst;
IAuthors rst;

ConsAuthors(Author fst, IAuthors rst) {
this.fst = fst;
this.rst = rst;
}

public String lookupTitle(String last) {
if (this.fst.lookupTitle(last).equals("")) {

return this.rst.lookupTitle(last); }
else {

return this.fst.lookupTitle(last); }
}
}

Figure 128: Looking for a book title by author

the contained class. Use this reminder to formulate a more general tem-
plate for ConsAuthors, Author, and Book. Then define a variant of the pro-
gram that separates the task of checking for the author’s last name from the
task of retrieving the title of the author’s book.

Exercise 24.3 Add a data representation for lists of Books to figure 127. De-
sign the classes and a method for looking up the last name of an author by
the book title. Also design a method for looking up how many copies of a
given book title the store has.

It’s time to turn to the full-fledged bookstore problem where books have
many authors and authors write many books. The diagram in figure 119
(page 334) solves half the problem; there, each author is associated with
many books though each book has exactly one author. To attach many
authors to one book, we need an appropriate field in Book:
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IAuthors authors;

where IAuthors is the type of a list of Authors.
Figure 129 shows the suggested revision of figure 119. Two of the ar-

rows are labeled: 1 labels the containment arrow from Book to IAuthors; 2
is attached to the corresponding arrow from Author to IBooks. Each of the
two arrows can be used to create a cycle in a collection of instances of these
classes. Try it out!

The translation of the class diagram in figure 129 into class definitions
can start from the classes in figure 120. In this figure, the Author class pro-
vides a method for adding a book to an author’s list of books; the construc-
tor of the Book class calls this method every time a book is created for that
author, thus adding the book itself to the list. This invocation of addBook
must change, however; see figure 130. After all, a Book doesn’t have a sin-
gle author anymore, it has many. And adding the book to all authors’ book
lists requires a method by itself.

Thus our attempt to translate a data description into class definitions
has run into a surprising obstacle:

defining the classes requires the design of a non-trivial method.

In other words, data design and method design can now depend on each
other: to define the Book class, we need a method that adds the book to each
author, and to define this method we really need the class definitions.

Fortunately we know how to design methods, at least in principle, so
let’s forge ahead. Specifically, the design of methods can proceed based on
the class diagram, and this is what we try here. Following the precedent
from the first example in this section, we ignore the containment arrow
pointing back from Author to Book—labeled 2 in figure 129—for the design
of the method. Without this arrow, the design problem is just another in-
stance of the problems we know from chapter II.

Representing a list of authors is easy at this point; we use IAuthors for
the type of lists, and MtAuthors and ConsAuthors for the concrete variants.
The method signature of addBookToAll and purpose statement shows up in
the interface:

inside of IAuthors :
// add the book to all the authors on this list
void addBookToAll(Book bk);

The return type is void because the purpose of the method is modify each
item on the list, not to compute something. The appropriate method tem-
plates look like this:
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+----------+ +----------+
| IBooks |<------------------+ +--->| IAuthors |<------------------+
+----------+<----------------+ | | +----------+ |

| | | | | |
/ \ | | | / \ |
--- | | | --- |
| | | | | |

+--+------------+ | | | +--+------------+ |
| | | | | | | |

+---------+ +--------------+ | | | +-----------+ +--------------+ |
| MTBooks | | ConsBooks | | | | | MTAuthors | | ConsAuthors | |
+---------+ +--------------+ | | | +-----------+ +--------------+ |

+----| Book fst | | | | +-----| Author fst | |
| | IBooks rst |-+ | | | | IAuthors rst |-+
| +--------------+ | | | +--------------+
| | | |
| | | |
| | | |
v | | v

+------------------+ | | +----------------+
| Book | | | | Author |
+------------------+ | | +----------------+
| String title | | | | String first |
| IAuthors authors |--/1/-------------+ | String last |
| int price | | | int dob |
| int quantity | +----/2/----| IBooks books |
+------------------+ +----------------+

Figure 129: Books and authors: the class diagram

class Author {
String fst;
String lst;
int dob;
IBooks bk = new MTBooks();

Author(String fst, String lst, int dob) {
this.fst = fst;
this.lst = lst;
this.dob = dob;
}

void addBook(Book bk) {
this.bk = new ConsBooks(bk, this.bk);
return ;
}
}

class Book {
String title;
int price;
int quantity;
IAuthors ath;

Book(String title, int price,
int quantity, IAuthors ath) {

this.title = title;
this.price = price;
this.quantity = quantity;
this.ath = ath;

this.ath.???;
}
}

Figure 130: Books and authors: the classes

inside of MtAuthors :
void addBookToAll(Book b) {

. . .
}

inside of ConsAuthors :
void addBookToAll(Book b) {

. . . this.fst.addBook(b) . . .

. . . this.rst.addBookToAll(b) . . .
}



354 Section 24

// lists of authors
interface IAuthors {

// add the book to all the authors on this list
void addBookToAll(Book bk);
}

class MTAuthors
implements IAuthors {

MTAuthors() {}

void addBookToAll(Book bk) {
return ;
}
}

class ConsAuthors
implements IAuthors {

Author fst;
IAuthors rst;

ConsAuthors(Author fst, IAuthors rst) {
this.fst = fst;
this.rst = rst;
}

void addBookToAll(Book bk) {
this.fst.addBook(bk);
this.rst.addBookToAll(bk);
return ;
}
}

Figure 131: Authors and addBookToAll

As always, the template is empty in MtAuthors. Similarly, the template
for ConsAuthors contains two method invocations: one for the fst field and
one for the rst field. The purpose of the latter is to add the book book to
the authors that are on the rest of the list; the purpose of the former is to
add the book to the first instance of Author. Of course, this second task is
exactly what addBook does, so there is no need to define a second method.
The only truly new part is that the two methods return void, and we have
never combined void values before. Indeed, there is no real operation for
combining void values, so we use “;” to throw them away and to return
void again from the end of the method. Figure 131 contains the complete
definitions, which are easy to figure out with what we have discussed so
far.

Exercise

Exercise 24.4 Perform the last step of the design recipe for classes, which in



Methods on Circular Data 355

this case is also the first step of the design recipe for methods: the creation
of data examples. Represent the following information about authors and
books with our chosen classes:

1. Donald E. Knuth. The Art of Computer Programming. Volume 1. Addi-
son Wesley, Reading, Massachusetts. 1968.

2. Donald E. Knuth. The Art of Computer Programming. Volume 2. Addi-
son Wesley, Reading, Massachusetts. 1969.

3. Donald E. Knuth. The Art of Computer Programming. Volume 3. Addi-
son Wesley, Reading, Massachusetts. 1970.

4. Matthias Felleisen, Robert B. Findler, Matthew Flatt, Shriram Krish-
namurthi. How to Design Programs. MIT Press, Cambridge, Mas-
sachusetts. 2001.

5. Daniel P. Friedman, Matthias Felleisen. The Little LISPer. Trade Edi-
tion. MIT Press, Cambridge, Massachusetts. 1987.

Use auxiliary fields to make your life as easy as possible.

Now that we have a full-fledged data representation for books and au-
thors, let’s repeat the design of the lookupTitle method. Naturally, this time
the method doesn’t return a single title but a list of titles, presumably rep-
resented as Strings. Let’s use ITitles for the type of all lists of book titles;
you can define this representation yourself.

The first step is to write down the signature and purpose statement of
the method that goes into the interface for lists of authors:

inside of IAuthors :
// produce the list of book titles that
// the author wrote according to this list
ITitles lookupTitles(String last);

The method signature of lookupTitles is the translation of the problem state-
ment into code: the method works on lists of authors and it consumes an
author’s name. The result has type ITitles. This time we ignore link 1 in
figure 129, the containment arrow from Book back to IAuthors.

The second design step is to develop functional examples. For sim-
plicity, we use the data examples from exercise 24.4, assuming you have
translated the information into data and called the resulting list all:
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check all.lookupTitles("Knuth") expect

new ConsTitles("The Art of Computer Programming (volume 3)",
new ConsTitles("The Art of Computer Programming (volume 2)",

new ConsTitles("The Art of Computer Programming (volume 1)",
new MTTitles()))

The method call requests all the books that Knuth wrote. The list of result-
ing titles is presented in reverse chronological order, because we assume
that the chronological order is the one in which the books have been added
to the author’s list of books.46

For the third step, we take inventory and write down what we know
for each concrete method in the two IAuthors classes:

inside of MTAuthors :
ITitles lookupTitles(String lst) {

. . .
}

inside of ConsAuthors :
ITitles lookupTitles(String lst) {

. . . this.fst . . . // Author

. . . this.rst.lookupTitles() . . . // ITitles
}

In the case of the empty list, we know nothing else. For the case of a con-
structed list, we know that there is an author and, via the natural recursion,
another list of titles.

You can finish the definition of lookupTitles in MTAuthors trivially; if
there are no (more) authors, the result is the empty list of titles. The case
of ConsAuthors requires a bit of planning, however. First, we distinguish
two cases: the Author object is for the author with last name lst or it isn’t. In
the latter case, the result of the natural recursion is the result of the method.
Otherwise, the search process has found an author with the matching name
and therefore this.fst.bk provides access to the list of the author’s books.

Put differently, we get two entries on our wish list:

1. is, a method that compares an author’s last name with a given string:

inside of Author :
// is the last name of this author equal to lst?
boolean is(String lst)

2. allTitles, a method that extracts the list of titles from a list of books

inside of IBooks :
// the list of titles from this list of books
ITitles allTitles()

46An alternative is to represent the result as a set and to compare the results with set-
equality; see section 21.
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The first method has a simple, one-line definition; the second one belongs
to lists of books and thus leads to a wish list entry.

Exercises

Exercise 24.5 Create an Example class from the test case for lookupTitles.
Develop two additional examples/tests: one for an author who has a single
book to his name and one for an author with no books.

Exercise 24.6 Complete the definition of lookupTitles assuming the methods
on the wish list exist.

The design of the allTitles method poses the same problem as the design
of lookupTitles. This time it is the authors field in Book that causes the circular
link in the chain. Hence we ignore this field and proceed as usual:

inside of IBooks :
// produce the titles of this list of books
ITitles allTitles();

The signature shows that the method just traverses an object of type IBooks,
i.e., a list of books; the purpose statement repeats our task statement in a
concise manner.

For the example step, if knuth stands for the list of all of Knuth’s books
from exercise 24.4 (in order), we should expect this result:

check knuth.bk.allTitles() expect

new ConsTitles("The Art of Computer Programming (volume 3)",
new ConsTitles("The Art of Computer Programming (volume 2)",

new ConsTitles("The Art of Computer Programming (volume 1)",
new MTTitles()))

This is, of course, also the result of all.lookupTitles("Knuth"). In other words,
we have exploited the example for one method to create an example for an
auxiliary method, which is a common way to develop tests.

Creating the template is also similar to what we did before:

inside of MTBooks :
ITitles allTitles() {

. . .
}

inside of ConsBooks :
ITitles allTitles() {

. . . this.fst . . . // Book

. . . this.rst.allTitles() . . . // ITitles
}

As before, MTBooks contains no other fields, so the template contains no
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expressions; the ConsBooks contains two fields and the method template
contains two lines: one that reminds of the first book and one that reminds
us of the natural recursion, which collects the rest of the list of titles.

The step from the template to the full definitions is again straightfor-
ward. One method returns the empty list of titles and the other one com-
bines the title from the first book with the list of titles from the second book.

Exercises

Exercise 24.7 Design the is method for Author. Finish the design of allTitles;
in particular, run the test for the method and ensure it works.

Finally, after both definitions are confirmed to work run the tests from
exercise 24.5.

Exercise 24.8 Add computer science books of two distinct authors with the
same last name to the inventory. In this new context, develop a functional
example that uses this new last name; turn it into a test. If the program
from exercise 24.7 fails the test, modify it so that it passes this new test.

Exercise 24.9 Design ITitles so that it represents a set of titles instead of a
list. In other words, the order of entries shouldn’t matter. Equip the class
with the method same, which checks whether this set contains the same
elements as some given set. Hint: See exercise 19.4 and Section 21.

Reformulate the test cases in exercise 24.5 using same and make sure that
your solution of exercise 24.7 still passes these tests. What is the advantage
of doing using sets?

Our simple idea worked. If we just ignore the fields that create circular-
ity and proceed with the design of methods as before, we can successfully
design methods for circular data. In short, the problem is one of viewing the
data properly and of understanding the design of the data representation
from the perspective of the method design problem.

Exercises

Exercise 24.10 Design the method findAuthors, which given the title of a
book, produces the names of its authors.

Exercise 24.11 Add the following methods to the bookstore program:
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1. titlesInYear, which produces a list of all book titles that some author
with given last name published during some given year;

2. allAuthors, which produces the list of all last names;

3. value, which computes the value of the current inventory.

Exercise 24.12 This exercise extends the design problem of exercise 23.6.
Design the following methods:

1. numberCourses, which counts the courses a student is taking;

2. takesCourse, which helps instructors figure out whether some student
(specified via a last name) is enrolled in a given course;

3. jointCourses, which allows the registrar to determine the enrollment
common to two distinct courses as a list of last names.

Also add enrollment limits to each course. Make sure that a method for
enrolling a student in this course enforces the enrollment limit.

Exercise 24.13 This exercise resumes exercise 23.5. Design the sameDoctor
method for the class of patients. The method consumes the last name of
some other patient and finds out whether the two are assigned to the same
primary care physician.

Exercise 24.14 Design the method findDirection to both data representa-
tions of a subway line from exercise 23.7. The method consumes the name
of the station to where a customer would like to go and produces a short
phrase, e.g., "take the train to ..." or "you are at ...".

25 The State of the World and How It Changes

The goal of creating cyclic collections of objects has forced the introduction
of a new computation mechanism and concept: assignment statements and
the idea that one and the same field can stand for many different values
during a program evaluation. Not surprisingly, this idea has more uses
than just the creation of cyclic objects. Before we study those and how they
affect the design of classes, let’s stop and assess what we have learned:

1. “Equations” aren’t equations; they are assignments. For now, the left
side of an assignment is a field; the right side is an arbitrary expres-
sion. The field on the left is either a field in the current class, e.g.,
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inside of Author :
this.books = new ConsBooks(bk,this.books);

or it is a field in some other class assuming this field is public, e.g.,

inside of Book :
this.ath.bk = this;

The purpose of an assignment statement is to change what the field
represents.

2. If the return type of a method is void, the method does not commu-
nicate the results of its computation directly to its caller. Instead, it
changes some fields, from which the caller or some other piece of
code retrieves them. When the method is done, it returns the invisi-
ble void value.

Your programs can’t do much with the void value. It exists only as a
token that signals the end of some computation. Conversely, it allows
the next computation in the program to proceed.

3. The purpose of “statement1 ; statement2” in Java programs is to say
that the evaluation of statement2 begins when statement1 is done. The
value of statement1 is ignored. In particular, when you see

this.field1 = field1;
this.field2 = field2;
. . .

in a constructor, the assignments are evaluated in this order, and their
results are thrown away.

All of this has profound implications. Most importantly, now time mat-
ters during program evaluation. In the past, we acted as if a field in a
specific object stands for one and the same value during the entire pro-
gram evaluation. After the introduction of assignment statements, this is
no longer true; the value of a field can change and we must learn to fig-
ure out what the current value of a field is when we encounter a reference
during an evaluation.

Next, if assignments change what fields represent, we can use assign-
ments to represent changes in the world of our programs. Consider a Java
object that represents a dropping ball. Thus far we have created a new ob-
ject for every tick of the clock, but the fact that field values can be changed
suggests we have an alternative.
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Last but not least, assignments change what we mean with equality.
When we update the list of books in an Author object, the object changes
yet it remains the same. When we propose to keep track of the height of a
dropping ball via assignment, we are proposing that the ball changes and
yet it also remains the same.

The remaining sections explore these topics in detail. First, we show
how to use our new powers to represent change. Second, we study equality,
i.e., what it means for two objects to be the same.

class DrpBlock {
int ow = 10;
int oh = 10;
int x;
int y;
IColor oc = new White();

DrpBlock(int x, int y) {
this.x = x;
this.y = y;
}

DrpBlock drop() {
return

new DrpBlock(this.x,this.y+1);
}

boolean isAt(int h) {
return this.y + this.oh >= h;
}

boolean draw(Canvas c) {
return c.drawRect(. . . );
}
}

class DrpBlock {
int ow = 10;
int oh = 10;
int x;
int y;
IColor oc = new White();

DrpBlock(int x,int y) {
this.x = x;
this.y = y;
}

void drop() {
this.y = this.y + 1;
return ;
}

boolean isAt(int h) {
return this.y + oh >= h;
}

boolean draw(Canvas c) {
return c.drawRect(. . . );
}
}

Figure 132: Blocks with Changing State: Applicative vs. Imperative

26 Assignments and Changes in the World

Your goal for this section is to gain an intuitive understanding of what it
means to represent changes in the world via assignments to fields. We com-
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pare and contrast this new idea with the old approach via three examples,
including a re-designed drawing package. These examples set up the next
section, which presents the principles of design of imperative classes and
methods.

class BlockWorld extends World {
private int WIDTH = 200;
private int HEIGHT = 200;
private IColor bgrdColor = new Red();

private DrpBlock block = new DrpBlock(this.WIDTH / 2,0);

public BlockWorld() {
this.bigBang(this.WIDTH,this.HEIGHT,.01);
}

public World onTick() {
this.block.drop();
if (this.block.isAt(this.HEIGHT)) {

return endOfWorld("stop!");
}
else {

return this; }
}

. . .
}

Figure 133: One More World of Dropping Blocks

26.1 Example: Dropping Blocks

The first example takes us back to the world of dropping blocks. Figure 132
displays two versions of our exploratory program for dropping a single
block from the top of a canvas to the bottom. On the left you see the familiar
program that creates a block from its x and y coordinates and that creates a
new block for every clock tick.

On the right side, you find a rather different version employing void
and an assignment statement. The two versions differ in just one place: the
drop method. While the left-hand version creates and returns a new in-
stance of DrpBlock for each clock tick, the right-hand version changes the y
coordinate of the instance.
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One way of viewing the two classes is to perceive them as two different
representations of change in the world (as in, the domain with which our
program acts). In the left version the current world, dubbed APPLICATIVE,
is a function of time; as time goes by, the program creates new worlds, each
representing another moment. This approach is typically used in physi-
cal models, chemistry, and other natural sciences as well as in engineer-
ing disciplines such as signal processing. In the right version, the world
stays the same but some of its attributes change. This second approach,
dubbed IMPERATIVE or STATEFUL in this book, is the electrical computer
engineer’s view of a changing world, based on the idea of computing as
turning “switches” on and off.47

Exercise

Exercise 26.1 Add privacy modifiers to the imperative DrpBlock class.

Given the new, alternative definition of DrpBlock, the question is how
BlockWorld should change to accommodate the imperative version of Drp-
Block. Clearly, the method that requires discussion is onTick, because it is
the one that uses the drop method:

inside of BlockWorld: (applicative)
World onTick() {

return new BlockWorld(this.block.drop());
}

Now that drop’s return type is void, we can no longer use its result to create a
new BlockWorld. Instead the method for the imperative version of BlockWorld
must invoke drop and return a World:

inside of BlockWorld : (imperative: version 1)
World onTick() {

this.block.drop();
return new BlockWorld(this.block);
}

If you stop to think about this new instance of BlockWorld, however, you
quickly realize that the new BlockWorld contains the exact same old block

47This contrasts with a computer scientist who should be able to use and easily switch
between the two views.
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and is therefore the same as the old instance of BlockWorld. Therefore the
method might as well just produce this:

inside of BlockWorld : (imperative: version 2)
World onTick() {

this.block.drop();
return this;
}

Of course, we really want the block to land when its bottom reaches the
bottom of the canvas, which means that the actual method also needs to
perform some tests.

Figure 133 displays the final definition of onTick for the imperative ver-
sion of DrpBlock: see the nested box. As discussed, the method first drops
the block. Then it uses the isAt method in DrpBlock to determine whether
block has reached the specified HEIGHT. If so, the world ends with the block
resting on the ground; otherwise, onTick returns this world.

26.2 Example: Accounts

Imagine you are working for a bank that wishes to replace its 30-year old
COBOL accounting system with a modern-day Java version. Your manager
is still unfamiliar with this novel technology that everybody else is using
already so she wishes you to conduct a programming experiment:

. . . Design a simple account
class that can perform three typ-
ical bank tasks: deposit money,
withdraw money, and compute
the balance. One of the bank’s
clerks has sketched a graphical
user interface for this simple ac-
count (see left). . . .

If you were to design this class according to the conventional design
recipe, you would come up with the following data definition and goals
for designing methods:

1. You need a single class, Account, with two fields: one that represents
the account holder and one for the current balance. For example, the
account from the sample user interface might be created with

new Account("Sally Ame",12009.88)
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The initial deposit should be larger than 0.

2. The class needs at least three publicly visible methods:

inside of Account :
// deposit the amount a into this account
Account deposit(int a)

// withdraw the amount a from this account
Account withdraw(int a)

// create a balance statement from this account
String balance()

Naturally the deposit and withdrawal amounts should be larger than
0 and the withdrawal amount should also be less than or equal to the
money in the account.

With all your experience by now, it is straightforward to follow the de-
sign recipe and to come up with the definition of Account shown on the
left in figure 134. The only curious tidbit concerns balance, which uses the
String.valueOf 48 method for converting an int into a String.

Exercises

Exercise 26.2 Add privacy specifications to the applicative Account class.

Exercise 26.3 Add conditionals to Account’s constructor, deposit, and with-
draw methods that check on the above stated, informal assumptions about
their int arguments. If any of the given amounts are out of the specified
range, use Util.error to signal an error.

To convert this class into an imperative one, let’s follow the outline of
the preceding subsection. It suggests that the methods whose return type
is Account should be converted into methods that produce void. Instead of
creating a new instance of Account, the revised methods change the amount
field in the existing object. Specifically, deposit uses this assignment:

this.amount = this.amount + a;

48This method is another “dotted name” method to you.
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class Account {
int amount;
String holder;

// create the account
Account(String holder,int deposit0) {

this.holder = holder;
this.amount = deposit0;
}

// deposit the amount a
Account deposit(int a) {

return
new Account(this.holder,

this.amount + a);
}

// withdraw the amount a
Account withdraw(int a) {

return
new Account(this.holder,

this.amount − a);
}

// a balance statement
// of this account
String balance() {

return
this.holder.

concat(": ".
concat(

String.valueOf (this.amount)));
}
}

class Account {
int amount;
String holder;

// create the account
Account(String holder,int deposit0) {

this.holder = holder;
this.amount = deposit0;
}

// deposit the amount a
void deposit(int a) {

this.amount = this.amount + a;
return ;
}

// withdraw the amount a
void withdraw(int a) {

this.amount = this.amount − a;
return ;
}

// a balance statement
// of this account
String balance() {

return
this.holder.

concat(": ".
concat(

String.valueOf (this.amount)));
}
}

Figure 134: Bank Accounts: Applicative vs. Imperative

while withdraw uses this one:

this.amount = this.amount − a;

In general, the constructor argument for the changing field becomes the
right-hand side of the respective assignment statement.
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The complete imperative definition of Account is displayed on the right
side of figure 134. Because the imperative methods don’t need to say that
the holder field stays the same, they are actually a bit shorter than the ap-
plicative ones.49

Using the imperative version of Account is quite similar to using the
applicative one:

Account a0 = new Account("I",10);
Account a1 = a0.deposit(20);
Account a2 = a1.withdraw(10);
check a2.balance() expect "I: 20"

Account a3 = new Account("I",10);
a3.deposit(20);
a3.withdraw(10);
check a3.balance() expect "I: 20"

For the applicative version, we use a series of definitions. Each of them in-
troduces a new instance (a1, a2) as the result of using deposit or withdraw on
the latest account. For the imperative one, we use a series of method invo-
cations. Each of these invocations returns void after modifying the amount
field of a3. Because we don’t have to care about the return values, we can
use “;” to compose these statements. The significant difference between
the two examples is that the old accounts with the old balances are avail-
able in the applicative version; the assignments to amount in the imperative
versions literally destroy the relationship between amount and its values.

26.3 How Libraries Work 3: An Alternative World

The Canvas class in the draw package contains four methods that produce
true. If they produce true, their computation has succeeded; they have
drawn a shape on the canvas; the rest of the computation may proceed
now. If they don’t produce true, their computation has failed, because, say,
a drawRect was requested before start was called. In this case, the program
evaluation is stopped with an error.

When we invoke the Canvas methods from draw, we combine them
with && to make several changes to the canvas. For example,

Canvas c = new Canvas();
c.start(200,200) &&
c.drawRect(new Posn(0,0),200,200,new Red()) &&
c.drawString(new Posn(100,100),"hello world");

49In general, if a class had 10 fields and one of them changed, an applicative method
would call the constructor with 10 arguments, nine of which stay the same; an impera-
tive method contains only one assignment statement. Of course, a programming language
could provide support for shortening applicative methods to the same length.
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creates a 200 by 200 canvas with a red background and the words “hello
world” close to the center.

// to represent a world
abstract class World {

Canvas theCanvas = new Canvas();

// open a width by height canvas,
// start the clock, and
// make this world the current one
void bigBang(int width, int height,

double s)

// process a tick of the
// clock in this world
abstract void onTick()

// process a keystroke
// event in this world
abstract void onKeyEvent(String ke)

// draw this world
abstract void draw()

// stop this world’s clock
World endOfWorld(String s)

// stop this world’s clock
World endOfTime()
}

// controlling a computer canvas
class Canvas {

int width;
int height;
..
// display a canvas of
void show()

// draw a circle at p
void drawCircle(Posn p, int r, IColor c)

// draw a solid disk at p,
// fill with color c
void drawDisk(Posn p, int r, IColor c)

// draw a width x height rectangle
// at p, fill with color c
void drawRect(Posn p,int width,int height,

IColor c)

// draw s at position p
void drawString(Posn p, String s)

. . .
}

Figure 135: The idraw package

Even though the use of boolean works reasonably well, the use of void
as a return type would express our intentions better than boolean. After
all, the methods just need to return anything to signal that they are done;
what they return doesn’t matter. Furthermore, they also effect the state of
some object, in this case, the canvas on the computer screen. It is exactly
for this situation that Java provides void. Similarly, using && for sequenc-
ing changes to the canvas is a bit of an abuse of what boolean values are
all about. Once the methods return void, it becomes natural to use “;” for
sequencing effects, and this is what it symbolizes. For example, the above
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piece of code would become

Canvas c = new Canvas();
c.start(200,200);
c.drawRect(new Posn(0,0),200,200,new Red());
c.drawString(new Posn(100,100),"hello world");

if start, drawRect, and drawString returned void.

Figure 135 (right side) displays the skeleton of the Canvas class from the
idraw package. In this class, all of the methods have a void return type,
indicating that they work by changing the object not by producing a value.
Their actual workings remain the same. To use them in order, however,
you need to use “;” instead of &&.

The left part of figure 135 displays the World class from the idraw pack-
age. The changes to the Canvas class suggest two immediate changes to the
World class: draw uses void as its return type. Surprisingly though, most of
the other methods also produce void. Remember that in the draw package,
the bigBang method produces true to signal its work is done; again, void
expresses this better than boolean.

To explain the other changes, let us look back at the two key methods
in the draw package:

1. onTick (in draw) consumes the current world as this and produces a
new world, i.e., a world that represents the changes that happened
during one tick of the clock.

2. onKeyEvent (in draw) consumes the current world as this and a String
representation of a keyboard event; it produces a world that repre-
sents the changes that happened due to this keyboard event.

That is, the methods implement transitions and changes in our representa-
tion of a (small) world. Given this analysis, it is natural to say that these
changes can be accomplished via assignments to fields rather than the cre-
ation of new objects and the idraw package does so. The use of void as the
return type for both onTick and onKeyEvent implies that when your classes
override these methods, your methods must change some of the fields in
your subclasses of World.

Let us see how this works for our running example, the world of a
dropping block. We can’t quite use the classes from figures 132 (right side)
and 133. Even though these classes are imperative, they don’t work with
idraw because the types of onTick and onKeyEvent are wrong.
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So we start from scratch. The library design recipe says that we have to
design the four required50 methods:

import idraw.∗;
import colors.∗;
import geometry.∗;

class BlockWorld extends World {
. . .
private DrpBlock block;

public BlockWorld() { . . . to be designed . . . }

// draw the falling block in this world
public void draw() { . . . to be designed . . . }

// drop the block in this world by a pixel
public void onTick() { . . . to be designed . . . }

// do nothing
public void onKeyEvent(String ke) {

return ;
}
}

The block field is necessary because this world of blocks contains one drop-
ping block; the onKeyEvent method doesn’t do anything for now, so it just
returns void. Clearly, it is onTick (again) that requires our attention.

A brief consideration suggests that the task of onTick is to change the
block field; after all it is the only thing that changes in this world. We record
this insight in the purpose statement:

inside of BlockWorld :
// drop the block in this world by a pixel
// effect: change the block field
public void onTick() { . . . to be designed . . . }

This second line of the purpose statement is called an EFFECT STATEMENT.
The objective of an effect statement is to help us design the method and to
alert future readers to the change of fields that this method causes.

50Recall that labeling a method with abstract means that subclasses are required to im-
plement them.
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Together the purpose statement and the effect statement help us take
the first step in our design:

inside of BlockWorld :
// drop the block in this world by a pixel
// effect: change the block field
public void onTick() {

this.block = . . . a new block that is lower than the current one . . .
return ;
}

From the informal right-hand side of this assignment statement we know
that we need the usual drop method from the applicative DrpBlock class.
Hence, the following is a minimal onTick method:

inside of BlockWorld :
// drop the block in this world by a pixel
// effect: change the block field
public void onTick() {

this.block = this.block.drop();
return ;
}
The mostly complete class definition for an imperative BlockWorld (us-

ing idraw) is shown on the left side of figure 136. The draw method is as
expected. It uses the drawing methods from Canvas and return void. The
onTick method performs one additional task compared to the one we de-
sign: when the block reaches HEIGHT, the clock is stopped and with it the
animation.

The right side of the figure defines a mostly applicative DrpBlock. Its
drop method is applicative, i.e., it returns a new instance of the class with
new coordinates. Indeed, the class has barely changed compared to its
purely applicative method. Only its draw method uses an imperative draw-
ing method and “;” to sequence two statements.

Exercise

Exercise 26.4 Design methods for controlling the descent of the block with
left and right arrow keys.

At this point, you may wonder what it would be like to use the imper-
ative version of DrpBlock from figure 133. Even though the method signa-
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tures aren’t quite right, it is after all the block whose properties change over
time. Hence it should be designed using imperative methods and the rest
of the design should follow from this decision.

// an imperative world
class BlockWorld extends World {

private int HEIGHT = 200;
private int WIDTH = 200;
private IColor bgrdColor = new Red();
private DrpBlock block =

new DrpBlock(this.WIDTH/2,0);

public BlockWorld() {
this.bigBang(. . . );
}

public void draw() {
this.block.draw(theCanvas);
return ;
}

public void onTick() {
this.block = this.block.drop();
if (this.block.isAt(this.HEIGHT)) {

this.endOfTime();
return ; }

else {
return ; }

}

public void onKeyEvent(String ke) {
return ;
}
}

// an applicative block
class DrpBlock {

int ow = 10;
int oh = 10;
int x;
int y;
IColor oc = new White();

DrpBlock(int x, int y) {
this.x = x;
this.y = y;
}

DrpBlock drop() {
return

new DrpBlock(this.x,this.y+1);
}

boolean isAt(int h) {
return this.y + this.oh >= h;
}

boolean draw(Canvas c) {
c.drawRect(. . . );
return true;
}
}

Figure 136: The Last World of Dropping Blocks (idraw package)

Figure 137 displays the revisions of the two class definitions based on
this alternative design strategy. The important changes are highlighted:

1. The return type of drop is void because the method achieves its pur-
pose in an imperative manner.

2. The assignment statement changes the value of this.y, which repre-
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sents the physical drop of the block.

3. Afterwards the method returns the void value.

4. In onTick of BlockWorld, it is no longer possible or necessary to assign
the result of this.block.drop() to this.block. First, the result is void, not
a DrpBlock. Second, the drop method is invoked for its effect only,
meaning it changes the block’s fields. Hence, BlockWorld doesn’t have
to keep track of a new block; it just hangs on to the only one it has.

Also look at the effect statement for drop in DrpBlock. Like the one for onTick
before, this statement announces what changes on each call to drop so that
a reader doesn’t have to study all of drop’s body.

We have just discussed several different designs of the world of drop-
ping blocks, based on draw and idraw and using and mixing applicative
and imperative mechanisms. Go back through this section and look at all
the figures again before you go on to the next section, where we discuss the
design recipe for imperative classes and methods.

Exercise

Exercise 26.5 Design methods for controlling the descent of the block with
left and right arrow keys for the classes of figure 137.

27 Designing Stateful Classes, Imperative Methods

Recall from sections 6 and 16 that the purpose of classes is to represent
a collection of related pieces of information and their legal methods; the
purpose of a method is to produce data from its arguments, including the
data in a specific instance of the class. In this section, we discuss the design
of stateful classes and the design of methods that can change the fields of
their instances. Of course, the very existence of a design alternative (for
classes and methods) raises several questions:

1. When is it preferable to use stateful classes?

2. How do we design such classes and their imperative methods?

3. Does the template play a role?

4. How does statefulness affect the abstraction step?
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// an imperative world
class BlockWorld extends World {

private int HEIGHT = 200;
private int WIDTH = 200;
private IColor bgrdColor = new Red();
private DrpBlock block =

new DrpBlock(this.WIDTH/2,0);

public BlockWorld() {
this.bigBang(. . . );
}

public void draw() {
this.block.draw(theCanvas);
return ;
}

public void onTick() {
this.block.drop()

4
;

if (this.block.isAt(this.HEIGHT)) {
this.endOfTime();
return ;
}
else {

return ; }
}

public void onKeyEvent(String ke) {
return ;
}
}

// an imperative block
class DrpBlock {

int ow = 10;
int oh = 10;
int x;
int y;
IColor oc = new White();

DrpBlock(int x, int y) {
this.x = x;
this.y = y;
}

// effect: change the y field

void 1 drop() {
this.y = this.y+1;

2

return ;
3

}

boolean isAt(int h) {
return this.y + this.oh >= h;
}

void draw(Canvas c) {
c.drawRect(. . . );
return ;
}
}

Figure 137: The Very Last World of Dropping Blocks (idraw package)

5. What is the cost of (using) imperative methods?

The following subsections answer these questions, in roughly this order,
and then resume our running case study of the “War of the Worlds” game.
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27.1 When to Use Stateful Classes and Imperative Methods

The last example in the preceding section suggests a simple and obvious
guideline for the introduction of stateful classes and imperative methods:

If the libraries that you use provide stateful
classes and imperative methods, you must
consider designing stateful classes and im-
perative methods, too.

library criterion(1)

Thus, because the Canvas class of idraw implements a number of methods
with a void result type, methods that use them are naturally imperative,
too. The World class in idraw is an even better example than Canvas. If you
wish to use this stateful class to implement an animated world, you must
override onTick and onKeyEvent (among others), two methods with void re-
turn type. This implies that your methods cannot return a new “current”
world and have someone else51 take care of it; instead your methods must
modify the fields in this object (and/or the fields of some related objects)
to keep track of changes and transitions.

Of course, a comparison of figures 136 and 137 shows that it isn’t just
a question of library versus non-library code. Consider the following divi-
sion of tasks:

• We provide the idraw library.

• Someone recognized the imperative nature of idraw and designed the
BlockWorld subclass.

• You are asked to design the DrpBlock class.

How you execute your task all depends on the existing BlockWorld class. If
it follows the approach of figure 136, you are free to choose an applicative
or an imperative approach; if she chooses the approach of figure 137, you
must design DrpBlock as a stateful class, and you must make drop assign
new values to the y field.

Put differently, it isn’t so much about the separation of library and non-
library code but about how your classes and methods are to interact with
the rest of the project. This suggests a revised motto:

If you design is to use any stateful classes,
consider designing stateful classes and im-
perative methods, too.

library criterion(2)

51Now that you have co-designed an imperative block world with an applicative block
inside (figure 136), you understand in principle how World itself works.
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In short, it is all about the line that somebody drew between your code and
the rest of the code, and this line determines the nature of your design.

While both version of the criterion are pragmatic and straightforward
to understand, they actually fail to answer the true question, which is when
we want to use stateful classes. After all, we still don’t know why the de-
signers of the library or the project chose to introduce stateful classes in the
first place. And if we wish to become good designers, we must understand
their reasoning, too.

So, let’s ignore the library example from section 27 for a moment and fo-
cus on the first two: the stateful definition of DrpBlock and the Account class.
In both cases, we started from the premise that the class represents infor-
mation about objects that change over time. One way to recognize whether
a class represents changing objects is to study the relationship among its
methods, before you implement them. If one of the methods should pro-
duce different results depending on whether or how the methods of the class
have been called in the past, consider using assignments to the fields. Put
differently, if time matters, applicative classes represent it explicitly; state-
ful classes represent it implicitly with assignment statements.

Consider the Account class and the methods that its graphical interface
suggests: deposit, withdraw, and balance. A moment’s thought suggests that
the result of balance should depend on what amounts the account holder
has deposited and withdrawn since the account has been created. Similarly,
for DrpBlock objects the result of isAt depends on the flight time of the block,
i.e., on how often drop has been called.

Thus, our second criteria is this:

If any of the to-be-designed methods of a
class must compute results that depend on
the history of method invocations (for an ob-
ject), consider making the class stateful and
some of its methods imperative.

time (history) criterion

The designers of your libraries use this criterion, implicitly or explicitly,
when they create classes and methods for others to use. They imagine what
kind of things you want to compute with their methods or methods that
augment their classes (via subclassing). If their libraries control changing
physical objects, such as computer displays or sensors, they might choose
an imperative approach. If they imagine that your subclasses represent
changing objects, they are also likely to provide stateful classes and imper-
ative methods.
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Since you know that alternatives exist, i.e., that it is possible to repre-
sent change with applicative classes and methods, you might wonder why
it is more likely that library designers use imperative approaches,52 thus
inducing you to use imperative methods. There are two different answers
to this question:

1. The first answer concerns the complexity of the software. Although
the stateful classes and imperative methods we discussed don’t look
any simpler than their applicative counterparts, this is not true in gen-
eral. The hallmark of the applicative approach is that a method sig-
nature describes all possible channels on which values may flow into
or out of a method. Of course, this is also a restriction and, as sec-
tion 27.6 below shows, can lead to contorted signatures. In the worst
case, these contortions can become rather complex, though people
have not found a good way to measure this form of complexity.

2. The second answer concerns the complexity of the computation that
the software performs, which are measurable quantities53 such as
time, energy, or space. To this day, people don’t know yet how to
make applicative classes and methods as efficient as imperative ones.
That is, for many situations an imperative approach to state-changes
over time run faster than applicative ones, consume less energy than
an applicative one, and so on.

How to Design Programs introduced the issue of running time only at
the very end. As you learn to design pieces of a program that others
may use or that are going to survive for a long time, you will need
to pay more and more attention to this issue. This chapter is a first
step in this direction. As you pursue this path keep in mind, though,
that before you worry about your method’s running time or energy
consumption, you must get them correct and you must design them
so that you and others can understand and adapt them to new cir-
cumstances and improve them as needed.

With this in mind, let’s turn to the revision of the design recipe.

52This is true for Java and many object-oriented programming languages, though not for
OCAML and PLT Scheme, which both support class systems, too.

53They have therefore gained dominance in traditional approaches to programming.
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27.2 How to Design Stateful Classes, Imperative Methods

The design of stateful classes and imperative methods appears similar to
the design of applicative classes and methods at first glance but a new step
introduces an entirely new element. As before, your first task is still to
design a data representation for the information in your problem statement
(section 6), but now you also need to determine whether any of the classes
are imperative. Since our second “imperativeness” guideline depends on a
preliminary understanding of the methods, you also need to pay attention
to those as you figure out what classes you need and how they are related:

problem analysis Extract from your problem statement what information
you need to represent and what kind of classes you need. List the
potential classes by name and add a purpose statement to each.

class diagram (data definition) Draw a class diagram, which means add
fields to the classes and determine how they all relate to each other via
containment arrows. Don’t forget to use interfaces and inheritance
arrows to represent unions; introduce abstract classes only if they are
truly obvious.

stateful classes Your new task is to decide whether any of your classes
should be stateful and which of your methods should be imperative.
To this end, you compile a wish list of methods, writing down the
names of the methods that you might need according to the problem
statement. Add a rough purpose statement to each method name,
that is, say how the objects of the class should react to these method
invocations.

Now imagine how the methods ought to work. If the results of any of
the methods depends on the history of method invocations, the meth-
ods are going to be imperative. If your classes must override methods
with a void return type or if their purpose statement describes them
as imperative, you have also identified an imperative method.

Last but not least, try to imagine enough about the methods’ work-
ings so that you can guess which fields these imperative methods
should change.

Note 1: Remember deciding whether a method is applicative or im-
perative can be difficult—even with the guidelines. In many cases,
you can use one or the other design. If you need to introduce a num-
ber of auxiliary classes (or interfaces) for the applicative version, thus
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increasing the complexity of your world, you are almost always bet-
ter off with an imperative design.

Note 2: The decision to make classes stateful may actually require a
change to your data definitions. This is especially true if you decide
that a class ought to come with imperative methods and your part of
the program doesn’t have control over all the instances of the class.
Section 27.8 illustrates this point.

Hint: If the collection of classes under your control has a World-like
class that contains everything else, start with it. The verbs in the prob-
lem statement may help you figure out what kind of actions can be
performed on the objects of this class. Then, using your imagination
and experience, proceed along the containment and inheritance ar-
rows to add methods in other classes that have to support those in
your all-encompassing one.

class definitions Define the interfaces and classes; equip each definition
with a purpose statement that explains its purpose. You may also
want to add a note saying to which of the fields methods may assign
new values.

data examples Translate examples of information from the problem state-
ment into data examples. Also be sure that you can interpret data
examples in the problem domain. Provide examples that illustrate
how objects evolve over time.

With this new step in mind, let us take a look at the Account exam-
ple again. When you are asked to design such a class, it is quite obvious
that there is one class with (at least) two fields (owner, amount) and three
methods: deposit, withdraw, and balance. We have already discussed how
the latter’s result depends on the invocation of the former methods. From
this we concluded that the class should be stateful, and it is obviously the
amount field that the methods change; the owner remains the same all the
time (given the methods of this example).

Your second task is to design the methods with the design recipe. For
applicative methods, follow the recipe that you know. For the design of
imperative methods, we need to modify the recipe a bit:

signature, purpose, & effect For an imperative method, your first task is
to clarify what the method consumes because you already know what
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it produces: void.54 Recall from the design recipe for applicative meth-
ods that a method always consumes at least one argument: this.

Once you have a signature, you can formulate a purpose and effect
statement. It concisely states what the method computes and how it
uses the result of the computation to change the object. This latter
part, dubbed effect statement, can take several forms; for now you
may just want to say which fields are changed.

Let’s illustrate this step with the familiar example:

inside of Account :
// to deposit some amount of money into this Account
// effect: to add d to this.amount
void deposit(int d)

The signature says that the method consumes an int, which the pur-
pose statement describes as an amount. From the effect statement, we
find out that the method changes what the amount field represents.

functional examples The purpose of the preceding step statement is to fig-
ure out what a method is to compute. When you have that, you for-
mulate examples. Examples of the kind we have used in the past
wouldn’t work, because they would all look like this:55

check anObject.imperativeMethod(arg1,. . . ) expect void

After all, void is the standard result of an imperative method.

Therefore instead of functional examples, you formulate behavioral ex-
amples. In contrast to a functional example, which specifies the ex-
pected result for given arguments, a behavioral example states what
kinds of effects you wish to observe after the method invocation re-
turns void.

The simplest form of a behavioral example has this shape:

SomeClass anObject = new SomeClass(. . . )

54Some people prefer to return the object itself from an imperative method, which makes
it is easy to chain method invocations. At the same time, it obscures the purpose state-
ment because the method might just be an applicative method simulating changes with the
creation of new objects.

55Warning: this syntax is illegal.
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anObject.imperativeMethod(arg1,. . . );

check anObject.field1 expect newValue1
check anObject.field3 expect newValue2

That is, given an object whose properties you know because you just
constructed it, the invocation of an imperative method returns void.
Afterwards, an inspection of the properties ensures that the method
assigned changed the desired fields and left others alone.

Sometimes it is too time consuming to create a new object. In those
cases, you can observe the properties of an object and use them:

Type1 value1 = anObject.field1;
Type2 value2 = anObject.field2;

anObject.imperativeMethod(arg1,. . . );

check anObject.field1 expect newValue1
check anObject.field3 expect newValue2

In these check expressions, newValue1 and newValue2 are expressions
that may involve value1 and value2. Indeed, the two variables may
also be useful as arguments to the method call.

Last but not least, you are generally better off using applicative meth-
ods to inspect the imperative effects of a method because fields are
often private to a class:

Type1 value1 = anObject.method1();
Type2 value2 = anObject.method2();

anObject.imperativeMethod(arg1,. . . );

check anObject.method1() expect newValue1
anObject.method3() expect newValue2

Here method1, method2, and method3 are methods that do not change
the object. As before, they extract values that you may use in the
method arguments or in the tests.
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Generally speaking, the first half of your behavioral example deter-
mines the current state of the object, i.e., the values of its fields; the
second half specifies the expected changes.56

Let’s see how this works for our running example:

Account a = new Account("Sally",10);

a.deposit(20);

check a.amount expect 30

If amount were private, we would have to use the balance method to
determine whether desposit works:

Account a = new Account("Sally",10);

a.deposit(20);

check a.balance() expect "Sally: 30"

This example suggests that you might want to add a method that
produces the balance as an int rather than as a part of a String.

Terminology: because of the role that applicative methods play in
this contex, they are also known as OBSERVER methods, or just ob-
servers. Likewise, imperative methods are known as COMMANDS.

template As always the objective of the template step is take stock of the
data to which the method has access. Remember that the template
enumerates the fields, the method parameters (standing in for the ar-
guments), and their pieces if needed. For an imperative method, you
also enumerate the fields that the method should change.

Here is our running example enhanced with a method template:

56If you also ensure that value1 and value2 satisfy certain conditions, people refer to the
first half as preconditions and the second half of the example as postcondition, though
these words are more frequently used for more general claims about methods than specific
examples.
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inside of Account :
// to deposit some amount of money into this Account
// effect: to add d to this.amount
void deposit(int d) {

. . . this.amount = . . . this.amount . . . this.owner . . .
}

The amount field shows up twice: on the left of the assignment state-
ment it is a reminder that we consider it a changeable field; on the
right it is a reminder that the data is available to compute the desired
result. As discussed, the owner field should never change.

method definition Now use the purpose and effect statement, the exam-
ples, and the template to define the method. Keep in mind that you
should work out additional examples if the ones you have prove in-
sufficient. Also, if the task is too complex, don’t hesitate to put addi-
tional observer and/or command methods on your wish list.

And indeed, the definition of deposit is straightforward given our
preparation:

inside of Account :
// to deposit some amount of money into this Account
// effect: to add d to this.amount
void deposit(int d) {

this.amount = this.amount + d;
return ;
}

tests Last but not least, you must turn the examples into automatic tests:
Testing

class Examples {
Account a = new Account("Sally",10);

boolean testDeposit() {
a.deposit(20);
return (check a.balance() expect "Sally: 30");
}
}

Run the tests when the method and all of its helper methods on the
wish lists have been designed and tested.
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27.3 Imperative Methods and Templates

The creation of templates for applicative methods benefits from a solid un-
derstanding of class designs. Section 16.1 discusses the four kinds of orga-
nizations for classes and how they relate to templates. Let us take a look at
these four situations again and find out what role they play in the design
of imperative methods. We are ignoring cyclic collections of object because
we reduce the design of methods for them to acyclic collections by ignoring
a link.

Basic Classes

A basic class comes with a name and fields of primitive type. In this case,
an applicative template enumerates the fields (and the arguments):

+-------------+ +-------------+
| Basic | | Basic |
+-------------+ +-------------+
| String s | | String s |
| int i | | int i |
| double d | | double d |
+-------------+ +-------------+
| ??? mmm() { | | void mmm(){ |
| this.s | | this.s |
| this.i | | this.i |
| this.d } | | this.d |
+-------------+ | |

| this.s = |
| this.d = } |
+-------------+

A template for an imperative method differs from this in just one aspect:
for each changeable field, introduce an assignment statement with the field
on the left and nothing (or all of the fields) on the right. When you fi-
nally define the method, the template reminds you that you can use the
method arguments and the fields to compute the new value for the chang-
ing fields. Also keep in mind that an imperative method may change one
field or many fields.

Containment

A field b in class Containment may stand for objects of some other class, say
Basic. In this case, it is quite common that a method in Containment may
have to compute results using the information inside of the value of b:

+---------------+ +---------------+
| Containment | | Containment |
+---------------+ +-------------+ +---------------+ +-------------+
| Basic b |------>| Basic | | Basic b |------>| Basic |
| double d | +-------------+ | double d | +-------------+
+---------------+ | String s | +---------------+ | String s |
| ??? mmm() { | | int i | | ??? mmm() { | | int i |
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| this.d | | double d | | this.b.nnn() | | double d |
| | +-------------+ | this.d } | +-------------+
| this.b.s | +---------------+ | ??? nnn() { |
| this.b.i | | this.s |
| this.b.d } | | this.i |
+---------------+ | this.d } |

+-------------+

The template on the left says that your method could reach into the con-
tained object via this.b.s etc. While this is indeed a possibility that we ini-
tially exploited, we have also learned that it is better to anticipate the need
for an auxiliary method nnn in Basic that helps mmm compute its result.

In principle, we have the same choices for imperative methods. An im-
perative mmm method in Containment can change what s, i, or d in Basic rep-
resent; we used this power to create circular object references in section 23.
For the same reasons as in the applicative case, however, it is preferable to
design auxiliary methods in Basic that perform these changes:

+---------------+
| Containment |
+---------------+ +-------------+
| Basic b |------>| Basic |
| double d | +-------------+
+---------------+ | String s |
| void mmm() { | | int i |
| this.b.nnn() | | double d |
| this.d = | +-------------+
| this.d } | | void nnn() {|
+---------------+ | this.s |

| this.i |
| this.d |
| this.s = |
| this.d = } |
+-------------+

In addition, the relationship of Containment-Basic raises a second, en-
tirely different question:

If mmm in Containment is to represent changes to the state of
your world (domain of interest), should Basic be stateful or not?

In section 26, we have seen both possibilities. Specifically, the first version
of BlockWorld is imperative and contains an applicative version of DrpBlock;
in the second version, DrpBlock itself is stateful and BlockWorld exploits this
fact and is therefore only indirectly stateful (see figures 136 and 137).

The general answer depends on two factors. First, if someone else has
designed Basic, you are handed an applicative or stateful class and must
work with it. Even if you decide to extend Basic with a subclass—say to add
a method—leave its state-related nature intact. Second, if you are designing
the entire class (sub)system, you may choose whichever solution you wish.
For now, you may just choose the design that you are comfortable with.
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Unions

The third situation concerns unions of classes:

+-------------+
| IUnion |
+-------------+
| void mmm() |
+-------------+

|
/ \
---
|

+------------------+------------------+
| | |

+-------------+ +-------------+ +-------------+
| Basic1 | | Basic2 | | Basic3 |
+-------------+ +-------------+ +-------------+
| boolean b | | int i | | int i |
| double d | | double d | | String s |
+-------------+ +-------------+ +-------------+
| void mmm(){ | | void mmm(){ | | void mmm(){ |
| this.b | | this.i | | this.i |
| this.d | | this.d | | this.s |
| this.b = | | this.i = | | this.i = |
| this.d = }| | this.d = }| | this.s = }|
+-------------+ +-------------+ +-------------+

As before, the template for a union demands a method signature in the
interface and template with sketches of bodies in concrete variants of the
union. Just like for Basic, the method templates for the variants enumerate
all fields of the respective classes and all changeable fields on the left side
of assignment statements.

Self-References and Mutual References

The last case is the most complex one, involving unions, containment, and
self-reference all at once. Any other class organization, such as mutual ref-
erences, is a composition of the four situations. Even though, this fourth
situation is mostly just a composition of the preceding cases:

+--------------+
| IUnion |<-----------------------+
+--------------+ |
| void mmm() | |
+--------------+ |

| |
/ \ |
--- |
| |

+----------------+----------------+ |
| | | |

+--------------+ +--------------+ +------------------+ |
| Atom1 | | Atom2 | | Contain3 | |
+--------------+ +--------------+ +------------------+ |
| String s | | double d | | IUnion u |-+
+--------------+ +--------------+ +------------------+
| void mmm(){ | | void mmm(){ | | void mmm() { |
| this.s | | this.d | | this.u.mmm() |
| this.s = } | | this.d = } | | this.u |
+--------------+ +--------------+ | this.u = } |

+------------------+
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If you decide that a union must come with an imperative method, you add
the method signature and purpose & effect statement to the interface and
the method templates with bodies to the variants. The bodies of the tem-
plates contain the fields and assignments to the fields.

If you follow the advice for designing templates from the first three
cases and strictly apply it to Contain3, you get three pieces in the template:

1. this.u.mmm() is the recursive method invocation that is due to the
self-reference in the class diagram. Its purpose is to ask u to change
its fields as needed.

2. this.u is a reminder that this value is available.

3. this.u = . . . finally suggests that the method may change u itself.

Points 1 and 3 conflict to some extent. The method call changes fields in
u and possibly fields that are contained in objects to which u refers. When
this.u = . . . changes what the field stands for, it may throw away all the
computations and all the changes that the method invocation performed.
Even though the use of both forms of assignment is feasible, it is rare and
we won’t pay much attention to the possibility in this book. The template
contains both and for the method definition, you choose one or the other.

27.4 Imperative Methods and Abstraction

In chapter III, we discussed the principle of lifting common methods from
the variants of a union to a common (abstract) superclass. Section 18.4 (in
that part) presents an example that is impossible to deal with in this man-
ner. Specifically, the program fragment consists of a union that represents
falling stars and red rocks. The superclass contains methods for drawing
such objects, for determining whether they are close to the ground and
whether they have landed. The problem is, however, that the move meth-
ods are alike but their return types differ:

class Star extends Falling {
. . .
Star drop() {
if (this.landed()) {

return this; }
else

. . .
}

class RedRock extends Falling {
. . .
RedRock drop() {
if (this.landed()) {

return this; }
else

. . .
}
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Because of these differences it is impossible in Java to lift the otherwise
similar methods to Falling, the common superclass.

class Star extends Falling {
. . .
// move this Star down
// effect: change y
void drop() {

if (this.landed()) {
return ; }

else {
. . . // change y

}
}

class RedRock extends Falling {
. . .
// move this RedRock down
// effect: change y
void drop() {

if (this.landed()) {
return ; }

else {
. . . // change y

}
}

class Falling {
. . .
// move this object down
// effect: change y
void drop() {

if (this.landed()) {
return ; }

else {
. . . // change y
}

. . .
}

class Star extends Falling {
. . .
}

class RedRock extends Falling {
. . .
}

Figure 138: imperative methods and abstraction

Now consider imperative versions of the two methods within stateful
classes. In that case, the move methods would change the y field (and pos-
sibly the x field) and then return void. The top of figure 138 summarizes the
situation. Since the methods are identical now, including the return type, it
is possible to lift them to Falling. The bottom of the figure shows what the
situation is like after the methods have been lifted.

In general, imperative methods remove one hurdle to abstraction: the
return type. They use void and thus eliminate a potential difference from
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two similar methods. Thus, when you choose to work with stateful classes
and imperative methods, you may open additional opportunities for ab-
straction and you should use them.

27.5 Danger!

At first glance, stateful classes and imperative methods have three advan-
tages over an applicative solution. First, they add expressive power; you
can now directly represent any form of relationship among a collection
of “real world” objects, even if they contain cycles. Second, they facili-
tate the representation of information that changes over time. Third, they
enable additional opportunities for abstraction, at least in the context of
Java and other popular object-oriented programming languages. Nothing
comes for free, however, and that includes stateful classes and imperative
methods. In this case, the very advantages can also turn into disadvantages
and stumbling blocks.

// creating directly circular objects
class Node {

private Node nxt = null;

public Node() {
this.nxt = this;
}

// visit each node connected to this one
public int visit() {

return this.nxt.visit();
}
}

+-------------+
| Node |<--+
+-------------+ |
| Node nxt |---+
+-------------+
| int visit() |
+-------------+

Figure 139: A simple circular class

The first problem is about the creation of cycles of objects. In this part,
we have illustrated why it is needed and how to create them with assign-
ment statements. The examples made sense and were motivated by real-
world applications. Take a look, however, at the class in figure 139. Creat-
ing an instance of this class and visiting it has a surprising effect:

new Node().visit()
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This expression has no result. If you solved exercises 23.8, you experienced
this problem in a slightly different, almost realistic setting.

The true problem is that this visit method is well-designed according to
the original design recipe. In particular, here is the template:

int visit() {
. . . this.nxt.visit() . . .
}

Because the class contains a single field, the template body naturally con-
sists of a single expression. Furthermore, because the field has the same
type as the class, the design recipe requests an invocation of visit. The rest
appears to be a straightforward step. If you designed your length method
for exercise 23.8 in the same manner, you obtained a well-designed method
for a union of classes that you used quite often.

We overcome this problem through the use of a modified design recipe.
The major modification is to look out for those links in the class diagram
that suggest auxiliary links for cyclic references. Cutting them—as sug-
gested in figure 129, for example—restores order and guarantees that the
original design recipe works. The step of cutting ties, however, isn’t easy. It
is most difficult when your task is to revise someone else’s program; your
predecessor may not have followed the design recipe. The class diagram
for the classes might be extremely complex; then it is easy to overlook one
of these links and to design a program that diverges. In short, with the
introduction of assignments you are facing new problems when you test
programs and when you are trying to eliminate errors.

The second disadvantage is due to the introduction of time and tim-
ing relationships into programming. While assignment statements make it
easy to represent changes over time, they also force programmers to think
about the timing of assignments all the time. More forcefully,

assignment statements are universally destructive.

Once an assignment has changed the field of an object that change is vis-
ible everywhere and, in particular, the old value of the field is no longer
accessible (through this field).

A traffic light simulation illustrates this point particularly well. Fig-
ure 140 (left, top) displays the three normal states of a traffic light in the
normal order. Initially, the red light is on, the others are off, with traffic
stopped.57 Then the green light comes on, with red and yellow off, en-

57Turning on the red light in the initial state (or in a failure state) is the safest possible
choice. Most physical systems are engineered in this manner.
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+-------+ #
| World | #
+-------+ #

| #
/ \ #
--- #
| #

===================#
|

+----------------------------------+
| TrafficLight |
+----------------------------------+ +------+
| private Bulb on |--+-->| Bulb |
| private Bulb next |--+ +------+
| private Bulb third |--+
+----------------------------------+
| public void onTick() |
| public boolean draw() |
| public void onKeyEvent(String k) |
+----------------------------------+

// a light bulb of a given
// a color at a given location
class Bulb {

private int size;
private IColor c;
private Posn p;

Bulb(int size,Posn p,IColor c) {
this.size = size;
this.c = c;
this.p = p;
}

// turn this light bulb on
public void on(Canvas c) {

c.drawDisk(this.p,this.size,this.c);
return ;
}

// turn this light bulb off
public void off (Canvas c) {

c.drawCircle(this.p,this.size,this.c);
return ;
}
}

Figure 140: A simple circular class

abling the flow of traffic. Finally, the yellow light comes on to warn drivers
of the upcoming switch to red. From here, the cycle repeats.58

The right side of the figure displays the Bulb class. Its three properties
are: the size, the color, and the placement (on a canvas). The on and off
methods consume a Canvas and draw a disk or a circle of the given size
and at the specified position.

Now imagine that your manager asks you to design the TrafficLight
class, which consists of three Bulbs and which switches colors every so of-
ten. Clearly, this class represents a little world of its own, with changes
taking place every so often. Hence, you naturally design TrafficLight as an
extension of World from idraw. This decision requires the design of three
methods: onTick, draw, and onKeyEvent. Finally, the TrafficLight class has at

58For our purposes, we ignore the failure state in which the yellow or red light is blinking.
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least three properties, namely the three bulbs: red, yellow, and green.
The class diagram on the bottom left of figure 140 summarize this data

analysis. The three Bulb-typed fields are called on, next, and third are named
to indicate which light is on, which comes next, and what the third one
is. Roughly speaking, the three fields represent a three-way light switch.
Obviously, the values of these fields must change over time to simulate the
transitions in the state of a traffic light. To complete the data design part of
the design recipe, determine appropriate initial values for these fields.

Let us now look at the design of onTick. Its purpose is to simulate a
transition in the traffic light, that is, to rotate the roles of the three lights. To
accomplish this rotation, the method affects the three Bulb fields:

if on is a red bulb, next is green, and third is yellow, the method
must change the fields so that on stands for green, next for yel-
low, and third for red.

When the draw method is invoked after onTick has finished its computation,
it will turn on the green bulb and turn off the other two.

We can translate what we have into this method header and template:

inside of TrafficLight :
// a transition from one state of the light to another
// effect: change the values of on, next, and third
void onTick() {

. . . this.on . . . this.next . . . this.third . . .
this.on = . . .
this.next = . . .
this.third = . . .
}

The first line reminds us that the method can use the values of the three
fields for its computation and the last three lines suggest that it can assign
new values to these three fields.

One apparently easy way to complete this template into a full definition
is to just place the three fields in a different order on the right side of the
assignment statements:

void onTick() {
this.on = this.next;
this.next = this.third;
this.third = this.on;
return ;
}
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The informal description of the example suggests this idea. Unfortunately,
this method definition doesn’t work. To see how the method goes wrong,
translate the above example into a test and invoke the onTick method once
or twice. Then—and only then—read on.

after state of the object

method entry

third:

next:

on:

new Bulb(. . . ,new Yellow())

new Bulb(. . . ,new Green())

new Bulb(. . . ,new Red())

this.on = this.next

third:

next:

on:

new Bulb(. . . ,new Yellow())

new Bulb(. . . ,new Green())

new Bulb(. . . ,new Green())

this.next = this.third

third:

next:

on:

new Bulb(. . . ,new Yellow())

new Bulb(. . . ,new Yellow())

new Bulb(. . . ,new Green())

this.third = this.on

third:

next:

on:

new Bulb(. . . ,new Green())

new Bulb(. . . ,new Yellow())

new Bulb(. . . ,new Green())

Figure 141: Assignment sequencing

The problem is that the first assignment statement

this.on = this.next;

“destroys” what on stand for. From now on (until the next assignment state-
ment), the on field stands for the current value of the next field; the old value



394 Section 27

is no longer accessible. Hence, the last assignment statement in onTick

this.third = this.on;

also forces the third field to stand for the value that next represented when
the method was called.

A graphical presentation with box diagrams for objects explains the
problem in a concise manner: see figure 141. The table shows the state
of the object in the first row and its state after each of the three assignment
statements thereafter. The first assignment uses the current value of next,
which is a green light bulb, and sticks it into the compartment for on. The
second one places the yellow bulb from third into next. And the last one
uses the current value of on, which is now the green bulb, to change the
value of the last compartment. The end effect is that two of the fields stand
for the green bulb, one for the yellow one, and the red one is gone.

More generally, you should notice that when we use assignments and
explain their workings, we use words that refer to points in time. For ex-
ample, we no longer just use “the value” of a field but “the current value.”
Assignments are about a time, and they introduce time into programming.
As we just saw, a simple, natural-looking slip drops a value from our world.

To overcome this problem, we use local variables. Recall that in Java,
local variable definitions take the shape of field declarations. Their primary
use here is to remember the values of fields that the method is about to
change. In other words, even though the method changes what the field
stands for, the local variable still stands for the current value of the field and
can thus use it after the assignment statement is evaluated. In particular,
onTick can use such a local variable to temporarily remember the value of
this.on:

inside of TrafficLight :
// a transition from one state of the light to another
// effect: change the values of on, next, and third
void onTick() {

Bulb tmp = this.on;

this.on = this.next;
this.next = this.third;
this.third = tmp;
}

Exercises
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Exercise 27.1 Finish the design of the TrafficLight class. Run the traffic light
simulation. Would it make sense for Bulb objects to change color?

Exercise 27.2 Design an applicative version using draw. Compare and
contrast this solution with the one from exercise 27.1.

The third disadvantage concerns the information content of method sig-
natures. The preceding section sketched how the use of void return types
increases the potential for abstraction. The reason is that methods that re-
turned an instance of the class to which they belong may return void now
and may therefore look like another method in the same union.

Of course, this very fact is also a disadvantage. As this book has ex-
plained at many places, types in signatures tell the readers of the code what
and how the method communicates with its calling context. In the case of
void, we know that it does not communicate any values; it just changes
some fields. Worse, the language implementation (ProfessorJ or whatever
you use) checks types before it runs your program and points out (type)
errors. When the return type is void and there is nothing to check. In short,
the use of void disables even the minimal checks that type checkers provide.
You will notice this lack of basic checking when your programs become re-
ally large or when you collaborate on large projects with other people.

The overall lesson is one of compromise. Assignments are good for the
purpose of representing things that change over time. So use them, but use
them with care and keep their disadvantages and dangers in mind.

27.6 Case Study: More on Bank Accounts

Figure 134 compares an applicative representation of checking accounts
with an imperative one. Let us consider a simple-looking extension of the
original problem statement:

. . . Equip the Account class with a method for transfering funds
from this account to some other account. In other words, the
method simultaneously withdraws a given amount from this
account and deposits it in another one. . . .

As you may know from your own first banking experiences, this kind of
action is available at most banks (where a teller performs it for you) and
via their Internet banking services.
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The purpose of this section is twofold. On one hand, it illustrates the
design recipe for imperative methods with a simple example. On the other
hand, it demonstrates that an applicative design may require a more com-
plex design process than an imperative design.

Let’s start with the stateful class, the case that is easy and natural:

1. The signature and the purpose statement for the imperative method
in the stateful version of Account are straightforward:

inside of Account :
// move the amount a from this account into the other account
// effect: change the amount field in this and other
void transfer(int a,Account other)

2. Here is an example for transfer’s desired behavior:

Account a = new Account("Matthew 1",100);
Account b = new Account("Matthew 2",200);

b.transfer(100,a);

check a.balance() expect "Matthew 1: 200";
check b.balance() expect "Matthew 2: 100";

That is, after the transfer the target account (a) should have an in-
creased balance and the balance of this account, which is b, should
have decreased by an equal amount.

3. The template of transfer enumerates all the fields and methods of the
two given accounts and the fields that may be on the left of an assign-
ment statement:

inside of Account :
// move the amount a from this account into the other account
// effect: change the amount field in this and other
void transfer(int a,Account other) {

. . . this.amount . . . this.owner . . .

. . . other. lll() . . . other.amount . . .
this.amount =
other. amount =
}



Designing Stateful Classes, Imperative Methods 397

Before we move on, recall that a method definition may always use
methods from the class itself; here, this means deposit and withdraw.

4. Picking up this last idea suggests an intuitive definition for transfer:

inside of Account :
// move the amount a from this account into the other account
// effect: change the amount field in this and other
void transfer(int a,Account other) {

this.withdraw(a);
other.deposit(a);
return ;
}

First the amount a is withdrawn from this account. Second, a is de-
posited in the other account. After that, the method returns void.

Exercises

Exercise 27.3 The design of transfer for the stateful Account class omits the
last step. Turn the example into a test and run the tests.

Exercise 27.4 According to the template, the transfer method could also di-
rectly assign new values to this.amount and other.amount. Define the trans-
fer method in this way and compare it to the above definition. Which ver-
sion do you think expresses the purpose statement better?

For the addition of transfer to the applicative version of Account, we
also use the design recipe but even the first step poses a problem. While it
is clear that the arguments for transfer remain the same—a, the amount, and
other, the target account—it is not at all obvious what the method returns:

inside of Account :
// move the amount a from this account into the other account
??? transfer(int a,Account other)

Usually a method that computes a change to an object (due to some event)
returns a new instance of the same class with the fields initialized appro-
priately. As we know from the design of the imperative transfer method,
however, the purpose of transfer is to change two objects simultaneously:
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// a pair of accounts
class PairAccounts {

Account first;
Account second;

PairAccounts(Account first, Account second) {
this.first = first;
this.second = second;

}
}

+----------------+
| PairAccounts |
+----------------+
| Account first |
| Account second |
+----------------+

Figure 142: Pairs of accounts

this and other. Hence, the applicative version of transfer must produce two
instance of Account.

Unfortunately, methods in Java can only produce a single value,59 we
must somehow combine the two new objects into one. In other words, the
systematic design of the method forces us to introduce a new form of data:
pairs of Accounts. Figure 142 shows the rather standard design.

From here, the rest of the design follows from the design recipe:

1. Here is the complete method header:

inside of Account (applicative version) :
// move the amount a from this account into the other account
PairAccounts transfer(int a,Account other)

2. The adaptation of the above example requires very little work:

Account a = new Account("Matthew 1",100);
Account b = new Account("Matthew 2",200);

check b.transfer(100,a) expect

new PairAccounts(new Account("Matthew 1",200),
new Account("Matthew 2",100))

The advantage of the applicative form of the example is that every-
thing is obvious: the names of the owners, the associated amounts,
and how they changed. Of course, the example is also overly com-
plex compared with the imperative one.

59In Scheme and Common Lisp, functions may return many values simultaneously.
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3. For the template we can almost reuse the one from the imperative
design, though we need to drop the assignment statements:

inside of Account (applicative version) :
// move the amount a from this account into the other account
PairAccounts transfer(int a,Account other) {

. . . this.amount . . . this.owner . . .

. . . other. lll() . . . other.amount . . .
}

4. The actual definition combines the example and the template:

inside of Account (applicative version) :
// move the amount a from this account into the other account
PairAccounts transfer(int a, Account other) {

return new PairAccounts(this.withdraw(a),other.deposit(a));
}

5. You should turn the example into a test and confirm that the method
works properly.

As you can see from this simple example, an applicative design can
easily produce a rather complex method. Here the complexity has two as-
pects. First, the method design requires the design of (yet) another class of
data. Second, the method must construct a complex piece of data to return
a combination of several objects. Here we could avoid this complexity by
designing the method from the perspective of the bank as a whole, chang-
ing several (presumably existing) classes at once. In general though, these
other classes are not under your control, and thus, applicative approaches
can lead to rather contorted designs.

27.7 Case Study Repeated: A Stateful Approach to UFOs

The “War of the Worlds” game program is a good case study for a conver-
sion of a complete applicative design into an imperative one. At the same
time, we can test the design guideline in the context of a reasonably large,
complete program. As figure 143 reminds us, even the simplest version
consists of six classes and an interface, plus a couple of dozen methods.
Furthermore, it uses the World class from the draw package, which means
we can use the borderline between the library and the UFOWorld class as
the starting point for our design investigation.
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+------------------------+
+------------------+ # +------------------>| IShots |<--------------------+
| World | # | +------------------------+ |
+------------------+ # | | IShots move() | |
| Canvas theCanvas | # | | boolean draw(Canvas c) | |
+------------------+ # | | boolean hit(UFO u) | |
| World onTick() | # | +------------------------+ |
| World onKeyEvent(| # | | |
| String ke) | # | / \ |
| World draw() | # | --- |
+------------------+ # | | |

# | ------------------------------- |
| # | | | |

/ \ # | +------------------------+ +------------------------+ |
--- # | | MtShots | | ConsShots | |
| # | +------------------------+ +------------------------+ |

========================= | | IShots rest |----+
| | | Shot first |----+
| | +------------------------+ |
| | |

+------------------+ | v
| UFOWorld | | +------------------------+ +------------------------+
+------------------+ | +--------->| UFO | | Shot |
| int WIDTH | | | +------------------------+ +------------------------+
| int HEIGHT | | | | IColor colorUFO | | IColor colorShot |
| IColor BACKG | | | | Posn location | | Posn location |
| UFO ufo |----|---+ +------------------------+ +------------------------+
| AUP aup |----|---+ | UFO move() | | Shot move() |
| IShots shots |----+ | | boolean draw(Canvas c) | | boolean draw(Canvas c) |
+------------------+ | | boolean landed() | | boolean hit(UFO u) |
| World onTick() | | | boolean isHit(Posn s) | +------------------------+
| World onKeyEvent(| | +------------------------+
| String ke) | |
| boolean draw() | | +------------------------+
| Shot shoot() | +--------->| AUP |
| World move() | +------------------------+
+------------------+ | IColor aupColor |

| int location |
+------------------------+
| AUP move() |
| boolean draw(Canvas c) |
| Shot fireShot() |
+------------------------+

Figure 143: The Revised World of UFOs: Class diagrams

If we import World from the idraw package instead of the draw pack-
age, we are immediately confronted with three “type” problems: the over-
riding definitions of onTick, onKeyEvent, and draw in UFOWorld must now
produce void results, not Worlds. In particular, this suggests that onTick and
onKeyEvent can no longer produce new instances of the world, but must
modify this instance of UFOWorld to keep track of changes over time.

Let’s deal with each method in turn, starting with draw:
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inside of UFOWorld (imperative version) :
// draw this world
void draw() {

this.ufo.draw(this.theCanvas);
this.aup.draw(this.theCanvas,this.HEIGHT);
this.shots.draw(this.theCanvas);
return ;
}

Instead of combining the drawing methods with &&, the imperative ver-
sion uses “;” (semicolon), which implies that draw in UFO, AUP, and IShots
now produce void, too. Finally, draw returns void.

Exercise

Exercise 27.5 Modify the methods definitions of draw in UFO, AUP, and
IShots so that they use the imperative methods from Canavs in idraw.

The modifications concerning onTick are more interesting than that:

inside of UFOWorld (applicative) :
// move the ufo and the shots of
// this world on every clock tick
World onTick() {

if (this.ufo.landed(this)) {
return this.endOfWorld("You lost."); }

else { if (this.shots.hit(this.ufo)) {
return this.endOfWorld("You won."); }

else {
return this.move(); }
}
}

inside of UFOWorld (imperative) :
// move the ufo and the shots of
// this world on every clock tick
void onTick() {

if (this.ufo.landedP(this)) {
this.endOfWorld("You lost."); }

else { if (this.shots.hit(this.ufo)) {
this.endOfWorld("You won."); }

else {
this.move(); }

return ;
}
}

The method first checks whether the UFO has landed, then whether the
UFO has been hit by any of the shots. In either case, the game is over. If
neither is the case, however, the method moves every object in the world,
using a local move method. Clearly, this part must change so that move no
longer produces a new UFOWorld but changes this one instead. Hence,
the imperative version of onTick on the right side doesn’t look too different
from the applicative one. The true code modifications are those in move.
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Turning to the move method in UFOWorld, we see that its purpose is
to move the UFO and all the other objects in the world so that they show
up somewhere different the next time the canvas is redrawn. This nat-
urally raises the question whether, say, the UFO class and the represen-
tation of lists of shots remain applicative or should be reformulated as
stateful classes, too. The choice is ours; the line between idraw’s World and
UFOWorld does not force either one of them.

To make things simple, we ignore the shots for a moment and focus
on a world that contains only a UFO. Then the two choices—an applica-
tive or stateful version of the UFO class—induce the following two feasible
definitions of move in UFOWorld:

inside of UFOWorld :
// move the UFO and shots
void move() {

this.ufo.move(this);
. . .
return ;
}

inside of UFOWorld :
// move the UFO and shots
void move() {

this.ufo = this.ufo.move(this);
. . .
return ;
}

The one on the left assumes that UFO is stateful and its move method is
imperative. The definition on the right assumes that UFO is applicative
and that therefore its move method produces a new instance of UFO, which
UFOWorld keeps around until the next tick of the clock.

Now it is up to you to make a decision of how to design UFO. You know
from the applicative design (or from reading the problem statement) that
you need at least four methods for UFO:

1. move, which moves this UFO for every clock tick;

2. draw, which draws this UFO into a given Canvas;

3. landed, which determines whether the UFO is close to the ground; and

4. isHit, which determines whether the UFO has been hit by a shot.

According to our design principle, you should consider whether calling
some method influences the computations (results) of some other method
in the class. After a moment of reflection, it is clear that every invocation
of move changes what draw, landed, and isHit compute. First, where draw
places the UFO on the canvas depends on how often move was called start-
ing with bigBang. Second, whether or not the UFO has landed depends on
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// a UFO, whose center is located at location
class UFO {

Posn location;
IColor colorUFO = new Green();

UFO(Posn location) {
this.location = location;
}

// move this UFO down by 3 pixels
// effect: change the location field in this UFO
void move(WorldUFO w) {

if (this.landed(w)) // don’t move anymore, it’s on the ground {
return ; }

else {
this.location = new Posn(this.location.x,this.location.y+3);
return ;
}
}

// has this UFO landed yet?
boolean landed(WorldUFO w) {

return this.location.y >= w.HEIGHT − 3;
}

// is this UFO close to the given Posn?
boolean isHit(Posn x) {

return this.distanceTo(x) <= 10.0;
}

// compute distance between l and this.location
double distanceTo(Posn l) { . . . } // belongs to Location

// draw this UFO into the Canvas
void draw(Canvas c) {

c.drawDisk(this.location,10,this.colorUFO);
c.drawRect(new Posn(this.location.x-30,this.location.y-2),60,4,this.colorUFO);
return ;
}
}

Figure 144: The imperative UFO class
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how far the UFO has descended, i.e., how often move has been called. Fi-
nally, the case for isHit is ambiguous. Since a shot moves on its own, the
UFO doesn’t have to move to get hit; then again, as the UFO moves, its
chances for being hit by a shot change.

Our analysis suggests that designing UFO as a stateful class with move
as an imperative method is a reasonable choice. It is also clear that move
changes the location field of the class. Every time it is called it recomputes
where the UFO ought to be and assigns this new Posn to location.

Figure 144 displays the stateful version of UFO. The key method is move.
Its effect statement informs us that it may change the value of the location
field. The method body consists of an if-statement that tests whether the
UFO has landed. If so, it does nothing; otherwise it computes the next
Posn and assigns it to location. Both landed and isHit use the current value
of location to compute their answers. Because location’s value continuously
changes with every clock tick, so do their answers. Finally, draw is impera-
tive because we are using the idraw library now.

Exercises

Exercise 27.6 The definition of landed contains an invocation of distanceTo.
Design the method distanceTo and thus complete the definition of UFO. Is
distanceTo truly a method of UFO? Where would you place the definition in
figure 98 (see page 288)?

Exercise 27.7 Develop examples for the move method in UFO. Reformulate
them as tests.

Exercise 27.8 Develop examples and tests for landed and isHit in UFO.

Exercise 27.9 Design two imperative versions of shoot in UFOWorld: one
should work with a stateful version of AUP and another one that works
with the existing functional version of AUP. Also design the stateful ver-
sion of the AUP class.

With the movement of UFOs under control, let’s turn to the collection
of shots and study whether we should make it stateful or not. The IShots
interface specifies three method signatures: move, draw, and hit. By anal-
ogy, you may want to make the first imperative. The second is imperative
because the idraw library provides imperative draw methods. The question
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is whether repeated calls to move affect the hit method, and the answer is
definitely “yes.” As the shots move, they distance to the UFO (usually)
changes and thus hit may produce a different answer.

Still, you should ask what exactly is stateful about moving all the shots.
After all, it is obvious that moving the shots doesn’t change how many
shots there are. It also shouldn’t change in what order the shots appear
on the list. With this in mind, let’s follow the design recipe and see what
happens. Step 1 calls for a full signature, purpose and possibly effect state-
ment:

inside of IShots :
// move the shots on this list; effect: fill in later
void move()

Since an interface doesn’t have fields, it is impossible to specify potential
changes to fields. For step 2, we consider a two-item list of shots:

Shot s1 = new Shot(new Posn(10,20));
Shot s2 = new Shot(new Posn(15,30));
IShots los = new ConsShots(s1,new ConsShots(s2,new MtShots()));

los.move();

check s1.location expect new Posn(10,17)
check s2.location expect new Posn(15,27)

So far the example says that each of the shots on the list must change lo-
cations after the move method for IShots is invoked. It doesn’t reflect our
thinking above that los per se doesn’t change. To express this, you could
add the following line:

check los expect

new ConsShots(new Posn(10,17),
new ConsShots(new Posn(15,27),

new MtShots()));

Of course, this example subsumes the ones for s1 and s2.

The IShots interface is the union type for two variants: MtShots and
ConsShots, which means the template looks as follows:
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inside of MtShots :
// move these shots
void move() {

. . .
}

inside of ConsShots :
// move these shots
void move() {

. . . this.first.move() . . . this.rest.move() . . .

. . . this.first = . . .

. . . this.rest = . . .
}

The template for ConsShots looks complex. It reminds us that the method
can use this.first, can invoke a method on this.first, and that the natural
recursion completes the process. The two skeleton assignments suggest
that the method could change the value of the first and rest fields.

Put differently, the method template empowers us again to express a
design decision:

Should we use a stateful representation of lists of shots?

If the representation is stateful, the assignment for this.first changes which
Shot the first field represents. If the representation remains applicative,
however, the method must demand that the invocation this. first.move()
changes Shot—which you have to add to your wish list or communicate
to the person who designs the new Shot class for you.

As discussed above, we don’t think of the list per se as something that
changes. For this reason, we stick to an applicative class with an imperative
version of move, knowing that the imperativeness is due to the imperative
nature of move in UFOWorld and requires an imperative version of move in
Shot. Based on the examples and the template, we arrive at the following
two definitions:

inside of MtShots :
void move() {

return ;
}

inside of ConsShots :
void move() {

this.first.move();
this.rest.move();
return ;
}

That is, the move method in MtShots does nothing and the one in ConsShot
invokes an imperative move method in Shot. The design of move thus adds
an imperative move method for Shot on the wish list, re-confirming that Shot
is stateful. At the same time, we can now remove the effect statement for
move in IShots.

The first step in the design of this final move method is to write down
its signature and purpose and effect statement:
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inside of Shot :
// move this Shot
// effect: change location
void move()

The effect statement states the obvious: when an object move, its loca-
tion changes. Since the example for moving a list of shots covers the move
method for Shot, too, we go right on to the template:

void move() {
. . . this.location . . . this.colorShot . . .
this.location = . . .
}

The rest is easy and produces a method definition quite similar to the one
in UFO (see figure 144).

Exercises

Exercise 27.10 Complete the definition of move in Shot and in UFOWorld.
Create examples for the latter, and turn all the examples into tests.

Exercise 27.11 Complete the definitions of draw and hit in the MtShots, Con-
sShots, and Shot classes. If you have done all the preceding exercises in this
section, you now have a complete “War of the Worlds” game and you’re
ready to play.

Exercise 27.12 Revise figure 143 so that it is an accurate documentation of
the imperative version of the program.

Equip all pieces of all classes with privacy specifications.

Exercise 27.13 Design a solution to the “War of the Worlds” game that re-
lies on a stateful version of the list of shots and keeps the Shot class applica-
tive. Compare and contrast your solution with the one above.

Exercise 27.14 Modify the design of the AUP class so that the AUP moves
continuously, just like the UFO and the shots, i.e., it acts like a realistic
vehicle. Let the design recipe guide you. Compare with exercise 19.19.

Exercise 27.15 Design UFOs that can defend themselves. The UFO should
drop charges on a random basis and, if one of these charges hits the AUP,
the player should lose the game. A charge should descend at twice the
speed of the UFO, straight down from where it has been released. Compare
with exercise 19.20.
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Exercise 27.16 Re-design the Worm game from section 19.9 in an impera-
tive manner, using the guidelines from this chapter.

// a Squadron Scramble playing card
interface ICard { }

// your implementation for testing
class Card implements ICard {

String kind;
int view;

Card(String kind, int view) {
this.kind = kind;
this.view = view;
}
}

Figure 145: A game card

27.8 Case Study: A Deck of Cards

Simulated card games are popular on all kinds of computers. Your com-
pany has decided to develop a software version of “Squadron Scramble,”60

because the marketing department has found no on-line competitors. Your
boss has decided to assign you the task of designing the card deck. She has
simply marked the relevant portions of the game instructions and declared
this your problem statement:

. . . After the cards are distributed, the game administrator puts
down one more card, face up, in the middle of the table. This
starts a deck of cards, which players can use for swapping play-
ing cards.

. . .

For each turn, the player may choose to get a new card from the
game administrator or may take as many cards as he desires
from the top of the deck. The player then incorporates the(se)
card(s) into his hand (according to some strategy). At the end
of the turn, the players must put one card from his hand back
on the deck. . . .

60The game, published by US Game Systems, resembles Rummy but uses cards labeled
with Axis and Allies World War II war planes.
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You are told to produce an implementation of decks of cards while follow-
ing the guidelines of this book. Someone else has already been asked to
produce an implementation of playing cards, but since the actual nature of
cards don’t really matter to decks, you are to use the ICard interface and
stub class from figure 145.61

The first part of the design recipe is about the identification of the dif-
ferent kinds of information that play a role in your problem statement. For
your problem—the simulation of a deck of cards—there appears to be just
one class of information: the deck of cards. Without any further informa-
tion, we can think of the deck of cards as a list of cards, especially since the
sequence matters according to the problem statement. Given how routine
the design of a list is, we just assume the existence of ICards, MtCards and
ConsCards for now, without looking at the details at all.

As you now consider whether the deck of cards should be applicative or
a stateful, you must take a look at the methods that you might need. From
the problem statement, you know that the game program creates the deck
and that (the program piece representing) the players can do three things
to the deck afterwards:

1. put a card back on top of the deck, and

2. remove a number of cards from the top of the deck,

3. look at the first card of the deck.

Of course, the second item implies that a player can (and must be able to)
count how many cards there are on the deck, so we add this method as a
fourth one:

4. count the number of cards in a deck.

The following names for these four methods offer themselves naturally:
put, take, look, and count.

The question is whether calling one of these methods influences the
computation or the result of any of the other. Consider put, which con-
sumes an ICard and adds it to the top of a deck. Of course this should
change the result of look, which shows the top-most ICard of a deck. And
it should also change the result of count, which computes how many cards
are in a deck. The case of take is similar. Its task is to remove cards from the
deck, and naturally, this kind of action changes what the top-most card is
and how many cards there are in the deck of cards.

61That way the two of you can proceed in parallel.
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Problem is that there are no obvious fields in a list that can represent the
changes that put and take are to compute. First, neither ICards nor MtCards
have fields. Second, the fields in ConsCards are to represent the first ICard
and the ones below the first. When a player puts a card on top of a deck, this
list doesn’t change, only the deck that represents the cards. Put differently a
card is added to the front of the list with new ConsCards(. . . ) and somehow
the deck changes. Similarly, when a player takes some cards, it is not that
first or rest should change; only the deck changes.

Our analysis thus produced two insights. On one hand, a deck of cards
needs a list of cards. On the other hand, a deck isn’t just a list of cards.
Instead, a deck should consist of a list of cards and the above methods. In
short, Deck is a class with one assignable field—content—and four methods,
two of which—put and take—may assign to this field.

class Deck {
ICards content . . . ;
Deck(. . . ) { . . . }
// place one card on top of this deck
// effect: change content to include the
// given card
void put(ICard t) { . . . }

// take the first i cards from this deck
// effect: change content to indicate the
// removal of the cards
ICards take(int i) { . . . }

// look at the top card on this deck
ICard look() { . . . }

// how deep is this deck
int count() { . . . }
}

+-------------------+
| Deck |
+-------------------+ +--------+
| ICards content |------->| ICards |
+-------------------+ +--------+
| void put(Card c) | |
| ICards take(int n)| / \
| int count() | ---
| ICard look() | |
+-------------------+ / \

/ \
/ \
.........

Figure 146: A game card

Figure 146 summarizes our discussion with a partial class definition
and diagram for Deck. The latter also indicates how the class is connected
to the rest of our work. The figure also turns the above descriptions of
the methods into purpose and effect statements plus contracts. Before we
design the methods, however, we must finish the design of Deck. So far we
don’t even have a constructor for Deck, i.e., we can’t create data examples.
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Therefore the next step is to inspect the problem statement for an exam-
ple of a “real world” deck of cards. As it turns out, the very first sentence
explains how the deck comes about or, in programming terminology, how it
is created. The game administrator places a single card on the table, which
starts the deck. This suggests that Deck’s constructor consume a single card
and from this creates the deck:

inside of Deck :
Deck(ICard c) {

this.content = new ConsCards(c,new MtCards());
}

That is, the constructor creates a list from the given card and uses this list
to initialize the content field.

Discussion: Given this constructor for Deck, you may be wondering
whether we shouldn’t design a data representation for non-empty lists.
Take a second look at the problem statement, however. When it is a player’s
turn, one action is to take all cards from the deck. This implies that during a
turn, the deck could be temporarily empty. It is only at the end of the turn
that the deck is guaranteed to be non-empty.

Using this constructor, you can now create sample objects for Deck:

new Deck(new Card("Boeing B-17 (Flying Fortress)",2))

In the actual game, this would be a card showing the second view of the
Flying Fortress airplane. Unfortunately, the natural constructor doesn’t al-
low us to build a representation of a deck of many cards. To do so, we need
to design put, whose purpose it is to put several cards to atop the deck:

ICard c1 = new Card("Boeing B-17 (Flying Fortress)",2);
ICard c2 = new Card("Boeing B-29 (Superfortress)",1);
Deck d1 = new Deck(c1);

d1.put(c2)

check d1.content
expect new ConsCards(c2,new ConsCards(c1,new MtCards()))

This behavioral example constructs two cards, uses one to construct a Deck,
puts the other one on top of the first, and then ensures that this is true with
a look at the content field. If content were private, you could use look instead
to inspect the deck:

check d1.look() expect c2
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After all, it is its purpose to uncover the top-most card, and in d1, the top-
most card is the last one added.

The reformulation of the example appears to suggest a switch to the
design of look so that we can run tests as soon as possible. While this is an
acceptable strategy in some cases, this particular case doesn’t require a con-
sideration of the auxiliary method. The template of put is straightforward.
It consists of this.content.mmm() and a skeleton assignment to content:

inside of Deck :
void put(ICard c) {

. . . this.content.mmm() . . .
this.content = . . .
}

The former reminds us that the value of content is available for the compu-
tation and that we may wish to define an auxiliary method in ICards; the
latter reminds us that the method may assign a new value to the field.

Since the goal is to add c to the front of the list, the actual method just
creates a list from it and this.content and assigns the result to content:

inside of Deck :
void put(ICard c) {

this. content = new ConsCards(t,this. content);
return ;

}
No new wish for our wish list is required.

Equipped with put, you can now create a data representation of any ac-
tual deck of cards. In other words, the design recipe for a data representa-
tion and the design recipe for methods are intertwined here. Furthermore,
the design of put implicitly created a behavioral example for look.

The template for look is like the one for put, minus the assignment:

inside of Deck :
ICard look() {

. . . this.content.mmm() . . .
}

Based on the examples, look is to extract the first card from the list. Hence,
we add a fst method62 to the wish list for ICards and define look as follows:

62In Java proper, we could name the method first. Because ConsCards implements ICards,
the class must then include both a field called first and a method called first. Java distin-
guishes methods and fields and can thus reason separately about those and can (usually)
disambiguate between the two kinds of references.
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inside of Deck :
ICard look() {

return this.content.fst()
}
Judging from count’s purpose statement in figure 146, the first data ex-

ample is easily turned into a behavioral example:

ICard c1 = new Card("Boeing B-17 (Flying Fortress)",2);
Deck d1 = new Deck(c1)

check d1.count() expect 1

The other example from above is also easily modified for count:

ICard c1 = new Card("Boeing B-17 (Flying Fortress)",2);
ICard c2 = new Card("Boeing B-29 (Superfortress)",1);
Deck d1 = new Deck(c1);

d1.put(c2)

check d1.count() expect 2

Not surprisingly count’s template is almost identical to look’s:

inside of Deck :
int count() {

. . . this.content.mmm() . . .
}

After all, like look, count is an observer and has no effects. Of course, the
reference to content, a list of cards, implies that count should just delegate
the task of counting cards to the list-of-cards representation. Put differently,
we are adding a second wish to our wish list: length for ICards.

This is the proper time to stop and to write down the list representation
for the list of cards and the wish list of methods on lists: see figure 147. It
displays the class diagram for lists of cards and it uses the interface box for
writing down the wish list. Specifically, the interface for ICards lists the two
methods we have wished for so far: fst and length. The last two methods
are needed for the take method, which we are about to design.

Exercises

Exercise 27.17 Develop purpose statements for the fst and length methods
in the ICards interface.



414 Section 27

+------------------------------------------+
| ICards |<-------------+
+------------------------------------------+ |
+------------------------------------------+ |
| // the first card of this list | |
| ICard first() | |
| // the length of this list | |
| int length() | |
| // pick the first i cards of this list | |
| ICards pick(int i) | |
| // drop the first i cards from this list | |
| ICards drop(int i) | |
+------------------------------------------+ |

| |
/ \ |
--- |
| |

------------------------- |
| | | +-------------+

+------------------+ +------------------+ | +->| ICard |
| MtCards | | ConsCards | | | +-------------+
+------------------+ +------------------+ | |

| ICard first |--------------------------|---+
| ICards rest |--------------------------+
+------------------+

Figure 147: A list of cards

Exercise 27.18 Design fst and length for list of cards representation. Then
convert the examples for put, look, and count from Deck into tests and run
the tests. Make sure to signal an error (with appropriate error message)
when fst is invoked on an instance of MtCards.

Our last design task is also the most complex one. The take method is

to remove a specified number of cards from the top of the deck.

In figure 146, this sentence has been translated into a purpose and effect
statement plus a method signature. Let’s look at those closely:

inside of Deck :
// take the first i cards from this deck
// effect: change content to indicate the removal of the cards
ICards take(int i)

The English of the purpose statement is ambiguous. The “take” could mean
to remove the specified number of cards and to leave it at that, or it could
mean to remove them and to hand them to the (software that represents
the) player. The presence of the effect statement clarifies that the second
option is wanted. That is, the method is to remove the first i cards from



Designing Stateful Classes, Imperative Methods 415

the deck and simultaneously return them in the form of a list. In short, the
method is both a command and an observer.

Now that we have a clear understanding of the role of take, making up
behavioral examples is feasible. Let’s start with the simple data example:

ICard c1 = new Card("Boeing B-17 (Flying Fortress)",2);
Deck d1 = new Deck(c1)

check d1.take(1) expect new ConsCards(c1,new MtCards())

Since take is both an observer and a command, it is possible to specify its
desired result and to specify its applicative behavior. Still, ensuring that
the method invocation also affects the contents field requires additional ob-
servations (or post-conditions):

check d1.count() expect 0

This line demands that after taking one card from a singleton deck, there
shouldn’t be any cards left, i.e., count should produce 0. Of course, this
immediately raises the question what look is supposed to return now:

d1.look()

The answer is that a player shouldn’t look at the deck after requesting (all
the) cards and before putting the end-of-turn card down. The situation cor-
responds to a request for the first item of a list and, as we know, evaluation
the Scheme expression (first empty) raises an error. It is therefore appropri-
ate for look to produce an error in this case.

For a second behavioral example, we use the deck of two cards:

ICard c1 = new Card("Boeing B-17 (Flying Fortress)",2);
ICard c2 = new Card("Boeing B-29 (Superfortress)",1);
Deck d1 = new Deck(c1);

d1.put(c2)

This deck has two cards, meaning take can remove one or two cards from
it. Let’s see how you can deal with both cases. First, the case of taking one
card looks like this:

check d1.take(1) expect new ConsCards(c2,new MtCards())

check d1.count() expect 1

check d1.look() expect c1
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Second, the case of taking two cards empties the deck again:

d1.take(2) expect new ConsCards(c2,new ConsCards(c1,new MtCards()))

d1.count() expect 0

And as before, d1.look() raises an error.

The template for take is similar to the one for put:

inside of Deck :
ICards take(int n) {

this.content = . . .
. . . this.content.mmm(n) . . .
}

Together, the template, the examples, and the header suggest the following:

inside of Deck :
ICards take(int n) {

this.content = this.content.drop(n);
return this.content.pick(n);
}

Before you continue now you should turn the examples into tests, complete
the program, and run all the tests.

Exercises

Exercise 27.19 At this point the wish list contains two additional methods
for ICards (also see figure 147):

1. pick, which retrieves a given number of cards from the front of a list;

2. and drop, which drops a given number of cards from the front of a list
and returns the remainder.

Design these two methods. Then turn the examples for take into tests and
run the tests. Observe that tests fail. Explain why.

Exercise 27.20 Abstract over the two flavors of test cases with two items in
a deck. That is, create a method that produces a deck with two cards and
reuse it for the test cases.
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When you run the tests for this first definition of take, the method invo-
cation d1.take(2) signals an error even though d1 contains two cards. Pro-
fessorJ also shows you that it is the second line in take’s method body that
causes the error: pick is used on an empty list of cards. The problem is that

this.content = this.content.drop(n)

has already changed the value of the content field by the time, the pick
method is used to retrieve the front-end of the list. In short, we have run
into one of those timing errors discussed in section 27.5.

To overcome the timing error, it is necessary to compute the result of
take before changing the content field:

inside of Deck :
ICards take(int n) {

ICards result = this.content.pick(n);
this.content = this.content.drop(n);
return result;
}

Following section 27.5, the method uses a temporary variable, named re-
sult, to hang on to the demanded items from content. Afterwards it is free
to change content as needed. At the end, it returns the value of result.

Exercises

Exercise 27.21 Formulate the examples for take as test cases and complete
the definition of Deck.

Exercise 27.22 The expression

new Deck(new Card("B-52",4)).take(2)

signals an error concerning lists. This should puzzle your colleague who
uses your Deck class to implement an all encompassing GameWorld class.
Here, he has accidentally invoked take with a number that is too large for
the given Deck, but this still shouldn’t result in an error message about lists.
Modify the definition of take so that it signals an error concerning Decks if
invoked with bad arguments.

Exercise 27.23 Find all places where our design of decks raise errors. For-
mulate a boolean expression, using observer methods from the same class,
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that describes when the method is guaranteed to work properly. Add those
expressions to the purpose statement prefixed with “@pre.”

Note: Such conditions are known CONTRACTS. Ideally, a language
should help programmers formulate contracts as part of the method sig-
nature so that other programmers know how to use the method properly
and, if they fail, are told what went wrong (where).

Exercise 27.24 Explain why the game administrator can always look at the
Deck between the turns of players without running the risk of triggering an
error.

27.8.1 Caching and Invisible Assignments

The implementation of a deck of cards is an ideal place to illustrate another
common use for assignments to fields: caching results. Given the current
definitions of Deck and ICards, a request to count the number of cards in a
deck becomes a method call for length on content, the list of cards. This call,
in turn, visits every ConsCards objects of the list. Using the O(·) notation
from How to Design Programs (Intermezzo 5), every request for the length of
a list consumes O(n) time where n is the number of cards in the list.

Fortunately, a deck of cards tends to contain just a few numbers, so that
traversing the list doesn’t take much time on any modern computer. Still,
we can actually eliminate such traversals and thus reduce the time needed
to a small constant amount of time. The key idea is to introduce a (hidden)
mutable field in Deck that represents the number of cards on the deck. Its
purpose statement implies that every method that adds or removes cards
from the Deck must change the value of the field appropriately. And, natu-
rally, the count method uses the field instead of a call to length. The idea of
pre-computing the result of a method such as length is called CACHING; the
extra field is a CACHE.

Figure 148 displays the modified definition of Deck with indexed gray
shades highlighting the edits, each labeled with subscript 1 through 6:

1. A field that exists for internal purposes only should come with an
explanation that tells future readers what it represents.

2. The noCards field is initially 0 because the content field initially stands
for the empty list of cards.

3. The constructor changes content to a list of one card and must there-
fore change noCards to 1.
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// a deck of cards
class Deck {

private ICards content = new MtCards();

// a cache for tracking the number of cards
1

private int noCards = 0
2
;

public Deck(ICard c) {
this.content = new ConsCards(c,new MtCards());

this.noCards = 1 3;
}

public void put(ICard t) {
this.content = new ConsCards(t,this. content);

this.noCards = this.noCards+1
4
;

return ;
}

public ICards take(int i) {
ICards result = this.content.take(i);
this.content = this.content.drop(i);

this.noCards = this.noCards-i 5;
return result;
}

public int count() {
return this.noCards 6;
}
. . .
}

Figure 148: Deck with cache for number of cards

4. The put method adds a card to content and therefore increments no-
Cards by 1.

5. The take method removes i cards from content and must decrement
noCards by i.

6. Finally, count simply returns the value of noCards because it stands for
the number of cards in the field.

As you can see, modifying the class is straightforward. To ensure that no-
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Cards always stands for the number of cards in content, we check all effect
statements of the methods; if it mentions content, we must edit the method.

Exercises

Exercise 27.25 Now that Deck caches its number of cards, it is possible to
simplify the list representation. Do so.

Exercise 27.26 A cache doesn’t necessarily involve a mutable field. Add
hidden fields to MtCards and ConsCards that represent how many cards the
list contains.

27.8.2 Merging List Traversals: Splitting Lists

Every invocation of take in Deck triggers two traversals of the list of cards
to the exact same point. First, it uses take on the list of cards to produce a
list of the first i cards. Second, drop traverses the first i ConsCards again and
produces the list in rest of the ith object.

While these traversals take hardly any time, the two results can be com-
puted with a single method, and you know in principle how to do so
with an applicative method. This example, however, provides a chance
to demonstrate the usefulness of assignments to self-referential fields such
as rest in ConsCards. Let’s state the goal explicitly:

. . . Design the method break for ICards. The method consumes
an int i. Its purpose is to break the list, after the ith object on the
list; it is to return the second half as its result. . . .

The problem statement includes a purpose statement and suggests an effect
statement, too. All that’s left for you here is to add a method signature:

inside of ICards :
// deliver the tail after the first i cards from this list
// effect: change rest in the i ConsCards so that it is MtCards()
ICards break(int i);

Since splitting a list is only interesting when a list contains some cards,
we start with a list that has two and split it in half:

ICard c1 = new Card("black",1);
ICard c2 = new Card("black",2);
ICards cs = new ConsCards(c1,new ConsCards(c2,new MtCards()));
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check cs.break(1) expect new ConsCards(c2,new MtCards())

The question is what else happens? And if anything happens, how do we
observe the change? According to the effect statement, the method is to
change the rest field in the first ConsCards object, the one that contains c1.
By implication, the list cs should no longer contain two but one card now:

. . .
check cs expect new ConsCards(c1,new MtCards())

That is, the value of cs changes even though there is no assignment state-
ment for the variable. Think through the example again, because it is unlike
anything you have seen before.

Our design recipe demands the creation of a template next:

inside of MtCards :
ICards split(int i) {

. . .
}

inside of ConsShots :
ICards split(int i) {

. . . this.first . . .

. . . this.rest.split(. . . i . . . ) . . .
this.rest = . . .
}

The templates for both variants of the union are unsurprising. Because
MtCards has no fields, its template doesn’t contain any expressions. In Con-
sCards, we see three expressions: one that reminds us of the first field; one
for rest and the natural recursion; and a skeleton assignment to rest.

At this point, we are almost ready to define the method. What we are
missing is a thorough understanding of i, the second argument. Up to now,
we have dealt with i as if it were an atomic piece of data. The purpose
statement and examples, though, tell us that it is really a natural number
and split processes the list of cards and this number in parallel. From How to
Design Programs’s chapter III, we know that this requires a conditional that
checks how the list gets shorter and the number smaller. In Java, however,
there are no tests on the lists. Each list-implementing class contains its own
split method so that it “knows” whether the list is empty or not.

In other words, the methods must only test how small i is and must
decrease i when it recurs. When i becomes 1, the method has traversed
exactly i instances of ConsCards, and it must split the list there:
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inside of ConsShots :
ICards split(int i) {

if (i == 1) {
. . . this.first . . .
this.rest = . . .
} else {

return this.rest.split(i); }
}

Note how the then branch in this outline composes two sketches of state-
ments. In a world of effects, this makes perfect sense.

The method outline translates the words into code. The if-statement
distinguishes two cases:

(i == 1) In this case, the method is to traverse one instance of ConsCards
and has just done so. There is no need to continue the traversal, which
is why the natural recursion has been removed from method tem-
plate, which is otherwise repeated unchanged.

(i != 1) In this case, the method hasn’t traversed enough nodes yet, but
it has encountered one more than before. Hence, it uses the natural
recursion from the template to continue.

Given this case analysis, we can focus on the first case because the second
one is done. A first guess is to use

if (i == 1) {
this.rest = new MtCards();
return this.rest; }

else . . .

But obviously, this is nonsense. Return this.rest right after setting it to new

MtCards() can’t possibly work because it always return the empty list of
cards. We have encountered another case of bad timing. To overcome this
problem, we introduce a local variable and save the needed value:63

ICards result = this.rest;
if (i == 1) {

this.rest = new MtCards();
return result; }

else . . .

63In Java, the variable could be made local to the then branch of the if-statement.
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In this version, the value of this.rest is saved in result, then changed to new

MtCards(), and the method returns the value of result.
For completeness, here are the definitions of the two split methods:

inside of MtCards :
ICards split(int i) {

return
Util.error("... an empty list");

}

inside of ConsShots :
ICards split(int i) {

if (i == 1) {
ICards result = this.rest;
this.rest = new MtCards();
return result;
} else {

return this.split(i-1); }
}

Exercises

Exercise 27.27 Turn the examples for split into tests and ensure that the
method definition works properly for the examples. Add tests that explore
what split computes when given 0 or a negative number.

Exercise 27.28 Use the split method to re-define take in Deck.

Exercise 27.29 Challenge problem: Design splitA, an applicative alterna-
tive to split. Like split, splitA consumes an int i. After traversing i instances
of ConsCards, it returns the two halves of the list.

Hint: See section 27.6 on how to return two results from one method.
Also re-read How to Design Programs (chapter VI) on accumulator style.

27.9 Endnote: Where do Worlds Come from? Where do they go?

If you want to become a top-tier programmer or a computer scientist, you
ought to wonder how the applicative and the imperative World classes
work.64 Alternatively, you might imagine that you are the designer of li-
braries for your company, which uses idraw, and you notice that program-
mers have a much easier time with applicative classes rather than impera-
tive ones. So you ask yourself:

64We cannot really explain how to define either of the two libraries in complete detail.
For that, you will need to learn more about computers and operating systems.
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+------------+
| draw.World |
+---------------------------------------+
| Canvas theCanvas |
+---------------------------------------+
| abstract World onTick() |
| abstract World onKeyEvent(String ke) |
| abstract boolean draw() |
| World endOfWorld(String s) |
| boolean bigBang(int w,int h,double c) |
+---------------------------------------+

|
/ \
---
|

=============================================================================================
|

+------------------------------------+ +-----------------------------------------+
| abstract SWorld |<-1-+ +--1->| AuxWorld |
+------------------------------------+ +-|-+ +-----------------------------------------+
| AuxWorld aw |--1---+ +-1-| SWorld sw |
| Canvas theCanvas | +-----------------------------------------+
+------------------------------------+ | World onTick() |
| abstract void onTick() | | World onKeyEvent(String ke) |
| abstract void onKeyEvent(String ke)| | boolean draw() |
| abstract void draw() | | Canvas bigBangC(int w, int h, double c) |
| void endOfWorld(String s) | +-----------------------------------------+
| void bigBang(int w,int h,double c) |
+------------------------------------+

|
/ \
---
|

=============================================================================================
|

subclasses of SWorld (students’ programs)

Figure 149: Creating an applicative world: the diagram

. . . given World from the idraw library, design a class like the
applicative World class from the draw library. . . .

Naturally you may also imagine the opposite problem:

. . . given World from the draw library, design a class like the
stateful World class from the idraw library. . . .

For both problems, you are facing the question of how to implement a class
that has similar functionality as some given library class but entirely differ-
ent types. That is, you want to adapt an existing class to a context that ex-
pects different types rather than design an entirely new class from scratch.

As it turns out, the second problem is slightly easier to solve than the
first one, so we start with it. The problem is unlike any design problem you
have seen before. You are given a complete specification of one class, and
you must define it, using some second class. Still, some of the ideas from
the design recipe process apply and help you here.
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Figure 149 summarizes the situation with a three-tier class diagram.
The top tier represents the given library. The box in this tier summarizes the
given World class from draw; recall that figure 90 (page 272) specifies the
same class with field declarations, method signatures, and purpose state-
ments. The middle tier is the library that you are to design. The left box
is the class that the library is to provide. Again, it is just the box represen-
tation of a class you got to know via a textual specification: see figure 135
(page 368). We have dubbed the class SWorld; think “stateful” world when
you see it. Finally, the bottom tier represents the programs that others de-
sign based on your library. Specifically, they are subclasses of SWorld like
BlockWorld, UFOWorld, WormWorld, and so on.

Exercises

Exercise 27.30 Why can’t SWorld extend World directly? After all, World
provides all the needed functionality, and programmers are supposed to
extend it to use it.

Exercise 27.31 Design the class Block1 as a subclass of SWorld. The purpose
of Block1 is to represent a single block dropping from the top of a 100 by 100
canvas and stopping when it reaches the bottom. Make the class as simple
as possible (but no simpler).

Note: This exercise plays the role of the “example step” in the design
of SWorld. To experiment with this class, switch it to be a subclass of World
from idraw.

The box on the right side of the library tier in figure 149 is needed ac-
cording to the design guidelines for using existing abstract classes. Re-
member that according to chapter III, the use of an abstract class such as
World from idraw requires the construction of a subclass of World. The
subclass inherits bigBang, endOfWorld, and theCanvas from World; it must
provide concrete definitions for onTick, onKeyEvent, and draw. These last
three methods are to implement the behavior that creates the animation.
Of course, this behavior is really created by the users of the library, i.e., by
instances of subclasses of SWorld.

In turn, we know that the SWorld class is abstract; it introduces three
abstract methods: onTick, onKeyEvent, and draw; and it supplies bigBang,
endOfWorld, and theCanvas to its subclasses. These last three, it must some-
how acquire from AuxWorld, the concrete subclass of World. These consid-
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erations imply that (some instances of) the two to-be-designed classes need
to know about each other.

Figure 149 shows this dependence with two fields and two containment
arrows. The AuxWorld class contains a field called sw with type SWorld, and
SWorld contains a field called aw with type AuxWorld. The methods in the
two classes use these two fields to refer to the other class and to invoke the
appropriate methods from there.

Now that we understand the relationship among the two classes, we
can turn to the next step in the design recipe, namely, figuring out how to
establish the relationship. To do so, let’s imagine how we would create an
animation with this library. As agreed, an animation class (such as Block1
from exercise 27.31) is a subclass of SWorld. From the last two chapters,
you also know that the animation is started in two steps: first you create
the world with new and then you invoke bigBang on this object. Hence,
instances of (a subclass of) SWorld come into existence first. As they do,
they can can create the associated instance of AuxWorld and establish the
backwards connection.

Since all of this suggest that we need exactly one instance of AuxWorld
per instance of SWorld, we create the former and immediately associate it
with aw in the field declaration:

abstract class SWorld {
AuxWorld aw = new AuxWorld(this);
. . .
}

By handing over this to the constructor of AuxWorld, the latter can assign
its sw field the proper value:

class AuxWorld extends World {
SWorld sw;
AuxWorld(SWorld sw) {

this.sw = sw;
}
. . .
}

It is easy to see that the field declaration creates one instance of AuxWorld
per instantiation of SWorld and that this instance is associated with exactly
this instance of (a subtype of) SWorld.65

65This design demonstrates that even though the instances of SWorld and AuxWorld are
in a direct cyclic relationship, it isn’t necessary to use the entire design process from the first
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abstract class SWorld {
AuxWorld aw =

new AuxWorld(this);
Canvas theCanvas;

void bigBang(int w, int h, double c) {
theCanvas = aw.bigBangC(w,h,c);
return ;
}

void endOfWorld(String s) {
aw.endOfWorld(s);
return ;
}

abstract void onTick();

abstract void onKeyEvent(String ke);

abstract void draw();
}

class AuxWorld extends World {
SWorld ad;

AuxWorld(SWorld ad) {
this.ad = ad;
}

Canvas bigBangC(int w, int h, double c) {
bigBang(w,h,c);
return theCanvas;
}

World onTick() {
ad.onTick();
return this;
}

World onKeyEvent(String ke) {
ad.onKeyEvent(ke);
return this;
}

boolean draw() {
ad.draw();
return true;
}
}

Figure 150: Worlds, worlds, worlds—the imperative version

With the fields and the class relationships mostly under control, we can
turn to the design of methods. Let’s start with bigBang, which is the first
method that is invoked after SWorld is instantiated. Even though we can’t
make concrete examples, we can lay out the template for the method:

section of this chapter. When there is a direct one-to-one, immutable relationship where one
object completely controls the creation of the other, it is possible to create the relationship
when the objects are created.
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inside of SWorld :
void bigBang(int w, int h, double c) {

. . . this.aw.mmm() . . . this.theCanvas.mmm() . . .
this.aw = . . .
this.theCanvas = . . .
}

Given that the class contains two fields of complex type, it is natural that
both show up as potential method calls. For completeness, we have also
added two assignment statements. Because we already know that aw pro-
vides the proper functionality with its bigBang method, it is tempting to just
call the method, wait for it to return true, and to return void in the end:

inside of SWorld :
void bigBang(int w, int h, double c) {

this.aw.bigBang(w,h,c); // throw away the value of this expression
return ;
}

Although this action starts the clock and creates (displays) the canvas, it
fails to make theCanvas available to this instance of SWorld. While the big-
Bang method in World assigns the newly created Canvas to theCanvas, the
theCanvas field in SWorld is still not initialized. Worse, theCanvas in World is
protected, meaning only the methods in World and in its subclasses can ac-
cess its value. The SWorld class, however, cannot grab the value and assign
it to its theCanvas field.

One solution is to add a getCanvas method to AuxWorld whose purpose
is to hand out theCanvas when needed. It is important though that you
never call this method before bigBang has been called. An alternative so-
lution is to define the method bigBangC, which invokes bigBang and then
returns theCanvas. By lumping together the two steps in one method body,
we ensure the proper sequencing of actions.

Figure 150 displays the complete definitions of SWorld and AuxWorld.
The code drops the “this.” prefix where possible to make the code fit into
two columns; it is legal and convenient to do so in the Advanced language
of ProfessorJ and Java. The figure also shows how AuxWorld’s concrete
methods compute their results via method calls to the abstract methods
of SWorld. We have thus implemented a template-and-hook pattern (see
section 18.4, page 238) across two classes.

Exercises
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Exercise 27.32 Equip all fields and methods in SWorld and AuxWorld with
privacy specifications and ensure that the classes work as advertised with
your Block1 animation (exercise 27.31).

Exercise 27.33 Replace the bigBangC method with a getCanvas method in
AuxWorld and adapt SWorld appropriately.

+-------------+
| idraw.World |
+-------------------------------------+
| Canvas theCanvas |
+-------------------------------------+
| abstract void onTick() |
| abstract void onKeyEvent(String ke) |
| abstract void draw() |
| void endOfWorld(String s) |
| void bigBang(int w,int h,double c) |
+-------------------------------------+

|
/ \
---
|

===============================================================================================
|

+---------------------------------------+ +----------------------------------------+
| abstract AWorld |<*-+ +-1-->| Keeper |
+---------------------------------------+ +--|-+ +----------------------------------------+
| Keeper wk |-*----+ +-1-| AWorld crnt |
| Canvas theCanvas | +----------------------------------------+
+---------------------------------------+ | void onTick() |
| abstract AWorld onTick() | | void onKeyEvent(String ke) |
| abstract AWorld onKeyEvent(String ke) | | void draw() |
| abstract boolean draw() | | Canvas bigBangC(int w, int h, double c)|
| AWorld endOfWorld(String s) | +----------------------------------------+
| boolean bigBang(int w,int h,double c) |
+---------------------------------------+

|
/ \
---
|

=============================================================================================
|

subclasses of AWorld (students’ programs)

Figure 151: Creating an applicative world: the diagram

For the design of an applicative world from a stateful one, we exploit
the experience from the preceding solution and copy the basic set-up. As
before, we exploit ideas from the design recipe to guide the process. Fig-
ure 151 summarizes the situation. It shows the three tiers just like figure 149
but the roles have been inverted:

1. World is now from the idraw package;

2. its to-be-designed subclass Keeper provides concrete definitions for
the imperatively typed methods onTick, onKeyEvent, and draw;
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3. and the to-be-designed AWorld class—for applicative world—is like
the original definition of World from the draw package.

As before, the instances of the two to-be-designed classes must know about
each other. Hence, each class has a field with a type from the other class. In
addition, the setup procedure works like before; the field in AWorld comes
with an initial value and hands over this to the constructor of Keeper so that
it can establish the mutual references among the object.

The key to designing AWorld in terms of Keeper—the subclass of World—
is to determine where the results of onTick and onKeyEvent go, when the
methods have finished their computations. After all, these methods create
entirely new worlds to represent changes over time. To solve this problem,
remember the design recipe for stateful classes such as Keeper. After you
know the methods, you are supposed to determine whether invocations
of one method depend on prior calls to others and, if so, through which
field(s) they communicate the changes. In the case of Keeper, draw’s action
on the canvas is usually a function of how often onTick has been invoked.
The invocation of onTick is supposed to change this instance of Keeper. Fur-
thermore, we know from the first half of this section that onTick really im-
plements a template-and-hook pattern with onTick in AWorld and that the
latter method is to produce a new AWorld every time it is invoked.

A moment of reflection on the role of the classes and their fields shows
that the first instance of Keeper is the keeper of the current world. Its crnt
field is the place where it stores the current world. With this in mind, de-
signing the remaining methods in Keeper is straightforward now. The onTick
and onKeyEvent methods are the most interesting ones. Here are a purpose
and an effect statement, a method, and a template for the former:

inside of Keeper :
// process a tick of the clock in this world
// effect: change crnt to the current world
void onTick() {

. . . this.crnt.mmm() . . .
this.crnt = . . .
}

As always, the template suggests that onTick has crnt available and could
invoke a method on it. It also reminds us that the method may have to
change the value of crnt via the skeleton of the assignment in the last line.

The informal description of onTick in AWorld (page 273) suggests first
definitions for onTick and onKeyEvent:
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inside of Keeper :

void onTick() {
crnt = crnt.onTick();
. . .
crnt.draw();
}

inside of Keeper :

void onKeyEvent(String ke) {
crnt = crnt.onKeyEvent(ke);
. . .
crnt.draw();
}

Both methods compute their results in the same way. First, they invoke the
respective method on crnt and assign the resulting new world to crnt. Sec-
ond, the methods invoke crnt.draw to draw the new world into the canvas.

Naturally, the onTick method in Keeper invokes crnt.onTick and the on-
KeyEvent method invokes crnt.onKeyEvent in the process. Remember that
crnt is an instance of (a subtype of) AWorld and that the onTick and on-
KeyEvent methods in AWorld are abstract. A subclass of AWorld overrides
these methods with concrete methods and those definitions are the ones
that the two methods above end up using.

While these first drafts implement the desired behavior from the exter-
nal perspective of onTick, they fail to re-establish the connection between
this instance of Keeper and the worlds that are created. That is, when
crnt.onTick() creates new instance of (a subtype of) AWorld, it also automati-
cally creates a new instance of Keeper, which is unrelated to this. Worse, the
new instance of AWorld doesn’t know about theCanvas either because it is
this Keeper that holds on to the canvas with a picture of the current world.

Ideally, the evaluation of crnt.onTick() should not create a new instance
of Keeper. Of course, the constructor of an applicative class cannot distin-
guish the situation where a new world is created for which bigBang is about
to be called and the situation where the successor of a current world is cre-
ated. Inside the body of this Keeper’s onTick method the situation is clear,
however. Hence, it is its duty to establish a connection between the newly
created world and itself (and its canvas):

inside of Keeper :

void onTick() {
crnt = crnt.onTick();
crnt.update(this,theCanvas);
crnt.draw();
}

inside of Keeper :

void onKeyEvent(String ke) {
crnt = crnt.onKeyEvent(ke);
crnt.update(this,theCanvas);
crnt.draw();
}

In other words, thinking through the problem has revealed the need for a
new method, an entry on our wish list:
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inside of AWorld :
// establish a connection between this (new) world and its context
// effect: change myKeeper and theCanvas to the given objects
void update(Keeper k, Canvas c)

That is, we need a method for establishing the circularity between AWorlds
and the keeper of all worlds after all.

Exercises

Exercise 27.34 Define update for AWorld. Collect all code fragments and
define AWorld and Keeper.

Now develop the subclass AppBlock1 of AWorld. The purpose of App-
Block1 is the same as the one of Block1 in exercise 27.31: to represent a sin-
gle block that is dropping from the top of a canvas and stopping when it
reaches the bottom. Parameterize the public constructor over the size of the
canvas so that you can view differently sized canvases.

Use AppBlock1 to check the workings of AWorld and Keeper.

Exercise 27.35 The purpose of update in AWorld is to communicate with
Keeper. Use the method to replace bigBangC in Keeper with bigBang, i.e., a
method that overrides the method from World in idraw. Use Block1App
from exercise 27.34 to run your changes.

Equip all fields and methods in AWorld and Keeper with privacy spec-
ifications making everything as private as possible. Use AppBlock1 from
exercise 27.34 to ensure that the classes still work.

Argue that it is wrong to use public or protected for the privacy speci-
fication for update. Naturally it is also impossible to make it private. Note:
It is possible to say in Java that update is only available for the specified
library but not with your knowledge of privacy specifications. Study up
on packages and privacy specifications (and their omission) in the Java
report to clarify this point.

Exercise 27.36 Create an instance of Block1App, invoke bigBang on it, and
do so a second time while the simulation is running. Specify a canvas for
the second invocation that is larger than the first one. Explain why you can
observe only the second invocation before you read on.

Modify your definition of Block1App so that it works with the regular
draw library. Conduct the experiment again.
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Exercise 27.36 exposes a logical error in our design. The very principle
of an applicative design is that you can invoke the same method twice or
many times on an object and you should always get the same result. In
particular, an applicative class and method should hide all internal effects
from an external observer. For the particular exercise, you ought to see two
canvases, each containing one block descending from the top to the bottom;
the re-implementation using World from draw confirms this.

The problem with our first draft of AWorld is that a second invocation
of bigBang uses the same instance of Keeper. If, say, the clock has ticked five
times since the first invocation of bigBang, the crnt field contains

b.onTick().onTick().onTick().onTick().onTick()

When the second invocation of bigBang creates a second canvas, this can-
vas becomes the one for the instance of Keeper in this world. All drawing
actions go there and invocations of update on the above successor of b en-
sure that all future successors of b—that is, the results of additional calls of
onTick—see this new canvas.

With this explanation in hand, fixing our design is obvious. Every in-
vocation of bigBang must create a new instance of Keeper:

abstract class AWorld {
private Keeper myKeeper;
protected Canvas theCanvas;

public boolean bigBang(int w, int h, double c) {
myKeeper = new Keeper(this);
theCanvas = myKeeper.bigBangC(w,h,c);
return true;
}
. . .
}

From then on, this Keeper object is the caretaker of the first instance of (a
subtype of) AWorld and all of its successors created from event handling
methods. Figure 152 shows how it all works. On the left, you see the
complete and correct definition of AWorld and on the right you find the
definition of Keeper. Study them well; they teach valuable lessons.

Exercise

Exercise 27.37 Fix your implementation of AWorld and conduct the exper-
iment of exercise 27.36 again.
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abstract class AWorld {
Keeper myKeeper = new Keeper(this);
Canvas theCanvas;

boolean bigBang(int w, int h,
double c) {

theCanvas =
myKeeper.bigBangC(w,h,c);

return true;
}

void update(Keeper wk, Canvas tc) {
myKeeper = wk;
theCanvas = tc;
}

boolean endOfTime() {
myKeeper.endOfTime();
return true;
}

AWorld endOfWorld(String s) {
myKeeper.endOfTime(s);
return this;
}

abstract AWorld onTick();

abstract AWorld onKeyEvent(
String ke);

abstract boolean draw();
}

class Keeper extends World {
AWorld crnt;
Keeper() { }

Keeper(AWorld first) {
this.crnt = first;
}

Canvas bigBangC(int w, int h, double c) {
bigBang(w,h,c);
return theCanvas;
}

void onTick() {
crnt = crnt.onTick();
crnt.update(this,theCanvas);
crnt.draw();
}

void onKeyEvent(String ke) {
crnt = crnt.onKeyEvent(ke);
crnt.update(this,theCanvas);
crnt.draw();
}

void draw() {
crnt.draw();
}
}

Figure 152: Worlds, worlds, worlds—the applicative version

28 Equality

If you paid close attention while reading this chapter, you noticed that the
notion of “same” comes up rather often and with a subtly different mean-
ing from the one you know. For example, when the discussion of circular



Equality 435

objects insists that following some containment arrow from one field to an-
other in a collection of objects brings you back to “the very same object.”
Similarly, once assignment is introduced, you also see phrases such as “the
world stays the same but some of its attributes change.”

Given statements that seem in conflict with what we know about equal-
ity, it is time to revisit this notion. We start with a review of extensional
equality, as discussed in section 21, and then study how assignment state-
ments demand a different, refined notion of equality.

28.1 Extensional Equality, Part 2

Figure 153 displays a minimal class definition for dropping blocks. If you
ignore the gray-shaded definition for now, you see a class that introduces
a single field–height of type int—and a single method—drop, which changes
height appropriately.

If you had to compare any given instance of DroppingBlock with some
other instance, you might come up with the same method in the figure.
Since an instance is uniquely determined by the value of the height field,
this method extracts those values from the two blocks—this and other—
and compares them. If the values are the same, the blocks are considered
the same; if they differ, the blocks are guaranteed to differ.

The idea of comparing two objects on a field-by-field basis is the essence
of extensional equality as we encountered it in section 21.1. It is easy to
understand and emphasizes that the attributes of an object determine its
nature. As we have seen, too, you can also use the privacy specifications
of a class to design same; this argues that only directly visible and “mea-
surable” attributes determine whether two objects are equal. Finally, you
can choose a viewpoint in the middle and base an equality comparison on
some other observable property of the fields.

28.2 Intensional Equality

Now that we have reminded ourselves of the basics of extensional equality,
we can turn to the problem of objects that remain the same even though
they change. To make this concrete, we use the same example, the world
of dropping blocks. Given the drop method and its imperative nature, we
would have said in preceding sections that the block stays the same though
its (height) attribute changes.

The purpose of this section is to define once and for all what this form
of sameness means via the design of a method. Obviously, the header and
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// represents dropping block in a world (stateful)
class DroppingBlock {

private int height;
public DroppingBlock(int height) {

this.height = height;
}

// is this the same DroppingBlock as other?
public boolean same(DroppingBlock other) {

return this.height == other.height;
}

// drop this block by 1 pixel (effect: change height)
public void drop() {

this.height = height+1;
return ;
}

// is this truly the same DroppingBlock as other?
public boolean eq(DroppingBlock other) {

boolean result = false;
// save the old values
int heightThis = this.height;
int heightOther = other.height;

// modify both fields
this.height = 0;
other.height = 1;

// they are the same if the second assignment changes this
result = (this.height == 1);

// restore the fields to their original values
this.height = heightThis;
other.height = heightOther;

return result;
}

}

Figure 153: The intensional sameness of objects
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signature for this method are similar to the ones for same:

inside of DroppingBlock :
// is this truly the same DroppingBlock as other?
boolean eq(DroppingBlock other)

The name eq has been chosen for historical purposes.66 The word “truly”
has been added because we’re not talking about extensional equality, where
two blocks are the same if their fields are equal:

class IntExamples {
DroppingBlock db1 = new DroppingBlock(1200);
DroppingBlock db2 = new DroppingBlock(1200);

boolean test12 = check db1.eq(db2) expect false;
}

Then again, comparing an instance of DroppingBlock with itself should def-
initely yield true:

inside of IntExamples :
boolean test11 = check db1.eq(db1) expect true;

Thus we have two behavioral examples but they don’t tell us more than we
know intuitively.

Here is an example that is a bit more enlightening:

inside of IntExamples :
DroppingBlock db3 = db1;

boolean test13 = check db1.eq(db3) expect true;

Giving an instance of DroppingBlock a second name shouldn’t have any ef-
fect on intensional equality. After all, this happens regularly while a pro-
gram is evaluated. For example, if your program hands db1 to a constructor
of a World-style class, the parameter of the constructor is a name for the ob-
ject. Similarly, if you invoke drop on db1, the method refers to the object via
this—which is of course just a name for the object.

This last idea plus the motivating sentence “it remains the same even
though it changes” suggests one more example:

boolean test13again() {
db1.drop();
return check db1.eq(db3) expect true;
}

66Lisp has used this name for intensional equality for 50 years.
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In this example, the instance of DroppingBlock has two names; it is changed
via an invocation of drop; and yet this change doesn’t affect the fact that db1
and db3 are intensionally equal.

Indeed, this last example also suggests an idea for the method defini-
tion. If changing an instance via one name should not affect its identity
under another name, perhaps the method should use changes to a field to
find out whether two different names refer to the same object. First steps
first; here is the template:

inside of DroppingBlock :
// is this truly the same as DroppingBlock as other?
boolean eq(DroppingBlock other) {

. . . this.height . . . other.height . . .
this.height = . . .
other. height = . . .
}

The template includes two skeleton assignments to the fields of this and
other, the two names that might refer to the same object. Its header doesn’t
include an effect statement; an equality method shouldn’t change the ob-
jects it compares. From here, we can take the first step toward a definition:

inside of DroppingBlock :

boolean eq(DroppingBlock other) {
// save the old values
int heightThisInitially = this.height;
int heightOtherInitially = other. height;

. . . this.height . . . other.height . . .

this.height = . . .
other. height = . . .

// restore the fields to their original values
this.height = heightThisInitially;
other. height = heightOtherInitially;
. . .
}

First the method must save the current values of the two height fields via
local variables. Second it may assign to them. Third, it must restore the old
connection between fields and values with a second pair of assignments so
that it has no externally visible effects.
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The rest requires code for our idea that if “it also changes, it is the same.”
In more concrete words, if the method assigns a new value to this.height
and other.height changes, then the two methods are the same. Measuring
a change in value means, however, comparing other.height with an int and
knowing what to expect. Since we can’t know the value of other.height, let’s
just assign a known value to this field, too. Now if this second assignment
affects the this.height again, we are dealing with one and the same object:

inside of DroppingBlock :

boolean eq(DroppingBlock other) {
. . .
this.height = 0;
other.height = 1;
// this and other are the same if:
. . . (this.height == 1) . . .
. . .
}

Of course, the method can’t return the result yet because it first needs to
restore the values in the fields. Therefore, the result is stored locally.

The gray-shaded area in figure 153 is the complete definition of the eq
method, and it does represent the essence of INTENSIONAL EQUALITY:

if a change to one object affects a second object, you are dealing
with one and the same object.

At the same time, eq is a method that assigns to the fields of two objects, yet
has no visible side-effect because it undoes the change(s) before it returns.
Ponder this observation before you move on.

Exercises

Exercise 28.1 Why can eq not just modify one instance of DroppingBlock via
an assignment? Why does it have to change this.height and other.height?

Develop a test case that demonstrates that a version without one of
the two assignment statements would fail to act like eq. In other words,
it would consider two distinct instances the same, contrary to the spirit of
eq, which only identifies this and other if they were created from one and
the same new expression.

Exercise 28.2 Discuss: Is it possible to design an eq method for a class that
has a single field whose type is some other class? Consider the following
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two hints. First, null is the only value that has all types. Second, calling the
constructor of a random class may have visible and permanent effects such
as the creation of a canvas on your computer screen.

As is, the eq method is not useful as a general programming tool. On
one hand, it requires the mutation of an object, and it requires a signifi-
cant amount of shuffling of values from one variable to another and back.
Getting it right isn’t straightforward, and even if it is right, it is a lot of
work. On the other hand, it doesn’t work for null, the special object value
introduced in this section, because null is a constant and can’t be changed.
Since it is often important to discover the presence of null (e.g., to prevent
methods from accidentally invoking a method on it or extracting a field),
researchers have come up with a cheaper and equivalent way of discov-
ering intensional equality. Specifically, two objects are intensional equal if
(and only if) they are both null or if they were both created by the exact
same evaluation of a new expression during the execution of a program.

Based on this insight, Java and other object-oriented programming lan-
guages automatically provide an eq-like method for all objects. In Java,
it isn’t really a method but the == comparison operator that determines
whether two objects are intensionally equal. For any two instances db1 and
db2 of DroppingBlock (or any other class), the expression

db1 == db2

evaluates to true if and only if the two objects are intensionally the same.

28.3 Extensional Equality with null

While we discourage the use of null as much as possible, it is occasionally
useful to formulate methods in a concise manner. Recall the equality com-
parison for union types from section 21.3. The essence is that each variant
comes with two methods, both of which must be included in the interface:

1. boolean isSpecificVariant(), whose purpose is to determine whether an
object is instance of a specific variant;

2. SpecificVariant toVariant(), whose purpose is to convert any object into
an instance of the class SpecificVariant. Naturally, the method fails
because it is simply impossible to turn apples into oranges and Tea
into Coffee.
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// some grocery items
interface IItem {

// is this the same IItem as other?
boolean same(IItem x);

// is this Coffee?
boolean isCoffee();
// convert this to Coffee (if feasible)
Coffee toCoffee();

// is this Tea?
boolean isTea();
// convert this to Tea (if feasible)
Tea toTea();
}

Figure 154: An interface with methods for extensional equality

For your convenience, figure 154 repeats the interface for the IItem union of
Coffee and Tea variants. (Also see figures 113 and 114.)

As you can see from this interface, supporting a single same method in a
union demands the addition of two auxiliary methods per variant. Adding
a variant thus requires the implementation of all these methods, plus two
more for each already existing variant. Exercises 21.6 and 21.7 bring home
this conundrum, also demonstrating how abstraction can reduce some of
the work in this case, though not all.

Equipped with null and a fast mechanism for discovering its presence,
we can further reduce the work. Specifically, we can combine the two meth-
ods into one because null has all possible types and thus passes the type
system and because == can discover null cheaply. Concretely, we retain
the conversion method and eliminate the method that is like a predicate in
Scheme:

inside of IItem :
// convert this to Coffee (to null otherwise)
Coffee toCoffee();

Defining this method is straightforward. In Coffee, returns this; everywhere
else, say in Tea, it returns null:
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inside of Coffee :

Coffee toCoffee() {
return this;
}

inside of Tea :
Coffee toCoffee() {

return null;
}

Once we have this single method, adapting same is also easy:

inside of Coffee : (original version)

boolean same(IItem other) {

return other.isCoffee()
&& other.toCoffee().same(this);

}

inside of Coffee : (new version)

boolean same(IItem other) {
Coffee c = other.toCoffee();
return (null == c)

&& c.same(this);
}

Like the original version (on the left), the new version (on the right) con-
verts other to Coffee. If this conversion step produces null, the boolean ex-
pression evaluates to false; otherwise, it invokes the same method on the
result of the conversion and hands over this, whose type is Coffee. The res-
olution of overloading thus resolves this second method call to the private

method (see figure 114) that compares one Coffee with another.

Exercise

Exercise 28.3 Complete the definitions of the Tea and Coffee classes, each
implementing the revised IItem interface. Then add the Chocolate from ex-
ercise 21.6 as a third variant to the IItem union. Finally, abstract over the
commonalities in this union.

28.4 Extensional Equality with Cast

Even with the use of null to reduce the number of auxiliary methods by
half, our solution for comparing two objects (for extensional equality) from
a union requires too much work. Clearly, defining sameness is something
that comes up time and again, and for that reason, Java provides two mech-
anisms for making this simple. The first one is a tool for inspecting the class
of an object and the second one is for converting an object’s type in-line:

inside of Tea :
boolean same(IItem other) {

return ( other instanceof Tea
1
)

&& ((Tea)other)
2
.same(this);

}
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The gray-shaded box with subscript 1 determines whether other is an in-
stance of the Tea class, i.e., whether it is created with new Tea (or for some
subclass of Tea). The gray-shaded box with subscript 2 is called a CAST. It
tells the type checker to act as if other has type Tea even though its actual
type is IItem, a supertype of Tea. Later when the program runs, the cast
checks that other is indeed an instance of Tea. If it is not, the cast raises
an error, similar to the original conversion method toCoffee in figure 114.67

Fortunately, here we have already confirmed with instanceof that other is a
Tea so nothing bad will happen.

Finally, since testing extensional equality is such a ubiquitous program-
ming task, Java defines a default method and behavior:

inside of Object :

public boolean equals(Object other) {
return this == other;
}

The class Object is the superclass of all classes, and if a class doesn’t explic-
itly extend another class, Java makes it extend Object. Thus, all classes come
with a useless public definition of equals. To obtain mostly useful behavior,
you must publicly override equals and define extensional equality accord-
ing to your needs. Since all classes provide equals, your method may safely
call equals on all contained objects. For classes that you defined, equals be-
haves as defined; for others, it may incorrectly return false but at least it
exists.68

28.5 Danger! Extensional Equality and Cycles

Figure 155 displays a Scheme-like data representation for list of ints. It in-
cludes a setRest method, which changes this list’s rest field to some given
value. In addition, the data representation supports a conventional equals
method, designed according to the structural recipe. not in interface!

It is easy to make up examples for testing the equals method:

67By doing so, ProfessorJ and Java guarantee that the object acts at run-time according to
what its type promises. This guarantee is called TYPE SOUNDNESS or TYPE SAFETY.

68Although overriding equals alone doesn’t violate any syntax or typing rules, it is tech-
nically wrong. Overriding equals makes it also necessary to override the method hashCode.
Once you understand hashtables, read the manual to understand this constraint.
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interface IList {
// effect: change the rest of this list
void setRest(IList rst);

// is this list the same as the other?
boolean equals(IList other);

// the first int of this [non-empty] list
int first();

// the rest of this [non-empty] list
IList rest();
}

class MT implements IList {
MT() { }

public void setRest(IList rst) {
Util.error("empty has no first");
}

public boolean equals(IList other) {
return other instanceof MT;
}

public int first() {
return Util.error("empty has no first");
}

public IList rest() {
return Util.error("empty has no rest");
}
}

class Cons implements IList {
private int fst;
private IList rst;

Cons(int fst, IList rst) {
this.fst = fst;
this.rst = rst;
}

public void setRest(IList rst) {
this.rst = rst;
}

public boolean equals(IList other) {
return other instanceof Cons

&& this.fst == other.first()
&& this.rest().equals(other.rest());

}

public int first() {
return this.fst;
}

public IList rest() {
return this.rst;
}
}

Figure 155: Potentially cyclic lists

class Examples {
IList alist = new Cons(1,new MT());
IList list2 = new Cons(1,new MT());

boolean test1 = check alist.equals(list2) expect true;
boolean test2 = check alist.equals(new MT()) expect false;
boolean test3 = check new MT().equals(alist) expect false;
}
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To test cyclic lists, you also want to add a method that creates such lists.
Here is one way of doing this, there are many others:

inside of Examples :
// create a cyclic list with one element
IList makeCyclic(int x) {

IList tmp = new Cons(x,new MT());
tmp.setRest(tmp);
return tmp;

}

As you can see, the method creates a list and immediately uses setRest to
set the rest of the list to itself. That is, the assignment statement in setRest
changes tmp just before it is returned.

With this method, you can introduce two obviously equivalent cyclic
sample lists and check whether equals can compare them:

inside of Examples :

boolean test4() {
IList clist1 = makeCyclic(1);
IList clist2 = makeCyclic(1);
return check clist1.equals(clist2) expect true;

}

ProfessorJ:
Memory Limit

If you now run the program consisting of this four classes, ProfessorJ does
not stop computing. You must need the STOP button to get a response in
the interactions window.

What just happened? The method makeCyclic is invoked twice. Each
time it creates a list that consists of a single instance of Cons whose rst field
points to the object itself:

fst: rst:

1 •�

Since both clist1 and clist2 represent just such lists, we should thus expect
that clist1.equals(clist2) produces true. To understand why it doesn’t, let’s
step through the computation. According to the law of substitution, the
method invocation evaluates to
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return clist2 instanceof Cons
&& clist1.fst == clist2.first()
&& clist1.rest().equals(clist2.rest());

The expression uses clist1 and clist2 to represent the instances of Cons, be-
cause they are cyclic and not representable with new expressions directly.

The return statement contains a boolean expression, which in turn con-
sists of three separate conditions. First, we must therefore evaluate clist2
instanceof Cons, which is true:

return true
&& clist1.fst == clist2.first()
&& clist1.rest().equals(clist2.rest());

Second, once the first part of an && expression is true, we proceed to the
second one, which with two steps reduces as follows:

return 1 == 1
&& clist1.rest().equals(clist2.rest());

Third, 1 == 1 also reduces to true, so we must evaluate the thid and last
condition, which consists of three method calls. The key insight is that
clist1.rest() evaluates to clist1 and clist2.rest() evaluates to clist2. And thus
we end up with

return clist1.equals(clist2);

In other words, we are back to where we started from. To determine the
value of clist1.equals(clist2), we must determine the value of clist1.equals(clist2)
and therefore the program runs forever.69

In a sense, the result isn’t surprising. The first few sections in this chap-
ter introduced the idea of cyclic data and the idea of programs that run
forever or go into infinite loops. In the case where assignments exists only
to create cyclic data, the solution is to ignore some links and to traverse
the data as if they didn’t exist. In the presence of general assignments (and
changes to objects), this solution doesn’t work. The programmer of any
general traversal method—such as equals—must be prepared that the ob-
ject graph contains a cycle and that a method designed according to the
structural recipe does not compute a result.

The following exercises explore the topic in some depth and we strongly
recommend you solve them. While they do not offer a complete solution,

69Technically, the program doesn’t run forever in Java. Each method call in Java con-
sumes a tiny bit of memory but after a while this adds up to all the memory on your com-
puter. At that point, the program crashes and reports a “stack overflow” error. More on this
topic later.
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they explore the basic principle, namely to exploit intensional equality to
define a general extension equality method. You will encounter this idea
again in advanced courses on algorithms.

Exercises

Exercise 28.4 Add the following list to Examples:

fst: rst:

1 •� -

fst: rst:

1 •

Compare it with the cyclic list containing one instance of Cons with 1 in
the fst field. Are these two lists the same? If not, design a boolean-valued
method difference that returns true when given the list with two Cons cells
and false when given the list with one Cons cell.

Exercise 28.5 In How to Design Programs, we developed several approaches
to the discovery of cycles in a collection of data. The first one exploits accu-
mulators, i.e., the use of an auxiliary function that keeps track of the pieces
of the data structure it has seen so far. Here is the natural adaptation for
our lists:

inside of IList :
// is this list the same as other, accounting for cycles?
// accumulator: seenThis, the nodes already encountered on this

// accumulator: seenOther, the nodes already encountered on other
boolean equalsAux(List other, IListC seenThis, IListC seenOther);

That is, the auxiliary method equalsAux consumes this plus three additional
arguments: other, seenThis, and seenOther. The latter are lists of Cons nodes
that equalsAux has encountered on its way through this and other.

Design IListC, a data representation for lists of Cons objects. Then de-
sign the method equalsAux. While the problem already specifies the accu-
mulator and the knowledge it represents, it is up to you to discover how
to use this knowledge to discover cycles within lists of ints. Finally modify
the definition of equals

inside of IList :
// is this list the same as other
boolean equals(List other);
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in Cons and Mt (as needed) so that it produces true for test4 from above.
Does your method also succeed on these tests:

inside of Examples :

boolean test5() {
List clist1 = new Cons(1,new MT());
List clist2 = new Cons(1,new MT());

clist1.setRest(clist2);
clist2.setRest(clist1);

return
check clist1.equals(clist2) expect true;

}

inside of Examples :

boolean test6() {
List clist0 = new Cons(1,new MT());
List clist1 = new Cons(1,clist0);

List clist2 = new Cons(1,new MT());
List clist3 = new Cons(1,clist2);

clist0.setRest(clist1);
clist2.setRest(clist3);

return
check clist1.equals(clist2) expect true;

}

Explain the examples in terms of box diagrams of lists. Think of additional
ways to create lists with cycles and test your equals method.

Exercise 28.6 A cyclic list, like a fraction with an infinite decimal expan-
sion, has a period, i.e., it consists of a finite list that is repeated forever.
Thus, another approach to determining the equality of two ILists is to de-
termine their periods and to compare those. Design a method that uses this
idea, but do solve exercise 28.6 first.
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Intermezzo 4: Assignments

purpose: the syntax of beginning student that is used in chapter IV
interface, implements, inner classes
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Purpose and Background

The purpose of this chapter is to introduce data abstraction in the context
of class hierarchies. The focus is on abstracting over entire class diagrams
that have a similar structure. The chapter introduces two-and-a-half tech-
niques: an Object-based approach and an approach based on parametric
polymorphism, also known as generics.

As in chapter III, the goal is to remind students that programming is not
just the act of writing down classes and methods that work. True program-
ming includes reasoning about programs, “editing” them, and improving
them as needed.

We assume that students are at least vaguely familiar with the idea of
creating simple abstractions from similar data definitions. Ideally, students
should have read or studied Part IV of How to Design Programs.

After studying this chapter, students should be able to abstract over
class diagrams with similar structure and use these common abstractions
in place of the original ones.
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TODO



V Abstracting Data Representations

Chapter III teaches you how to deal with classes that share fields and con-
tain similar methods. To abstract over those similarities, you create super-
classes and lift the common elements there, using inheritance to share them
in many different classes. Like higher-order functions in How to Design Pro-
grams, superclass abstraction comes with many advantages.

You should therefore find it disturbing that this technique doesn’t work
for the case when everything but the types are shared. For example, we
have seen lists of shots in our case study; you have created lists of worm
segments for the worm game; you have designed data representations for
restaurant menus, which are lists of menu items; and your programs have
manipulated phone books, which are lists of names and phone numbers.
At least to some extent, these lists are the same except that the type of list
element differs from one case to another.

This chapter introduces techniques for abstracting over classes and sys-
tems of classes that differ in types not just in fields and methods. In terms
of How to Design Programs (chapter IV), the chapter introduces you to the
mechanisms of abstracting over data definitions; in contrast to Scheme,

Java 5:
Eclipse

where you used English for this purpose, Java offers linguistic constructs
in support of this form of abstraction. Once you know how to abstract over
the types of data representations, you know how to design data libraries;
in the last section of this chapter, we also discuss how to turn libraries into
extensible frameworks.

30 Types and Similarities between Plain Classes

Over the course of the first few chapters, we have had numerous encoun-
ters with list items: log entries, menu items, phone records, team members,
plain ints, and many more. Like lists themselves, entries are somehow simi-
lar, with differences mostly concerning types. We therefore begin our study
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of abstraction over data with the simple case of list entries, demonstrating
the ideas as much as possible before we move on to interesting cases, in-
cluding lists.

+------------------+
| PhnBEntry |
+------------------+
| String name |
| PhoneNumber pnum |
+------------------+

+------------------+
| MenuItem |
+------------------+
| String name |
| int price |
+------------------+

// an entry in a phone listing
class PhnBEntry {

String name;
PhoneNumber phnu;

PhnBEntry(String name,
PhoneNumber phnu) {

this.name = name;
this.phnu = phnu;
}
. . .
}

// an entry on a restaurant menu
class MenuItem {

String name;
int price;

MenuItem(String name,
int price) {

this.name = name;
this.price = price;
}
. . .
}

Figure 156: Entries in a phone book and menu items

30.1 Classes with Common Structure, Different Types

Figure 156 displays the class diagrams and the class definitions for two
unrelated but similar fragments of classes:

1. PhnBEntry, which you should understand as the class of entries in an
electronic phone book, like one of those found on your cell phone;

2. and MenuItem, which represents items on a restaurant menu.

The two classes have two fields each. One of those fields can be understood
as a key and the other one is “information” associated with the key.

Specifically, the name field of PhnBEntry refers to the name of a phone
acquaintance and the phnu field is the phone number. Typically, we would
have a whole list of instances of PhnBEntry and we might wish to look for
someone on the list or sort the list alphabetically, e.g., for display on a cell
phone monitor. In a similar manner, name in MenuItem consists of the title
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of some dish served in a restaurant and possibly a short description. You
can imagine that a modern restaurant broadcasts its menu to your PDA and
you can then search the menu, inspect its items for ingredients, or just sort
it by price. The figure uses suggestive dots to indicate methods.

Clearly, the two classes are similar, and they will be used in a similar
manner. If the types of the “information” fields didn’t differ, we could use
the design recipe from chapter III to create a common superclass with two
fields. This new class would become a part of library and would then serve
as the repository for all common methods of Entry. Programmers would
derive specialized classes, such as MenuItem and PhnBEntry from this class
and supplement additional, special-purpose methods. Our problem is that
the types do differ, and therefore, the design recipe doesn’t apply. Most
object-oriented programming languages support at least one solution for
this problem; Java allows two: via subtyping and via abstraction. The next
two subsections compare and contrast these mechanisms, one at a time,
and also display the advantages and disadvantages of each.

30.2 Abstracting Types via Subtyping

The first solution is to find a common supertype for the different types. In
our example, the two relevant types are PhoneNumber and int. The first is a
class used as a type, the second is a primitive type. In Java, these two types
share one common supertype: Object,70 the superclass of all classes that we
encountered at the end of the preceding chapter.

Every object-oriented programming language has such a class. It hosts
the most basic methods that are common to all objects. In Java, for exam-
ple, the Object class hosts equals and hashCode, two related methods. When
a class definition does not mention an extends clause, it is implicitly a sub-
class of Object. Hence, Object suggests itself as the type of the field for the
superclass of Entry.

Reasoning along those lines leads to the class definition of Entry at the
top of figure 157. Below the line in this figure, you see the two original
classes defined as extensions of Entry; for such simple classes, it suffices
that both constructors just pass their arguments to the super constructor.
Re-defining the two classes in terms of Entry is, of course, just the last step
in the design recipe for abstraction. It demands, after all, that we show how
we can use abstractions to re-create the motivating originals.

70In Java, int corresponds to a class called Integer and it is a subclass of Object. The full
story is too complex for this book. Research the terms “wrapper classes” and “implicit
boxing” to understand this idea in full detail for Java. C# tells a simpler story than Java.
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// a general entry for listings
class Entry {

String name;
Object value;

Entry(String name, Object value) {
this.name = name;
this.value = value;
}
}

class PhnBEntry extends Entry {
PhnBEntry(String name,

PhoneNumber value) {
super(name,value);
}
. . .
}

class MenuItem extends Entry {
MenuItem(String name,

int value) {
super(name,value);
}
. . .
}

Figure 157: Abstracting over entries via Object

Classes without methods are boring. Since phone books and menus
need sorting, let’s add the relevant methods to our classes. Sorting assumes
that a program can compare the entries on each list with each other. More
precisely, the representations for entries in a phone book and for items on a
menu must come with a lessThan method, which determines whether one
item is “less than” some other item:

inside of PhnBEntry :
// does this entry precede
// the other alphabetically?
boolean lessThan(PhnBEntry other) {

return

0 > name.compareTo(other.name);
}

inside of MenuItem :
// does this menu item cost
// cost less than the other?
boolean lessThan(MenuItem other) {

return

this.price < other.price;
}

The two method definitions are straightforward; the only thing worthy of
attention is how to find out that one String is alphabetically less than some
other String.71

71Search for compareTo in the Java documentation of String.
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While the two lessThan methods in PhnBEntry and MenuItem are distinct
and can’t be abstracted, it is nevertheless necessary to check how to design
them if the classes aren’t designed from scratch but derived from Entry.
Doing so reveals a surprise:

inside of PhnBEntry: (figure 157)

boolean lessThan(PhnBEntry other) {
return

0 > name.compareTo(other.name);
}

inside of MenuItem: (figure 157)
boolean lessThan(MenuItem other) {

int thisPrice = (Integer)this.value;

int othrPrice = (Integer)other.value;

return thisPrice < othrPrice;
}

The definition in PhnBEntry is identical to the original one; the one for the
derived version of MenuItem, however, is three lines long instead of one.

The additional lines are a symptom of additional complexity that you
must understand. Ideally, you would like to write this:

inside of MenuItem :
boolean lessThan(MenuItem other) {

return this.value < other.value;
}

where value is the name of the second, abstracted field, which replaces price
from the original MenuItem class. Unfortunately, writing this comparison
isn’t type-correct. The value field has type Object in MenuItem, and it is
impossible to compare arbitrary Objects with a mathematical comparison
operator. Still, you—the programmer—know from the constructor that the
value field always stands for an integer, not some arbitrary values.72

Casts—first mentioned in conjunction with Object—bridge the gap be-
tween the type system and a programmer’s knowledge about the program.
Remember that a cast tells the type checker to act as if an expression of one
type has a different type, usually a subtype. Later when the program runs,
the cast checks that the value of the expression is indeed an instance of the
acclaimed type. If it is not, the cast signals an error.

Here we use casts as follows (or with variable declarations as above):

inside of MenuItem :
boolean lessThan(MenuItem other) {

return (Integer)this.value
1
< (Integer)other.value

2
;

}
72As a matter of fact, you don’t really know. Someone derives a stateful subclass from

your class and assigns “strange” objects to value. See final in your Java documentation.
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The gray-shaded box labeled with subscript 1 requests that the type checker
uses this.value as an Integer (i.e., an integer) value not an instance of Object,
which is the type of the field-selection expression. The box labeled with
subscript 2 performs the same task for the value field in the other instance
of MenuItem. Once the type checker accepts the two expressions as Integer-
typed expressions, it also accepts the comparison operator between them.
Recall, however, that the type checker doesn’t just trust the programmer.
It inserts code that actually ensures that the value fields stand for integers
here, and if they don’t, this additional code stops the program execution.

In summary, the use of Object solves our “abstraction” problem. It
should leave you with a bad taste, however. It requires the use of a cast to
bridge the gap between the programmer’s knowledge and what the type
checker can deduce about the program from the type declarations. Worse,
every time lessThan compares one MenuItem with another, the cast checks
that the given value is an integer, even though it definitely is one.

While practical programmers will always know more about their pro-
grams than the type portion can express, this particular use of casts is ar-
bitrary. Modern statically typed programming languages include proper
mechanisms for abstracting over differences in types and that is what we
study in the next subsection.

30.3 Abstracting Types via Generics

In How to Design Programs we encountered a comparable situation when
we compared two different definitions of lists:

A list of numbers (LoN) is one of:

1. empty or

2. (cons Number LoN).

A list of IRs (LoIR) is one of:

1. empty or

2. (cons IR LoIR).

There, our solution was to introduce a data definition with a parameter,
which we dubbed “parameteric” data definition:

A [listof Item] is one of:

1. empty or

2. (cons Item [listof Item]).
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To use this definition, we need to supply the name of a class of data, e.g.,
(listof String), or another instantiation of a generic data definition, e.g.,
(listof (list String Number)).

Of course, in How to Design Programs, data definitions are just English
descriptions of the kind of data that a program must process. Java73 and
similar object-oriented languages allow programmers to express such data
definitions as a part of their programs, and the type checkers ensures that
the rest of the program conforms to them.

// a parameteric entry for listings
class Entry<VALUE> {

String name;
VALUE value;

Entry(String name, VALUE value) {
this.name = name;
this.value = value;
}
}

class PhnBEntry
extends Entry<PhoneNumber> {

PhnBEntry(String name,
PhoneNumber value) {

super(name,value);
}

boolean lessThan(PhnBEntry other) {
return 0 > name.compareTo(other.name);
}
}

class MenuItem
extends Entry<Integer> {

MenuItem(String name,
int value) {

super(name,value);
}

boolean lessThan(MenuItem other) {
return value < other.value;
}
}

Figure 158: Abstracting over entries via generics

The top of figure 158 shows how to express a parameteric class defini-
tion in Java. There, and in other object-oriented languages, such definitions
are called GENERIC CLASSES or just GENERICS. Roughly speaking, a generic
is a class with one or more parameters. Unlike the parameters of a function

73This is true for version 1.5 of Java; prior releases of the language didn’t include generics.
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or a method, the parameters of a generic class range over types.

Thus, class Entry<VALUE> introduces a class definition with one pa-
rameter: VALUE. This type parameter shows up twice in the body of the
class definition: once as the type of the value field and once as the type of
the value parameter of the constructor.

Using a generic class such as Entry is like applying a function or a
method. A function application supplies an argument for every parame-
ter. In this spirit, the use of a generic class definition demands a type for
every type parameter. For example, if you wish to use Entry as the type of
some field, you must supply a type for VALUE. Here is an imaginary class
C with an Entry field:

class C {
Entry<String> twoSt;
. . .
}

Similarly, if you wish to instantiate Entry, the new expression has to specify
replacement types for VALUE. Continuing the C example, you might see
this in a program:74

class C {
Entry<String> twoSt = new Entry<String>("hello","world");
. . .
}

Last but not least, if you wish to derive a subclass from Entry, you must
supply a type for VALUE:

class C extends Entry<String> { . . . }

Here, String is substituted for all occurrences of VALUE, meaning C’s su-
perclass is a class with two String-typed fields. In general, this form of
inheritance is just like the old one after the substitution has happened; it
introduces all the visible fields and methods for use in the subclass.

The bottom of figure 158 displays two subclass definitions of Entry. On
the left you see the re-creation of PhnBEntry from the generic Entry class; on
the right is the re-creation of MenuItem. Unlike in the preceding subsection,
the lessThan methods are just like those in the original classes. In particular,

74Leaving off the String part in the second Entry expression may actually work in Java.
To understand why, you must understand how Java translates generics-based solutions into
Object-based solutions; see the Intermezzo following this chapter.
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MenuItem extends Entry<Integer>,75 which is a class with two fields:

1. name, which has type String; and

2. value, which stands for Integers.

Thus, it is correct to compare this. value with other.value in the lessThan
method. After all, both values stand for integers, and it is okay to com-
pare integers with <.

In summary, generics eliminate both the gap between what program-
mers know about the type of value and the run-time checks that the use of
Object and casts in the preceding subsection imply. A generic class truly
acts like a function from types to classes. Once the concrete type for the pa-
rameter becomes known, the resulting class uses the concrete types wher-
ever the parameter shows up.

A second advantage of generic class abstraction over Object-based ab-
straction concerns methods. Remember that you may wish to sort lists of
entries and to do so you need a method for comparing instances with a
lessThan method. While the designer of Entry cannot know how to com-
pare and rank instances of objects whose type isn’t known yet, it is now
possible to demand an appropriate method from each subclass:

inside of Entry<VALUE> :
// is this Entry less than the other one?
abstract boolean lessThan(Entry<VALUE> other);

Of course, to make this work, you must add abstract to the definition of
Entry, because the lessThan method can’t have a definition.

Anybody who wishes to design a concrete subclass of Entry<VALUE>
must provide a definition for lessThan. At first glance, you may think that
these subclasses look just like those in figure 158. Although this is correct
in principle, Java does not equate PhnBEntry with Entry<PhoneNumber>
and MenuItem with Entry<Integer>.76 Hence, in order to override the ab-
stract lessThan method with a concrete one, both classes must repeat the
instantiation of the superclass:

75Just like with casts, you must use Integer as a type when you wish to instantiate a
generic class at type int.

76Java types are identified with the names of classes and interfaces, not with expressions
that instantiate generic classes. This principle is called nominal typing.
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inside of PhnBEntry :
boolean lessThan(Entry<PhoneNumber>

other) {
return

0 > name.compareTo(other.name);
}

inside of MenuItem :
boolean lessThan(Entry<Integer>

other) {
return

value < other.value;
}

Now the signatures of lessThan in the concrete subclasses matches the sig-
nature of lessThan in the superclass, and Java accepts the code.

Exercises

Exercise 30.1 Design test cases for the original PhnBEntry and MenuItem
classes. Then revise the classes in figure 158 according to the discussion
and re-run the test cases for the abstracted solution.

Exercise 30.2 Explain why adding

inside of Entry (in figure 157) :
// is this less than the other?
abstract boolean lessThan(Object other);

and making the class abstract doesn’t express the same specification as the
extension of Entry<VALUE>. To do so, design concrete subclasses of the
revised Entry class that represent phone-book entries and menu items.

When you define a generic class, you may use as many parameters as
you wish:

class Pair<LEFT,RIGHT> {
LEFT l;
RIGHT r;

Pair(LEFT l, RIGHT r) {
this.l = l;
this.r = r;
}
}

This class definition says that a Pair consists of two pieces. Since we don’t
know the types of the two pieces, the definition uses parameters.
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In the first four chapters, we have encountered many kinds of pairings,
including the Posn class from the geometry library:

class Posn extends Pair<Double,Double> {
Posn(double l,double r) { super(l,r); }

// how far way is this Posn from the origin?
double distanceToO() {

return Math.sqrt(this.l∗this. l+this. r∗this. r);
}
}

This Posn class is a subclass of Pair<Double,Double>,77 that is, it inherits
two fields that represents double-precision numbers. The constructor ex-
presses this fact with two parameters, both of type double. The subclass
definition also includes a method definition for distanceToO, which com-
putes the distance of this instance of Posn to the origin. Because the super-
class’s fields have type double, the instructions in the body of distanceToO
are exactly the same as before; there is no need for casts or other changes.

A moment’s reflection suggests that Pair is also a natural superclass for
Entry because an entry pairs a string with a value:

class Entry<VALUE> extends Pair<String,VALUE> {
Entry(String l,VALUE r) {

super(l,r);
}
}

Naturally, Entry remains a class definition of one type parameter. It extends
the Pair class with Pair<String,VALUE>. The first parameter here is String,
the type of the name as we have called the field so far. The second parame-
ter, though, is VALUE, which is the parameter of the declaration. Passing on
a parameter isn’t a problem of course; we have seen this in How to Design
Programs with functions:

(define (g u v) . . . )
(define (f x) (g x 10))

and in this book with methods:

inside of Posn :
double distance(Posn other) {

return distanceToO(new Posn(this.l-other.l,this.r-other.r));
}

77Double is to the type double what Integer is to the type int.
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In short, type parameters of generic classes are really just like parameters
of functions and methods.

Exercises

Exercise 30.3 Create instances of Pair<String,Integer> and Posns. Is an in-
stance of Pair<Double,Double> also of an instance of Posn?

Explore why this expression

new Posn(1.0,2.0) instanceof Pair<Double,Double>

is illegal in Java. Note: This part is a challenging research exercise that
requires a serious amount of reading for a full understanding.

Exercise 30.4 Develop a version of Pair that uses Object as the type of its
fields. Then extend the class to obtain a definition for Posn, including its
distanceToO method.

Even though Pair and Entry are trivial examples of abstractions over
similar classes, they teach us a lot about abstracting via Object and generics.
Suppose we had turned Pair into a library class and wanted to add some
basic methods to it, i.e., methods that apply to all instances of Pair no matter
what the concrete field types are. One of these methods is getLeft:

inside of Pair<LEFT,RIGHT> :
// the l field of this Pair
LEFT getLeft() {

return this.l;
}

If l is a private field, getLeft provides access to its current value. Interest-
ingly enough the method’s signature communicates to any reader what the
method does. It consumes one argument, this of type Pair<LEFT,RIGHT>
and it returns a value of type LEFT—regardless of what these types really
are. Since the given instance contains only one value of type LEFT, the
method can only extract this value.78

A slightly more interesting example is swap, which produces a new pair
with the values reversed:

78Technically, the method could also use the null value as something of type LEFT, but
remember that null should only be used in certain situations.
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inside of Pair<LEFT,RIGHT> :
// create a pair with the fields in the reverse order of this

public Pair<RIGHT,LEFT> swap() {
return new Pair<RIGHT,LEFT>(r,l);
}

The method creates a new pair using the values in r and l in this order.
Just as with getLeft, the signature Pair<RIGHT,LEFT> of swap actually re-
veals a lot about its computation. Given this instance of Pair whose l and
r fields are of type LEFT and RIGHT, respectively, it creates an instance of
Pair<RIGHT,LEFT>. Naturally, without any knowledge about the actual
types, it can only do so by swapping the values of the two types to which
it has guaranteed access.

Exercise

Exercise 30.5 Design (regular) classes for representing lists of MenuItems
and PhnBEntrys. Add methods for sorting the former by price and the latter
by alphabet.

31 Types and Similarities between Hierarchies

Pairs and list entries are small, artificial examples that don’t make it into
widely usable libraries. Lists or any compound data, however, are an en-
tirely different matter. In the object-oriented world, lists and similar classes
are called COLLECTION classes, or just collections, because they allow pro-
grams to collect a (n often arbitrary) number of objects in one. Abstracting
over the types of the objects in such collections creates a general and pow-
erful programming tool.

Take a look at figure 159. It compares the class diagrams for electronic
phone books (lists of PhnBEntrys) and for menus (lists of MenuItems). The
two figures display the kind of diagram that we encountered in chapter 1,
where we focused on representing information as data. A look from afar
suggests that the diagrams are identical: three boxes in each; one inter-
face with two implementing classes; two inheritance connections; and one
containment arrow, from the second field of the box with two fields to the
interface. Only a close-up look reveals differences in type and class names,
which is why we dub this situation a “structural similarity.”

If we perceive the diagrams as data definitions for lists, it is easy to ig-
nore three of the four differences. After all, it is up to us to choose the names
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IPhnB

MtPhnB ConsEntry

PhnBEntry fst
IPhnB rst

IMenu

MtMenu ConsMenu

MenuItem fst
IMenu rst

Figure 159: Class diagrams for two different lists

for the common list interface and the two implementing classes. Even af-
ter we agree on some consistent naming scheme, however—say, IList, Cons,
and Mt—we are left with a difference: PhnBEntry versus MenuItem, the
types of the items on the list.

This situation should remind you of subsection 30.2 where two classes
differed in one type and we abstracted via a common supertype. Or you
could think of subsection 30.3 where the process exploited generic classes.
The big difference is that we are now abstracting in the context of a system
of classes, not just an individual class.

31.1 Abstracting Types via Subtyping, Part 2

The top of the left column of figure 160 shows the class diagram for an
abstraction of the two lists in figure 159. The data definition exploits sub-
typing. In other words, each occurrence of a distinguishing type in the
original diagrams is replaced with Object, the common supertype. The bot-
tom shows the complete class definitions that go with this diagram.

Of course, creating this general list representation is only half the design
process. At a minimum, we must also demonstrate that we can re-define
the classes of figure 159 in terms of this general list representation. Before
we do this, let’s create some examples; see the right side of figure 160:

1. mt is introduced as a name for the empty list;

2. example1 is a list of one Object;

3. example1 is a list of MenuItems;

4. example3 is a list of two Strings.
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IList

Mt Cons

Object fst
IList rst

// a list of Objects
interface IList {}

// an empty list
class Mt implements IList {

Mt() { }
}

// adding an Entry to a list
class Cons implements IList {

Object first;
IList rest;

Cons(Entry first, Object rest) {
this.first = first;
this.rest = rest;
}
}

class Examples {
IList mt = new Mt();

IList example1 =
new Cons(new Object(),

mt);

MenuItem pasta =
new MenuItem("Pasta",12);

MenuItem pizza =
new MenuItem("Pizza",11);

IList example2 =
new Cons(pasta,

new Cons(pizza,
mt));

IList example3 =
new Cons("hello",

new Cons("world",
mt));

IList example4 =
new Cons(pasta,

new Cons(1,
new Cons("a",

mt)));
}

Figure 160: Object-based lists

5. and last but not least example4 is a list consisting of three objects cre-
ated from three distinct classes.

These examples show that lists of Objects may be HOMOGENEOUS, contain-
ing objects that belong to one type, or HETEROGENEOUS, containing objects
that belong to many different types. Hence, if one of your methods extracts
an item from such a list of Objects, it may assume only that it is an instance
of Object. Using the instance in any other way demands a cast.

Our next step is to add some basic methods to our general representa-
tion of lists, just to explore whether it is feasible to turn these classes into a
generally useful library. If so, it is certainly a worthwhile effort to abstract
from the representation to lists of PhnBEntrys and MenuItems.
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Remember some of the simplest functions that work on all possible
lists: length, which counts how many objects are on the list; contains, which
checks whether some given object is on the list; and asString, which renders
the list as a string:

interface IList {
// how many objects are on this list?
int count();
// is the given object o on this list?
boolean contains(Object o);
// render this list as a String
String asString();
}

We have turned this wish list into method signatures and purpose state-
ments for our new interface, following our standard method design recipe.

Remember that when there is demand for several methods, you are usu-
ally best off developing a general template and then filling in the specific
methods:

inside of Mt :
??? meth() {

return . . .
}

inside of Cons :
??? meth() {

return . . . this.first . . . this.rest.meth()
}

Keep in mind that the expression this.first reminds you of the value in the
first field and the fact that your method can call methods on first.

Filling in those templates for the first two methods is straightforward:

1. count:

inside of Mt :
int count() {

return 0;
}

inside of Cons :
int count() {

return 1 + this.rest.count();
}

Here this.first isn’t used; just its presence counts.

2. contains:

inside of Mt :
boolean contains (Object o) {

return false;
}

inside of Cons :
boolean contains(Object o) {

return this.first.equals(o)
|| this.rest.contains(o);

}
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In this case, the method invokes equals on this.first to find out whether
it is the object in question. Since the Object class defines equals, the
method is available in all classes, even if it may not compute what
you want.

3. asString:

The completion of the definition for asString demands some exam-
ples. Say you had to render the following two lists as strings:

IList empty = new Mt();
IList alist = new Cons("hello",new Cons("world",empty));

One possibility is to just concatenate the strings and to use the empty
string for instances of Mt:

checkExpect(empty.asString(),"")
checkExpect(alist.asString(),"helloworld")

This isn’t pretty but simple and acceptable, because the goal here isn’t
the study of rendering lists as Strings.

As it turns out, the Object class not only defines equals but also the
toString method, which renders the object as a string. Hence, all
classes support toString, because they implicitly extend Object. The
String class overrides it with a method that makes sense for Strings;
you are responsible for the classes that you define. In any case, in-
voking toString on this.first and concatenating the result with this.
rest.asString() is the proper thing to do:

inside of Mt :
String asString() {

return "";
}

inside of Cons :
String asString() {

return

first.toString()
.concat(rest.asString());

}

Exercises

Exercise 31.1 Use the examples to develop tests for the three methods.
Modify asString to become the toString method of IList.
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Exercise 31.2 Design asString2, which renders a list as a comma-separated
enumeration surrounded with opening (“[”) and closing (“]”) brackets. For
example, asString2 would render alist from above as "[hello,world]". Hint:
this requires an auxiliary method for rendering a list for which the evalu-
ation context has already added an opening bracket. When you have fin-
ished the first draft, look for opportunities to abstract.

Exercise 31.3 Design an extension of Posn with equals and toString meth-
ods. Then use the Object-based list representation of this section to create
lists of such objects and develop tests that validate that the methods work.

Now we know how to use the general list representations to create
examples, and how to add basic methods, we have turned it into a true
library. Following the design recipe for abstraction, our next task is to
demonstrate that these general lists suffice to represent menus and phone
books. The obvious problem is that, in contrast to the Entry example, our
list representation consists of more than one class: IList, Cons, and Mt. In
short, if we wish to construct a menu representation based on the list rep-
resentation, we need to extend an entire class hierarchy—sometimes called
a framework—not just a single class. More on this below.

From the perspective of class diagrams, the solution is actually natural.
The original menu representation looks just like a list, consisting of an in-
terface and two classes: IMenu, MtMenu, and ConsMenu. These three pieces
play roles that are analogous to IList, Mt, and ConsMenu. Thus, if we wish
to construct a menu representation from the list library, it appears best to
derive IMenu from IList, MtMeny from Mt, and ConsMenu from Cons. Fig-
ure 161 shows how a matching class diagram; the corresponding pieces are
connected via inheritance arrows. In addition, MtMenu and ConsMenu both
implement IMenu, which is the type of the menu representation.

The translation of the diagram into code isn’t possible, however, with
what you know. Doing so requires the introduction of a new—but fortu-
nately simple—concept: the derivation of one interface from another. In
our example, the code for this INTERFACE INHERITANCE looks like this:

interface IMenu extends IList { . . . }
Here the extends clause means that IMenu inherits everything from IList.
In this specific case, IMenu inherits three method signatures. Otherwise the
code is ordinary; see figure 162.
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// The Object List Library

+----------------------------+
| IList |<--------------------+
+----------------------------+ |
+----------------------------+ |
| int count() | |
| boolean contains(Object x) | |
| String asString() | |
+----------------------------+ |

| |
/ \ |
--- |
| |

----------------------------------- |
| | | |

+-------------------------+ | +-------------------------+ |
| Mt | | | Cons | |
+-------------------------+ | +-------------------------+ |

| | | Object first | |
| | | IList rest |----+
| | +-------------------------+
| | |

/ \ | / \
--- | ---
| | |

============================================================================================
| | | // The Menu Application
| | |
| +-----------------------------------+ |
| | IMenu | |
| +-----------------------------------+ | +-------------+
| +-----------------------------------+ | | MenuItem |
| | | +-------------+
| / \ | | String name |
| --- | | int price |
| | | +-------------+
| ------------------------------------- |
| | | |

+--------------------------+ +-----------------------------------+
| MtMenu | | ConsMenu |
+--------------------------+ +-----------------------------------+

Figure 161: Representing menus based on Object lists

// a list of menu items
interface IMenu extends IList { }

// an empty menu
class MtMenu extends Mt

implements IMenu {

MtMenu() {
super();
}
}

// adding an item to a menu
class ConsMenu extends Cons

implements IMenu {

ConsMenu(MenuItem first, IMenu rest) {
super(first,rest);
}
}

Figure 162: Creating menus via lists of Objects
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Exercises

Exercise 31.4 Create a sample list of MenuItems using the implementation
of the data representation in figure 162. Then use the count, contains, and
asString methods from the general list library to develop tests.

Exercise 31.5 Define the representation of phone books as an extension of
the general list library. Define PhoneNumber as a simple stub class and de-
velop tests for count, contains, and asString. Consider reusing those of exer-
cise 31.4. Why is this possible?

31.2 Abstracting Types via Subtyping plus Interfaces

The work in the preceding section leaves us with representations of menus
and phone books that do not support sorting. One idea is to add sort-
ing methods to the specific classes. This idea poses a challenge (see sec-
tion 34.2), however, and doesn’t fit with the goal of putting the commonal-
ities of menus and phone books into a single place. After all, both menus
and phone books demand sorting, so the appropriate methods should re-
ally reside in the abstracted code, not in specific data representations.

Sorting requires a method for comparing the objects that we wish to
sort. For data such as numbers or strings, the desired comparisons are
obvious. For other kinds of objects, however, comparisons don’t even exist.
Consider instances of this class

class Add200 {
public AddFunction() {}

public int apply(int x) {
return x + 200;

}
whose purpose it is to represent functions. It doesn’t make any sense to
compare such functions or to sort them.

Put positively, you can only sort lists of objects if the objects also sup-
port a comparison method that determines when one object is less than
some other object. In particular, the data definition of figure 160 is not
quite appropriate because it allows all kinds of objects to be stored in a list.
If our list abstraction is to include a sorting method, we must insist that the
members of the list are comparable.
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interface IList {
// sort this list, according to lessThan
IList sort();
// insert o into this (sorted) list
IList insert(IComp o);
}

interface IComp {
// is this object less than o?
boolean lessThan(Object o);
}

class Mt implements IList {
Mt() {}

public IList sort() {
return this;
}

public IList insert(IComp o) {
return new Cons(o,this);
}
}

class Cons implements IList {
IComp first;
IList rest;

Cons(IComp first, IList rest) {
this.first = first;
this.rest = rest;
}

public IList sort() {
return rest.sort().insert(first);
}

public IList insert(IComp o) {
if (first.lessThan(o)) {

return new Cons(first,rest.insert(o)); }
else {

return new Cons(o,this); }
}
}

Figure 163: Lists based on subtyping and interfaces, with sorting

In Java—and related languages—you use interfaces to express such re-
quirements. Specifically, the Cons class does not use Object as the type of
first but IComp, an interface that demands that its implementing classes
support a method for comparing and ranking its instances. The top-right of
figure 163 displays this interface; its single method, lessThan, is like equals
in Object, in that it consumes an Object and compares it with this.

Other than the small change from Object to IComp the class definitions
for representing lists and sorting them is straightforward. The interface
and class definitions of figure 163 are basically like those in figure 160. The
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methods for sorting such lists are straightforward. Their design follows the
standard recipe, producing code that looks just like the one in section 15.2.

class MenuItem implements IComp {
String name;
int value;

MenuItem(String name, int value) {
this.name = name;
this.value = value;
}

public boolean lessThan(Object o) {
MenuItem m;

if (o instanceof MenuItem) {
m = (MenuItem)o;

return this.value < m.value; }
else { . . . }
}
}

Figure 164: Comparable objects

Given a representation of sortable lists, we can now return to the prob-
lem of representing menus and phone books. Assuming that you are de-
signing those from scratch, you start with classes for menu items and phone
book entries and you add implements IComp clauses to each, because this
is what a re-use of the chosen list library demands. This leaves you with
just one question, namely, how to equip MenuItem and PhnBEntry with a
lessThan method. The interface provides the signature and the purpose
statement; here are examples:

new MenuItem("Pizza",10).lessThan(new MenuItem("Pasta",12))

should be true, because lessThan compares prices. Here is an unusual one:

new MenuItem("Pizza",10).lessThan(new PhnBEntry(. . . ))

You have two choices here. The first is to signal an error, because it is im-
possible to compare MenuItems with PhnBEntrys. The second is to force
lessThan to produce some sensible result, e.g., false.

The definition of lessThan in figure 164 can accommodate any decision
you make. The method tests whether the other object belongs to MenuItem
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and, if so, casts it to one and compares the values of this and the given
object. Note how the cast is performed via an assignment to a local variable.

Exercises

Exercise 31.6 Complete the definition of lessThan in figure 164. Also design
a class for representing phone book entries so that you can reuse the library
of sortable lists to represent phone books. Use the two classes to represent
menus and phone books.

Exercise 31.7 Is it possible to use Object as the type of insert’s second pa-
rameter? What would you have to change in figure 163?

Exercise 31.8 Design Apple and Orange classes that represent individual
fruits (weight, ripeness, etc). Both classes should implement IComp where
lessThan returns false if the second input belongs to the wrong kind of class.
Then show that it is possible to compare Apples and Oranges. Is this good
or bad for programming?

Next consider the proposal of changing the type of lessThan’s second
argument to IComp:

class IComp {
// is this object less than o?
boolean lessThan(IComp other);
}

Specifically ponder the following two questions:

1. Is our original solution in figure 163 more general than this one?

2. Does this definition prevent the comparison of Apples and Oranges?

Conduct coding experiments to find the answers.
Finally, read the sections on Comparable and Comparator in the official

Java documentation.

Problem is, the list library in figure 163 forces you to duplicate code.
Specifically, the library duplicates the functionality of the original list li-
brary in figure 160. Because the new Cons class compounds objects of type
IComp, you can no longer use this new library to represent lists of objects
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interface IList {
// sort this list, according to lessThan
IList sort();
// insert o into this (sorted) list
IList insert(IComp o);
}

interface IComp {
// is this object less than o?
boolean lessThan(Object o);
}

class Mt implements IList {
Mt() {}

public IList sort() {
return this;
}

public IList insert(IComp o) {
return new Cons(o,this);
}
}

class Cons implements IList {
Object first;

IList rest;

Cons( Object first, IList rest) {
this.first = first;
this.rest = rest;
}

public IList sort() {
return rest.sort().insert( (IComp)first );

}

public IList insert(IComp o) {
if (other.lessThan(first)) {

return new Cons(other,this); }
else {

return new Cons(first,rest.insert(other)); }
}
}

Figure 165: Lists based on subtyping and casts, with sorting

whose class doesn’t implement IComp. Worse, if programmers keep mak-
ing up list representations for special kinds of objects, say IStringable for
things that can be rendered as Strings or IDrawable for objects that can be
drawn into a Canvas, then this form of duplication quickly proliferates.

If you are in charge of both libraries, a solution is to continue using Ob-
ject as the type of the list elements. Figure 165 displays the revised library
code. The gray-shaded boxes highlight the changes. In particular, the type
of Cons’s first field is Object. Since insert is invoked from sort using the value
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in the first field, the argument must be cast from Object to IComp; see the
framed and gray-shaded box. This cast allows the type checker to bless the
use of lessThan on the current first field but also performs a check at run-
time that the given Object implements IComp. If it doesn’t, the program
signals an error and the evaluation stops. Otherwise evaluation continues
with the method invocation, using the existing object unchanged.

Exercises

Exercise 31.9 Demonstrate that the list library of figure 165 can represent
menus and phone books. Add count, contains, and asString.

Exercise 31.10 Explain the error that occurs when you try to represent a
non-empty list of instances of Add200 using the library in figure 163.

Now use the library in figure 165 to represent the same list. Can you
sort the lists? What kind of error do you encounter now?

31.3 Abstracting Types via Generics, Part 2

Figure 166 displays a minimal generic list representation. Like in figure 160,
the top of the left side is a diagram of the library, and the bottom shows the
actual interface and class definitions. The diagram uses one new element of
diagramming: the parameter box; its purpose is to say that the framed class
hierarchy is parameterized over the name in the box. In the figure, the three
boxes of the list representation are parameterized over ITEM; currently this
parameter shows up only as the type of the fst field in Cons.

The interface definition on the right of figure 166 uses a type parameter
in its definition, just like the classes of figure 158. Generic interfaces are
analogous to generic classes, meaning you typically use the notation in one
of two ways:

1. IList<Type>, where Type is an actual type (but use Integer for int); or

2. IList<PARA>, where PARA is a type parameter bound elsewhere.

More concretely, if you wish to introduce a field that stands for a list of
Strings into some Examples class, you must use the second form like this:

IList<String> = . . .
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ITEM

IList

Mt Cons

ITEM fst
IList rst

interface IList< ITEM > { }

class Mt<ITEM>

implements IList<ITEM> {
Mt() { }
}

class Cons<ITEM>

implements IList<ITEM> {
ITEM first;
IList<ITEM> rest;

Cons(ITEM first, IList<ITEM> rest) {
this.first = first;
this.rest = rest;
}
}

class Examples {
IList<MenuItem> mt =

new Mt<MenuItem>();

MenuItem pasta =
new MenuItem("Pasta",12);

MenuItem pizza =
new MenuItem("Pizza",11);

IList<MenuItem> menu =
new Cons<MenuItem>(pasta,

new Cons<MenuItem>(pizza,
mt));

IList<String> los =
new Cons<String>("hello",

new Cons<String>("world",
new Mt<String>()));

IList<Object> loo =
new Cons<Object>("hello",

new Cons<Object>(pasta,
new Mt<Object>());)

}

Figure 166: A generic list

where the . . . are replaced with an actual list. Analogously, if a method
specifies that its argument must be lists of strings, e.g.,

int count(IList<String> los) { . . . }
then this method must be applied to lists of the exact same type.

The second usage shows up in the implements clauses of Mt and Cons
where IList is applied to the type parameter of the defined class. That is, the
type parameter itself is bound in the position following the class names, i.e.,
in Mt<ITEM> and Cons<ITEM>. Naturally, these type parameters can be
systematically renamed, just like function or method parameters, without
changing the meaning of the interface or class definition. Thus,
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class Mt<XIT> implements IList<XIT> { . . . }
would be a feasible alternative for the definition of Mt in figure 166.

Following the design recipe of chapter I, we must next create instances
of these classes. From section 30.3 you know that this means that the con-
structor must be applied to concrete types; figure 166 presents a class of
examples:

mt: To create an empty list, you must supply a concrete type for ITEM,
the type parameter in the class definition.

menu: To extend an existing list with an additional MenuItem, your program
provides Cons with the type of the item it adds.

los: To construct a list of Strings instead of MenuItems, it is necessary to
use instantiations of Cons and Mt at String.

loo: To build a list from instances of different classes, instantiations of
Cons and Mt must use a supertype of all involved types (Object in
this case).

In other words, we can build all the lists in a parametric manner that
we built from the Object-based list library. Of course, if we now take
any item from this list, it has type Object and must first be cast as a
String or a MenuItem if we wish to invoke a specific method on it.

As you can tell from this enumeration, creating instances of a parametric
list representation uses a more complex notation than creating instances of
a list representation that uses subtyping (see figure 160). The additional
complexity buys you TYPE HOMOGENEOUS lists. Thus, if some methods
removes an item from menu, the type of the item is MenuItem because the
lists is created from Cons<MenuItem> and Mt<MenuItem>; in contrast to
the Object-based list, no cast is needed. Also, while the creation of data is
more complex than in the Object-based representation, the design of meth-
ods is as straightforward as before. We therefore leave it as an exercise.

Exercise

Exercise 31.11 Here is a wish list for the generic list implementation:

inside of IList<ITEM> :
// how many objects are on this list?
int count();
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// is the given object o on this list (comparing via equals)?
boolean contains(ITEM o);

// render this list as a String, using toString on each item
String asString();

Design the methods. Explain how the contains method in Cons works via
some of the examples of IList<ITEM> from above.

Exercise 31.12 Demonstrate that this parameteric list library can be used
to re-define the classes for representing menus and phone books (without
sorting functionality).

31.4 Abstracting Types via Generics plus Interfaces

Again, we have done our basic homework in terms of the design recipe: we
can represent lists using IList<ITEM> and we can add methods that don’t
need any specific information about the ITEMs that the list contains. Next
we need to demonstrate that we can truly re-define the lists from which we
started, including the ability to sort them.

Following section 31.2, we must obviously restrict what kinds of objects
a list may contain. In particular, the items must be comparable with each
other in the spirit of a lessThan method. Because the library consists of
several classes and interfaces, we must ensure that this constraint applies
to all of them. Furthermore, we must communicate this constraint to all
future users of this library.

To this end, generic interfaces and classes support the specification of
obligations on type parameters. The syntax for doing so is whimsical:

interface Ifc < T extends S > { . . . }

class Cls < T extends S > { . . . }
That is, instead of just specifying a type parameter, the creator of an in-
terface or class can also demand that the parameter T must be a subtype
of some other type S. Thus, while the keyword extends reminds you of
subtyping for classes and interfaces, it also applies to subtyping between
classes and interfaces in this one context.79

79Designing the concrete syntax of programming languages is not easy. It also tends to
cause more debate than deserved. We simply accept the decision of the Java designers.
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// a list of items of type I

interface IList< I extends ICompG<I> > {
// sort this list, according to lessThan
IList<I> sort();
// insert o into this (sorted) list
IList<I> insert(I o);
}

// comparable objects
interface ICompG<T> {

// is this object less than other?
boolean lessThan(T other);
}

class Mt< I extends ICompG<I> >

implements IList<I> {
Mt() { }

public IList<I> sort() {
return this;
}

public IList<I> insert(I other) {
return new Cons<I>(other,this);
}
}

class Cons< I extends ICompG<I> >

implements IList<I> {
I first;
IList<I> rest;

Cons(I first, IList<I> rest) {
this.first = first;
this.rest = rest;
}

public IList<I> sort() {
return rest.sort().insert(this.first);
}

public IList<I> insert(I o) {
if (first.lessThan(o)) {

IList<I> r = rest.insert(o);
return new Cons<I>(first,r); }

else {
return new Cons<I>(o,this); }

}
}

Figure 167: Generic lists, with sorting

Consider the following example:

interface IList <I extends IComp> {
IList<I> sort();
IList<I> insert(I o);
}
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where IComp is a reference to the interface from figure 165. It demands that
you apply IList to subtypes of IComp. Thus, each item that insert consumes
must implement a lessThan method. Similarly,

class Cons <I extends IComp> extends IList<I> {
I first;
IList<I> rest;
Cons(I first, IList<I> rest) {

this.first = first;
this.rest = rest;
}
. . .
}

is a class definition that extends IList. It does so at type I, which is the type
parameter of the class definition and which is also required to be a subtype
of IComp. The body of the class shows that every value in the first field is of
type I and, due to the constraint on I, any method within Cons can invoke
lessThan on first. Since the lessThan method is applicable to any other Object,
first can now be compared to everything.

In figure 167 you can see three applications of this new syntax, all high-
lighted in gray. Together they enforce that a list contains only comparable
objects. The first one comes with the IList interface itself; it specifies that its
type parameter must be below some type like IComp, i.e., an interface that
demands comparability. (For now, ignore the actual interface used in the
constraint.) The informal description uses the type parameter to explain
why it exists, and the formal restriction tells us that the list consists of com-
parable objects. It is possible, however, to implement this specification in a
way that violates the intention behind the purpose statement and the type
parameter.

While the interface does not determine the shape of the list, it does im-
ply two guarantees for all designers who work with IList. First, the de-
signer of every implementation of IList must ensure that the class satisfies
this constraint on the type parameter, too. Second, the designer of every
insert method may assume that the method’s second argument implements
the specified interface. As you can see below, these kinds of facts help a lot
when you work with a generic library.

The primary consequence explains the shape of the class headers and
the second and third use of this new syntax. Because these classes are to im-
plement the interface—via implements IList<I>—they must ensure that I,
their type parameter, is a subtype of IComp. The constraints in the type
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parameter specification of these classes accomplish just that. Furthermore,
the Cons class uses its type parameter as the type of the first field. Thus,
each member of the list also implements IComp.

This brings us to the design of IComp itself. The purpose of this interface
is to specify that an implementing class must provide a method that can
compare this instance with some other instance. From the perspective of the
type system, we wish to say that the types of the objects that we compare
ought to be the same. While it is impossible to say this in a world of pure
subtyping—see section 31.2 and figure 164—generics add just this form of
expressive power.

For the specific case of lessThan, we wish to say that the type of its sec-
ond argument should be the type of this, which is the class in which the
definition of lessThan is located. The problem is that for our lists with sort
methods, we wish to express this constraint via an interface; put differ-
ently, we don’t know the class type of the elements of our lists and, for all
we know, these classes haven’t been written yet.

class MenuItem implements ICompG<MenuItem> {
String name;
int value;

MenuItem(String name, int value) {
this.name = name;
this.value = value;
}

public boolean lessThan(MenuItem o) {
return this.value < o.value;
}
}

Figure 168: Generically comparable objects

You can see the solution in the top-right of figure 167. The interface
ICompG is parameterized over the type T that the lessThan method uses for
its second argument. Of course, since we wish to compare instances of the
same class, T is usualy also the class that implements ICompG. Conversely,
if the implementing class instantiates ICompG with itself, as in

class Sample implements ICompG<Sample> { . . . }
the type checker ensures that lessThan is invoked on an instance of T and is
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passed a second instance of T. In short, apples are compared with apples
only.80

We exploit this idea for the design of MenuItem in the generic world;
see figure 168. The class header specifies that all instances of MenuItem
support a lessThan method. Since it applies ICompG to MenuItem itself, we
conclude that the lessThan method consumes this MenuItem and another
MenuItem. That is, the designer of the method knows from the class and
method signature that both objects have a value field. Hence, comparing the
value fields ranks them properly. Better yet, it is unnecessary to cast other
to MenuItem, and it is impossible that such a cast fails during evaluation.

In the same vein, the constraints on IList and its consequence for insert
imply that insert can compare the objects on the list with each other—also
without using a cast. Once the designer has this knowledge, it becomes
easy to deal with method definitions and it is easy to argue that the method
can never fail during evaluation.

It is this stark contrast with the solution in the Object and subtyping
world (see figures 164 and 165) that makes people prefer the generic solu-
tion. Every time something can go wrong, it will go wrong. If a program
can fail because it tries to compare apples and oranges, eventually it will,
and it will do so while your most important customer is using it. In this
case, the (sound) type system can prove that such a problem can never hap-
pen,81 and that is a good guarantee to have.

Exercises

Exercise 31.13 Demonstrate that this parameteric list library can be used to
represent menus and phone books, including their sorting functionality.

Exercise 31.14 Add the count, contains, and asString methods to the generic
list library. What do you expect when you use asString on a list of Menu-
Items? What do you actually get? Can you improve this?

Exercise 31.15 Exploit the type signatures and constraints on the types to
argue that the result of sort and insert are lists of comparable objects.

80There is still the problem of null, which may show up at any type; we ignore this for
now.

81If something does go wrong, it is the fault of the type checking system in your language
and some company will then fix this mistake for all users of the language.
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Unfortunately, the generics-based solution suffers from two flaws. First,
like the first attempt at creating a list library with sorting via subtyping
(section 31.2), the design of the generic library duplicates code. Specifically,
the count, contains, and asString methods must be duplicated in the IList<I>
and IList<I extends ICompG<I>>. Ideally, we would really like to have
all these methods in a single library—at least as long we are in charge of
both—with the proviso that the sort and insert methods belong to IList<I>
only if I is a subtype of ICompG<I>. That, however, is impossible. Worse,
it is impossible to fix the generic library without re-introducing casts and
thus lurking errors.

Second, the solution is highly inflexible. A programmer who represents
a list of information via some general library may need methods that sorts
the list in several different ways. For example, a program may need to
sort personnel records according to alphabet, age, or salary. A moment’s
thought shows that the design in figure 167 does not permit this. The sort
method always invokes the one and only lessThan method that the items on
the list implement according to ICompG<I>. The next chapter will demon-
strate how a systematic abstraction of traversals eliminates this specific
problem. In the meantime, we are going to take a step back and extract
design principles from our examples.

32 Designing General Classes and Frameworks

When (large parts of) two classes systematically differ in the types of fields
and method signatures and differ only in those types, it is time to design
a general82 class, hopefully useful as a library for many projects. This is
equally true for two arrangements of several classes that are structurally
similar to each other up to differences concerning types. When several
classes are involved, people call such arrangements FRAMEWORKS, espe-
cially if they are useful in specific situations. Of course, such strict simi-
larities rarely come about naturally. Usually they emerge during the edit-
ing phase of the programming process and require a few additional re-
organizations and abstraction steps to fully crystalize.

The construction of a general class proceeds roughly according to the
design recipe for abstraction:

recognizing similarities: Let’s describe the initial scenario and name the
elements. For simplicity, we focus on parallels between two classes,

82Using “abstract” in place of “general” would conflict with established terminology.
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but the design recipe carries over to frameworks two.

You have discovered two classes, CollectA and CollectB, that are the
same except for two types, say A and B, respectively. Also assume
that the fields of CollectA and CollectB are invisible from the outside.
private.

The goal of the generalization process is to specific a type T that gen-
eralizes A and B and then use T to create a class Collect from which
you can derive CollectA and CollectB. In order to do so, you may have
to modify A and B (details below) and we assume that you may do
so.83

The following sketchy class and interface diagram provides a graph-
ical overview of the scenario:

+------------+
| Collect |
+------------+
| T |
+------------+ +---+
| ... T ... | | T |
+------------+ +---+

| / \
/ \ / \
--- / \
| +---+ +---+

+--------------------+ | A | | B |
| | +---+ +---+

+---------------+ +---------------+
| CollectA | | CollectB |
+---------------+ +---------------+
| private A ... | | private B ... |
+---------------+ +---------------+
| ... A ... | | ... B ... |
+---------------+ +---------------+

Ideally, you should have a sense that Collect is going to be useful in
other circumstances, too. This is typically the case when CollectA and
CollectB are about compounding a (fixed or arbitrary) number of ob-
jects of type A and B, respectively. Remember that object-oriented
languages tend to use the terminology of a collection class for such
things, and it is for that reason that we have used Collect in the names
of the classes.

Example: The class for pairing two arbitrary objects with methods for
retrieving them and switching their order is a simplistic example. The
list library for arbitrary objects is a generally useful framework. This
second example arose from a comparison of two concrete examples

83This assumption is realistic and exercise 32.6 shows how to get around the assumption
when it doesn’t hold.
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that differed in the component types only: MenuItem played the role
of A and PhnBEntry played the role of B.

abstracting over types: Once you understand the similarity, it is time to
eliminate the differences in types with generalized types. To do so,
you may use either subtyping or generics. Because this design recipe
applies to both cases, the specifics of the two approaches can be found
in subsections 32.2 and 32.3. For both approaches, though, it is critical
to inspect CollectA for constraints on A and CollectB for constraints
on B.

The methods and initialization expressions of CollectA (CollectB) may
impose constraints on type A (B) in one of two ways: they may refer-
ence a field from A (B) or they may invoke a method on some object
of type A (B). We deal with each case in turn.

Say CollectA and CollectB refer to some field f in an object of type A
and B, respectively. Consider (1) adding a method getF to A and B that
retrieves f ’s content and (2) replacing references to f in CollectA and
CollectB with invocations of getF. If doing so is impossible (because A
or B are beyond your control), consider abandoning the generaliza-
tion process. We ignore fields in A and B from now on.84

Say CollectA and CollectB invoke some method m in an object of type
A and B, respectively. In this case, we need to inspect and compare
the method signatures of m in A and B. This comparison produces
constraints that dictate how you generalize:

1. In the first and simplest case, m consumes and produces types
of values that are unrelated to the types under consideration:

inside of A :
int m(String s, boolean b)

inside of B :
int m(String s, boolean b)

Here we can add it to an interface and use it as needed in Col-
lect. Furthermore, this kind of constraint does not necessitate
changes to A or B for the next design step.

2. The second example involves the type under consideration:

inside of A :
A m(String s, boolean b)

inside of B :
B m(String s, boolean b)

84If you wish to generalize in this situation, you must use a common superclass of A and
B that contains f . This constraint is extremely stringent and hardly ever yields generally
useful libraries.
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Specifically, m produces a result of the class type itself.

For the type representing A and B in Collect, this implies that it
must support a method whose return type is the class type. We
can translate this constraint into one of the following interfaces,
the left one for use with subtyping and the right one for use with
generics:

interface ISub {
ISub m(String s, boolean b);
}

interface IGen<I> {
I m(String s, boolean b);
}

Any class that implements ISub must define a method m that re-
turns either an instance of the class or at least an instance of a
class that implements ISub. With the generic interface IGen your
class specification can be more precise about what it returns. If
class C implements IGen<C>, its method m is guaranteed to
produce an instance of C, just like m in A and B.

3. The third kind of example involves the type under consideration
as a parameter type:

inside of A :
. . . m(String s, A x)

inside of B :
. . . m(String s, B x)

Regardless of the return type, both methods m consume an ar-
gument whose type is the class itself. Again, there are two ways
to express the constraints via interfaces:

interface ISub {
. . . m(String s, Object x)
}

interface IGen<I> {
. . . m(String s, I x)
}

In the subtyping world, we are forced to use a supertype of A
and B and to cast from there to the appropriate subclass in the
actual method. This suggests using Object because it is the most
flexible type. In the world of generics, we can use a type parame-
ter to express the fact that m must be applied to another instance
of the same class.

Example: As seen, the representation of sortable phone books
assumes the existence of a method lessThan in PhnBEntry with
signature boolean lessThan(PhnBEntry e).

4. Finally for all other cases, consider abandoning the generaliza-
tion effort because it imposes a level of complexity that it is un-
likely to pay off.
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If the comparison yields several constraints, consider combining all
of them in a singe interface.

testing the abstraction: Once you have figured out how to generalize A
and B and how to create the general class Collect, you must validate
that it is correct. Following How to Design Programs, the very defi-
nition of generalization suggests that you must be able to define the
original classes in terms of the general one. For our scenario, you
must show that you can derive the old classes from the generaliza-
tion. In particular, you must show that you can recover all methods
directly via inheritance or indirectly via calls to super methods plus
casts. The details depend on how you generalize A and B.

In our abstract example, you should be able to define NewCollectA and
NewCollectB as extensions of Collect. If you formulated constraints on
the generalization of A and B and if Collect uses these constraints, you
must also ensure that A and B satisfies them. Concretely, recall the
interface from case 2 above. Since Collect uses either ISub or IGen<I>
as types in lieu of A and B, you must add an implements clause to A
and Band adjust the method signatures accordingly.

Finally, you must use the tests for CollectA and CollectB to ensure the
basic correctness of Collect and its methods. Eventually though, you
may also wish to generalize the tests themselves; otherwise you al-
ways depend on the specific class when working on the general one.

re-formulating purpose statements: When you have convinced yourself
that everything works, revisit the purpose statements for Collect and
its method statements. Since you want to re-use this class (and the ef-
fort that went into its construction), formulate the purpose statements
as generally as possible.

Keep in mind to proceed in an analogous manner for frameworks.
You may consider applying this design recipe while you are designing

a compound data representation for a single case. With some experience,
it often becomes clear which types deserve generalizing and which ones
don’t. Just be sure to finish the design of a concrete version before you
generalize; for beginners, this definitely remains the safest route.

32.1 Subtyping Summarized

Both approaches to type generalization rely on subtyping to some extent,
though in different ways. We therefore start with a brief overview of sub-
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typing in this subsection, including a few ideas that you haven’t encoun-
tered yet. While these new ideas aren’t critical, they make the generaliza-
tion process convenient.

Recall that in Java a type is either the name of a class or of an interface
(or a primitive type such as int). To declare that some type T is a subtype of
some type S, a programmer uses one of three declarations:

1. class T extends S, meaning class T extends some other class S;

2. class T implements S, meaning T implements an interface S;

3. interface T extends S, meaning T extends some other interface S.

The Java type checker also considers T a subtype of S if T is connected to S
via a series of immediate subtype declarations.

If you just look at the classes in a program, you see a tree-shaped hier-
archy, with Object as the top class. A class definition that doesn’t specify an
extends clause is an immediate subtype of Object. All others are immediate
subtypes of their specified superclass.

New: While a class can extend only one other class, it can implement
as many interfaces as needed. Hence, a class can have many supertypes,
though all but one are interfaces. Similarly, an interface can extend as many
other interfaces as needed. Thus, an interface can have many supertypes
and all of them are interfaces.

Figure 169: Subtyping in general

Although the details of multiple super-interfaces are irrelevant here, the
fact that they exist means that interfaces form a more complex hierarchy
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than classes. Computer scientists and mathematicians call this kind of hi-
erarchy a DIRECTED ACYCLIC GRAPH (DAG). The important point for us is
that the DAG sits on top and to the side of the tree-shaped class hierarchy.
Figure 169 summarizes the subtyping hierarchy schematically.

Subtyping in Java implies slightly different consequences for classes
and interfaces:

1. A class C that extends class D inherits all visible methods, fields, and
implements declarations.see whether this kind of

inheritance can be done
earlier, then the NEW in 1
and 2 can be dropped

New: A subclass may override an inherited method with a method
definition that has a signature that is like the original one except that
the return type may be a subtype of the original return type.

Example: Here mmm in C overrides mmm in D:

class D {
. . . D mmm(String s) . . .
}

class C extends D {
. . . C mmm(String s) . . .
}

2. A class C that implements interface I must provide public method
definitions for all method signatures of I. If C is abstract, the method
definitions may be abstract, too.

New: A class may implement a method signature from an interface
with a method declaration that has a signature that is like the original
one except that the return type may be a subtype of the original one.

Example: Here mmm in C implements mmm in I:

interface I {
I mmm(String s) . . .
}

class C implements I {
. . . public C mmm(String s) . . .
}

3. An interface I that extends interface K inherits all features from K.

Each of these consequences plays a role in the following subsections.

32.2 Generalizing via Subtyping

Let’s recall the basic scenario of this section. We are starting from CollectA
and CollectB, and the former uses type A wherever the latter uses type B.
The goal is to design a class Collect from which we can re-create CollectA
and CollectB. Doing so involves one decision and three actions:
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choosing a replacement type for A and B: The very first step is to choose
a type with which to replace A and B in CollectA and CollectB, respec-
tively. If you wish to stick to subtyping, you have three alternatives
though only two matter:

1. If both A and B are classes, consider using Object as the replace-
ment type. This choice allows the most flexibility and works fine
as long as there are no constraints.

Example: For Pair, a representation of pairs of objects, it is natural
to choose Object as the type for the two fields. There aren’t any
constraints on the components of a pairing.

2. If both A and B are classes, you might also consider an existing
superclass of A and B. This tends to tie the general Collect class
to a specific project, however, making it unsuitable for a general
library. We therefore ignore this possibility.

3. If either A or B is an interface and some of their method signa-
tures are constraints, you have no choice; you must use an inter-
face to generalize an interface. Similarly, if CollectA and CollectB
make assumptions about methods in classes A and B, you are
better of choosing an interface than Object.

Example: For sortable lists, we tried both alternatives: Object and
an interface. The latter was necessary for the creation of sortable
lists because sorting assumes that the objects on the list imple-
ment a lessThan method.

It is possible to choose solutions that mix elements of these three alter-
natives, but we leave this kind of design to experienced developers.

designing Collect: Once you have decided which replacement type T you
want to use for A and B, replace the designated parts of CollectA and
CollectB with T. If you also rename the two classes to Collect, you
should have two identical classes now.

Unfortunately, these classes may not function yet. Remember that
the methods and initialization expressions of CollectA and CollectB
may impose conditions on T. If you collected all those constraints in
a single interface and if T is this interface, you are done.

If, however, you chose Object to generalize A and B, you must inspect
all method definitions. For each method definition that imposes a
constraint, you must use casts to an appropriate interface to ensure
that the objects stored in Collect implement the proper methods.
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Examples: When you use the IComp interface to generalize sortable
lists, you don’t need any casts in the methods. The interface guaran-
tees that the items on the list implement a lessThan method.

When you use Object as the generalization of A and B, you must use a
cast in the sort method to ensure that the items are implement IComp.

preparing A and B for re-use: If you identified any constraints during the
first step of the design recipe (see page 484), you have an interface
with method signatures that represent the constraints. Let’ s call this
interface IConstraints. If you choose Object as the generalized type,
IConstraints may show up in individual methods of Collect; otherwise
T is IConstraints.

In either case, you must ensure that A and B implement the obliga-
tions in IConstraints. Start with adding an implements IConstraints
clause to the definition of class A; if A (B) is an interface, use extends

IConstraints instead. Of course classes don’t automatically implement
the obligations specified in some interface. Here we do know that the
methods exist by name; this is how we created the interface ICon-
straints in the first step of the design recipe. Their signatures may not
match the interface signature, however. To fix this problem, look for
signatures in IConstraints whose parameter types involve Object and
the method definition uses A instead:

class A {
. . . m(String s, A x) { . . . }
}

interface IConstraints {
. . . m(String s, Object x)
}

This mismatch originates from case 3 in the constraint gathering step
of the design recipe. Adjust the parameter type in the class and use a
local variable to cast the parameter to A:

class A implements IConstraints {
. . . m(String s, Object y) { A x = (A)y; . . . }
}

The rest of the method body remains the same. (Why?)

For method signatures in IConstraints that use IConstraints as a return
type, you don’t need to change A’s definition. (Why?)

Also adjust B in this manner. Then do re-run the tests for A and B
before you proceed.
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Example: The representation of menus in terms of the ISort library
illustrates the case where Collect uses the constraint interface IComp
as the generalized type.

No matter how you use IComp for the generalization, the MenuItem
class must implement IComp, becaue the interface constrains which
items the list may contain. Since the parameter type of lessThan is
Object in IComp, we use a cast inside the method to ensure that the
method compares MenuItems with MenuItems.

re-creating CollectA and CollectB: The re-creation of CollectA and CollectB
from Collect again depends on your choice of replacement type T. The
goal of this step is to define NewCollectA and NewCollectB as sub-
classes of Collect. These new classes should support the exact same
methods as CollectA and CollectB and should pass the same tests.

If T is Object, inspect the signatures of the inherited methods and
compare them to the original:

1. There is nothing to do when the original signature doesn’t in-
volve A or B.

2. The original return type is A or B, but Object in Collect:

inside of CollectA :
A m(String s)

inside of Collect :
Object m(String s)

Fortunately, Java’s inheritance works in our favor here. You can
simply override m with a method that has the old signature and
call the super method to get the work done:

inside of NewCollectA :
A m(String s) { return (A) super.m(s); }

Because super.m’s return type is Object, the overriding class uses
a cast to A.

3. Finally, consider the case when A or B is the type of a parameter
in CollectA or CollectB, respectively:

inside of CollectA :
void m(A x)

inside of Collect :
void m(Object x)

In this case you need to the following method to NewCollectA:

inside of NewCollectA :
void m(A s) { . . . }
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// a cell for tracking Items
class CellItem {

private Item content;
private int counter = 0;

public CellItem( Item content) {
this.content = content;
}

// get current content of this cell

public Item get() {
return content;
}

// set content of this cell to c
public void set( Item content) {

counter = counter + 1;
this.content = content;
}

// how often did this cell get set?
public int howOften() {

return counter;
}
}

// a cell for tracking objects
class Cell {

private Object content;
private int counter = 0;

public Cell( Object content) {
this.content = content;
}

// get current content of this cell

public Object get() {
return content;
}

// set content of this cell to c
public void set( Object content) {

counter = counter + 1;
this.content = content;
}

// how often did this cell get set?
public int howOften() {

return counter;
}
}

class NewCellItem extends Cell {
public NewCellItem(Item content) {

super(content);
}
public Item get() {

return (Item) super.get();

}
public void set(Item content) {

super.set(content);
}
public void set(Object content) {

throw new RuntimeException
("Item expected");

}
}

Figure 170: Generalizing a simple collection class
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Otherwise, users of NewCollectA may accidentally invoke m on
arbitrary objects, not just instances of A. Since overriding dic-
tates that the types of the explicit parameters remain the same,
this is actually defining an overloaded method. The implementa-
tion uses super.m to provide the functionality:

inside of NewCollectA :
void m(A s) { return super.m(s); }

Because this new definition overloads m and doesn’t override it,
NewCollectA supports one extra method:

inside of NewCollectA :
void m(Object s)

a method that it inherits from Collect. To ensure that nobody uses
this method accidentally, it is best to override it, too, and make
it raise an exception:

inside of NewCollectA :
void m(Object s) {

throw new RuntimeException("A expected");
}

Section 32.5 explains exceptions in some detail.

If T is an interface, you proceed in the exact same manner as far as
NewCollectA is concerned.

Example: Thus far, we have not encountered the need to override any
methods or to supplement methods with overloaded versions in the
classes that correspond to NewCollectA.

Given the lack of an example, let’s work through a small, toy-size prob-
lem to illustrate this point and some others from the design recipe:

. . . Design a CellItem class that manages access to an instance of
the Item class. The purpose of CellItem is to allow other classes
to get the current Item in a CellItem, to put in a new one, and
to find out how often the content of a CellItem object has been
changed. . . .

The left side of figure 170 shows the complete, specialized solution to this
problem (minus the Item class). The naturally stateful class has two private
fields, a public constructor, and three public methods.
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Of course, such a “management” class may be useful for controlling
access to objects other than Items. Thus, we set out to generalize it: we
inspect the class; we find no constraints on what is stored; we choose Object
as the type that generalizes Item; and we end up with the Cell class on the
right of figure 170. As you can see from this class definition, Object occurs in
the four positions that are analogous to the occurrences of Item in CellItem.

Because there were no constraints on what Cell may store, all we have
to do now is demonstrate that CellItem is a special case of the general Cell
class. Put differently, we should show that if Cell were in a library, a version
of CellItem could easily be obtained. The idea of obtaining this customized
class from library code is indicated by the bold horizontal line that sep-
arates Cell from NewCellItem. For this “re-creation” step, we define two
methods in terms of the super methods: get and set. The former overrides
the super.get method and uses a cast to return an Item instead of an Ob-
ject. The latter overloads the set method and uses super.set to implement the
functionality.

Exercises

Exercise 32.1 Create a test suite for CellItem. Then ensure that NewCellItem
passes this test suite, too.

Exercise 32.2 Use Cell to derive a class that manages access to Strings.

Exercise 32.3 Modify Cell so that it also counts all invocations of get, not
just set. This exercises shows again that abstraction creates single points of
control where you can enhance, fix or improve some functionality with one
modification.

The case changes significantly if we add the following to CellItem:

inside of CellItem :
private int weight = 0;

// set the content of this cell to c
public void set(Item content) {

counter = counter + 1;
weight = weight + content.weight() ;

this.content = content;
}
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// retrieve the weight from this cell
public int getWeight() {

return weight;
}

The intention of this addition is to accumulate the total “weight” of all the
Items that are stored in the content field. While the weight field is initially 0,
the set method increments this field by the weight of the new Item that it is
to store in content. Finally, getWeight is a method that retrieves the current
value of weight.

Obviously, the set method assumes that the Item class comes with a
weight method; see the gray-shaded method call. If we are to generalize
this class, we must formulate this assumption as a constraint for all fu-
ture classes that are to reuse the generalized class. We have formulated the
assumption in an ICell interface, displayed at the top of figure 171. The in-
terface specifies a single method signature, which is directly derived from
the method call in set.

The next step is to choose whether we wish to use Object as the gen-
eral type for a generalization of CellItem or whether we should use ICell.
Figure 171 shows both alternatives, side by side for a comparison: CellOb-
ject and CellIntf . The two classes are only sketched out, displaying the one
method where they differ.

In CellObject, the set method must use a cast to ICell because its parame-
ter’s type is Object but the body actually assumes that the object comes with
a weight method. Using ICell directly as the type of objects to be stored in
the CellIntf class eliminates this cast and all potential problems. Re-creating
CellItem from either of these general classes produces identical classes. In-
deed, they are the same as before. Before we can use them, however, we
must modify the Item class so that it implements ICell.

At this point, you might wonder why anyone would ever design a
method like CellObject if any of the methods impose constraints on the gen-
eralized type. Why not always use the interface? The point is that the
choice of a general type demands a (design) trade-off analysis. Recall the
completely analogous situation with IList and ISort. The former is a data
representation of lists of arbitrary Object; the latter is one for lists of com-
parable objects only. If we implemented both libraries, both would support
methods such as count, contains, and asString. We would duplicate code.
And we can avoid this code duplication with the technique that we have
just seen again with the design of CellObject.
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interface ICell {
int weight();
}

class Item implements ICell {
public int weight() { . . . }
}

class CellObject {
Object content;
private int weight = 0;

. . .
public void set(Object c) {

ICell content = (ICell)c;
counter = counter + 1;
weight = weight + content.weight();
this.content = content;
}
. . .
}

class CellIntf {
private ICell content;
private int weight = 0;

. . .
public void set( ICell content) {

counter = counter + 1;
weight = weight + content.weight();
this.content = content;
}

. . .
}

// redefining CellItem in terms of Cell
class CellItemObj extends CellObject {

public CellItemObj(Item content) {
super(content);
}

public Item get() {
return (Item)super.get();

}

public void set(Item content) {
super.set(content);
}
public void set(Object content) {

throw new RuntimeException
("Item expected");

}
}

// redefining CellItem in terms of Cell
class CellItemIntf extends CellIntf {

public CellItemIntf (Item content) {
super(content);
}

public Item get() {
return (Item)super.get();
}

public void set(Item content) {
super.set(content);
}
public void set(ICell content) {

throw new RuntimeException
("Item expected");

}
}

Figure 171: Generalizing a simple collection class, with constraints

In this specific—toy-sized—example, the only advantage of CellObject is
that it can also store objects for which set is never used. Since the set method
is the reason why CellItem exists in the first place, there is no argument left
in support of CellObject. It is the wrong choice. In general though, the
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choice isn’t as obvious as this and you may wish to weigh the advantages
and disadvantages of the alternatives before you commit to one.

When a solution like CellObject is the preferred one, you are accepting
additional casts in your class. Each method that makes special assumption
about the objects must use casts. Casts, however, come with three distinct
disadvantages. First, the presence of casts complicates the program. The
conscientious programmer who adds these casts must construct an argu-
ment why these casts are proper. That is, there is a reason why it is accept-
able to consider an object as something of type A even though its declared
type is Object (or something else). Unfortunately, Java doesn’t allow the
programmer to write down this reason. If it did, the type checker could
possibly validate the reasoning, and better yet, any programmer who edits
the program later would be able to re-use and re-check this reasoning.

Second, casts turn into checks during program evaluation. They per-
form the equivalent of an instanceof check, ensuring that the object belongs
to the specified class or implements the specified interface. If it doesn’t, the
type checker was cheated and many other assumptions may fail; hence,
the evaluator raises an exception in such cases. Although such tests aren’t
expensive, the problem is that they can fail.

Third, when casts fail, they signal an error and stop the program eval-
uation. As long as it is you—the programmer—who has to study and un-
derstand the error message, this isn’t much of a problem. If it is your com-
pany’s most important client, you are in trouble. After all, this customer
typically has no computer training and just wants a functioning program
for managing menus across a chain of a hundred restaurants.

In short, a failure after delivery is costly and is to be avoided if possi-
ble. Conversely, eliminating such potential cast failures should be our goal
whenever it is cost-effective to do so. And the desire to eliminate casts is
precisely why Java and other typed object-oriented languages are incorpo-
rating generics.

Exercises

Exercise 32.4 Complete the definition of CellIntf in figure 171, including a
test suite. Then consider this class:

class Package {
int postage;
int value;
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Package(int postage, int value) {
this.postage = postage;
this.value = value;
}

int weight() { return value; }
}

Derive a class CellPackage for controlling access to instances of Package.

Exercise 32.5 Exercise 32.2 asks you to derive a class from Cell for manag-
ing access to Strings. Is it possible to derive such a class from CellIntf using
the length method to determine the weight of a String? If yes, do so. If not,
explain why it can’t be done.

Exercise 32.6 On many occasions you will encounter a situation where you
would like to use a general library L (class or framework) for a class C that
you can’t change. The use of L with any class, however, presupposes that
this class implements interface I. Since C doesn’t, you are apparently stuck.

The solution is to create an ADAPTER class that bridges the gap between
C and I:

class Adapter implements I {
private C anInstance;
Adapter(C anInstance) {

this.anInstance = anInstance;
}
. . .
}

The methods of Adapter naturally use the methods of anInstance to compute
their results. Revisit exercise 32.5 and solve it with an adapter.

32.3 Generalizing via Generics

The introduction of generics into Java acknowledge the importance of ab-
stracting over types.85 A generic class (interface) parameterizes a class (an
interface) in the same sense as a function definition parameterizes an ex-
pression. Similarly, applying a generic class (interface) to arguments is just

85The designers of Java added generics only to the fifth revision of the language, even
though parametric polymorphism has been studied since the 1970s and has been available
in programming languages for almost the same time.
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like applying a function to values. The difference is that the generics com-
putation takes place at the level of types and the function application takes
place in the realm of values. Put differently, it is the type checker that de-
termines the outcome of applying a generic type to a type while it is the
evaluator that determines the value of a function application.

When you use generics to generalize some classes and interfaces into a
framework, you do not think in terms of generalizing types but in terms
of types as parameters. In a sense, generalizing with generics is much like
generalizing with functions in How to Design Programs:

specifying the parameter for Collect: If you choose to use generics to gen-
eralize CollectA and CollectB, you pick a type parameter per pair of
corresponding differences. Our running abstract example assumes
that there is one pair of such differences: CollectA uses A where Col-
lectB uses B. Hence, we need one type parameter, say I. For real-
istic examples, you should consider choosing suggestive parameter
names so that people who read your program get an idea of what is
stored in Collect.

Assuming you have gathered all the constraints on A and B as method
signatures in the interface IConstraints. Recall that constraints are oc-
casionally self-referential, in which case IConstraints itself is parame-
terized. This suggests using something like the following three forms
as the header of Collect:

1. class Collect <I> if there are no constraints;

2. class Collect <I extends IConstraints> if the constraints are not
self-referential;

3. class Collect <I extends IConstraints<I>> if the constraints refer
to themselves. Keep in mind that the first occurrence of I is the
binding instance, and the second one is an argument to which
the generic interface IConstraints is applied.

Things may get more complicated when several type parameters are
involved, and you may benefit from experimentation in such cases.

Example: The generalization of MenuItem and PhnBEntry needs one
type parameter because the (core of the) two classes differ only in the
type of one field. In contrast, the definition of Pair uses two parame-
ters. Finally, IList<I extends ICompG<I>> is our canonical illustra-
tion of a Collect-like class with a constrained interface.
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designing Collect: Now that you have the header of Collect, you just re-
place A and B with I, respectively. Doing so for CollectA or CollectB,
you should end up with the same class. Since I is specified to be a
subtype of the interface of all constraints, this step is done.

preparing A and B for re-use: Reusing type A for the re-definition of Col-
lectA requires that A implements all the constraints:

1. If there aren’t any constraints, you don’t need to modify A.

2. If the constraints are ordinary, add extends IConstraints or im-

plements IConstraints to A’s header; the former is for classes, the
latter for interfaces.

3. If the constraints are self-referential, IConstraints is generic and
to obtain a type for an extends or implements clause requires
an application of IConstraints to a type. Naturally, this type is
A itself, i.e., you add implements IConstraints<A> or extends

IConstraints<A> to the header.

With generics, adding these clauses ought to work without fur-
ther modifications to A. The reason is that generic constraint in-
terfaces capture constraints more precisely than subtyping inter-
faces.

Example: Consider the following constraint originating in A:

class A {
. . .
m(String s, A x) { . . . }
. . .
}

Formulated as an interface, it becomes

interface IConstraints<I> {
. . .
m(String s, I x) { . . . }
. . .
}

By applying IConstraints to A in the implements clause, you get
the exact same signature back from which you started:
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class A implements IConstraints<A> {
. . .
public m(String s, A x) { . . . }
. . .
}

Of course, you must also make m public.

re-creating CollectA and CollectB: We know from the preceding section
that re-creating CollectA and CollectB means extending Collect. Be-
cause Collect is generic, this implies that we must apply the class to
a type to obtain a suitable class for an extends clause. Naturally for
NewCollectA this type is A and for NewCollectB, it is B:

class NewCollectA
extends Collect<A> { . . . }

class NewCollectB
extends Collect<B> { . . . }

Convince yourself that all inherited methods automatically have the
correct signatures.

For completeness, figure 172 shows how to create the generalized Cell
class from the preceding section and its constrained counterpart, CellWgt.
The column on the left represents the plain Cell case; the column on the
right concerns the case with constraints. The bold horizontal line separates
the library code from the definitions that create Cell and CellW, the class
that keeps track of the weight of items. Take a close look at the figure be-
cause it once again illustrates how easy and how elegant generalization
with generics are.

As you can see from the abstract recipe and the examples, using gener-
ics has two significant advantages. First, it means less work than with
subtyping. Second, the resulting code doesn’t contain any casts; all type
constraints are checked before you ever run your program. From our in-
troductory example in section 31.4—sortable lists—we also know, how-
ever, that generics may come with one serious disadvantage. If we wish to
avoid casts, we have no choice but to duplicate code between plain, uncon-
strained lists and lists that contain comparable elements and are therefore
sortable. Before we investigate this problem a bit more, though, let’s look
at some examples.

32.4 Finger Exercises: Sets, Stacks, Queues, and Trees Again

Over the course of this chapter, you have studied generalized list represen-
tations. While lists are a ubiquitous mechanism for keeping track of many
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class Cell<I> {
private I content;
private int counter = 0;

public Cell(I content) {
this.content = content;
}

public I get() {
return content;
}

public void set(I content) {
counter = counter + 1;
this.content = content;
}

public int howOften() {
return counter;
}
}

class CellItem extends Cell<Item> {
public CellItem(Item content) {

super(content);
}
}

class CellWgt<I extends ICell> {
private I content;
private int weight = 0;
private int counter = 0;

public CellWgt(I content) {
this.content = content;
}

public I get() {
return content;
}

public void set(I content) {
counter = counter + 1;
weight = weight + content.weight();
this.content = content;
}

public int howOften() {
return counter;
}
}

interface ICell {
int weight();
}

class CellW extends CellWgt<Item> {
public CellW(Item content) {

super(content);
}
}

class Item implements ICell {
public int weight() { . . . }
}

Figure 172: Generic Cell classes

objects collectively, programs often need other views of collections of ob-
jects. Among those are unordered collections or sets of objects; queues of
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objects analogous to lines at bus stops; and stacks of objects analogous to
stacks of plates in your kitchen’s cupboard.

This section starts with exercises on designing such alternate collection
classes. We expect you to use the list representations from this chapter
to collect objects. You should start with the representations in figures 163
and 166, that is, lists based on subtyping and generics, respectively.

Exercise 32.7 Equip your list representations with the methods for count-
ing items; for checking on the presence of a specific item (using equals); for
rendering the list of items as strings; and for adding an item to the end of
the list. Also design a method for removing an item from the list if it equals
a given item.

Exercise 32.8 In some exercises in the preceding chapters, you have dealt
with representations of mathematical sets, e.g., sets of integers. Since sets
don’t impose any constraints on their elements other than that they support
the equals method, it is straightforward to generalize these representations
via subtyping or generics:

interface ISet {
// is this set empty?
boolean isEmpty();
// is o a member of this set?
boolean in(Object o);
// create a set from this set and x
Set add(Object x);
// is this a subset of s?
boolean subset(Set s);
// number of elements in this set
int size()
}

interface ISet<Element> {
// is this set empty?
boolean isEmpty();
// is e a member of this set?
boolean in(Element e);
// create a set from this set and x
Set add(Element x);
// is this a subset of s?
boolean subset(Set<Element> x);
// number of elements in this set
int size()
}

The interface on the left assumes that the elements of a set are Objects; the
one on the right is parameterized over the type of its elements. Design
classes that implement these interfaces, using lists to keep track of the set’s
elements. Extend and modify your chosen list libraries as needed.

Exercise 32.9 If you organize your kitchen, it is likely that you stack your
plates and bowls and possibly other things. Designing a data represen-
tation for a collection that represents such a form of information is mostly
about designing methods that access pieces in an appropriate manner. Here
are two interface-based specifications of stacks:
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interface IStack {
// is this stack empty?
boolean isEmpty();
// put x on the top of this stack
void push(Object x);
// remove the top from this stack
void pop();
// the first item on this stack
Object top();
// number of items on this stack
int depth();
}

interface IStack<Item> {
// is this stack empty?
boolean isEmpty();
// put x on the top of this stack
void push(Item x);
// remove the top from this stack
void pop();
// the first item on this stack?
Item top();
// number of items on this stack
int depth();
}

According to them, a stack is a bunch of objects to which you can add an-
other object at the top; from which you can remove only the top-most ob-
ject; and whose top-most object you may inspect. For completeness, our
specifications also include a method for counting the number of items that
are stacked up. Design classes that implement these interfaces. Extend
your list libraries as needed.

Exercise 32.10 Imagine yourself designing a program for your local public
transportation organization that models bus stops. At each bus stop, peo-
ple can join the queue of waiting people; when a bus shows up, the people
who have waited longest and are at the front of the queue enter the bus.
You may also wish to know who is at the front and how long the queue is.

The following two interfaces translate this scenario into two interfaces
for general queue representations:

interface IQueue {
// is this queue empty?
boolean isEmpty();
// add x to the end of this queue
void enq(Object x);
// remove the front from this queue
void deq();
// the first item in this queue
Object front();
// number of items in this queue
int length();
}

interface IQueue<Item> {
// is this queue empty?
boolean isEmpty();
// add x to the end of this queue
void enq(Item x);
// remove the front from this queue
void deq();
// the first item in this queue
Item front();
// number of items in this queue
int length();
}
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As always, the specification based on subtyping is on the left, the one based
on generics is on the right. Design classes that implement these interfaces.
Modify and extend your chosen list libraries as needed. Describe at least
two more scenarios where a general queue library may be useful.

Exercise 32.11 Consolidate the two list libraries that you developed in ex-
ercises 32.8 through 32.10. Then ensure that your classes for representing
sets, stacks, and queues can use one and the same list library.

This last exercise illustrates how generally useful libraries come about.
Programmers turn a generalized data representation into a library, use the
library in many different contexts, and improve/add methods. Eventually
someone standardizes the library for everyone else.86 The next few exer-
cises are dedicated to tree representations, a different but also widely used
collection class and library.

Exercises

Exercise 32.12 Lists are just one way of compounding data. Trees are an-
other one, and they are popular, too. In some cases, organizing data in the
shape of a tree is just the best match for the information; examples include
family trees and representations of river systems. In other cases, organizing
data in this shape is useful for performance purposes.

Design a generalized tree representation for binary trees of objects using
both generics and subtyping. A binary tree is either an empty tree or a
branch node that combines information with two binary trees, called left
and right. Also design the method in, which determines whether some
given object is in the tree.

Exercise 32.13 As you may recall from How to Design Programs (chapter III),
binary search trees are even better than plain binary trees, as long as the
objects in the tree are comparable to each other.

Design a generalized tree representation for binary search trees of com-
parable objects using both generics and subtyping. A binary search tree is
either an empty tree or a node that combines two binary search trees. More
precisely, a node combines a comparable object o with two binary trees, l
and r; all objects that are less than o occur in l and all those that are greater

86In the case of Java, Joshua Bloch was Sun’s designated library designer. He has distilled
his experiences in his book “Effective Java.”
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than (or equal to) o occur in r. Optional: If the object is in the tree, the tree
remains the same. Use privacy specifications to ensure that the condition
for branches always holds.

Also design the method in, which determines whether some given ob-
ject occurs in this binary search tree.

Exercise 32.14 Design the class SetTree, which implements ISet from exer-
cise 32.8 with binary search trees as the underlying collection class. For
the latter, start from the data representation designed in exercise 32.13 and
modify it as needed. Also design a generic set representation that imple-
ments ISet<Element> from exercise 32.8.

For both cases, document where you impose the constraint that this
kind of set representation works only if the elements are comparable.

Before you move on, take a look at the sections on Set and TreeSet in the
official Java documentation.

32.5 Errors, also known as Runtime Exceptions

Sometimes a method cannot produce a reasonable result from the given
data; sometimes the design recipe calls for the insertion of methods that
throw an error (see figures 170 and 171). In the preceding chapters, we
have used the simple Util.error method from ProfessorJ’s languages for this
purpose. We call it simple because no matter what type the context of the
expression Util.error(. . . ) expects, the expression fits in.

Java does not allow you to define such general methods as Util.error. In-
stead, if you wish to signal an error, you must use the exception system. The
general exception system is complex and differs substantially from those
used in most programming languages. This book therefore introduces only
one form of Java exception, a RuntimeException, and one operation on ex-
ceptions: throw.

The RuntimeException class supports two constructors: one doesn’t con-
sume anything and the other one consumes a string. To throw an instance
of RuntimeException, you write down an expression such as

. . . throw new RuntimeException("this is an error") . . .

in your program, wherever expression are allowed. Like Util.error(. . . ) this
throw expression takes on any desired type.

When Java evaluates a throw expression, it performs three steps: it
creates the instance of the RuntimeException; it stops the program; and it
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displays the string, plus some optional information about the state of the
evaluation and where the throw expression is located in the program. The
specifics depend on the Java implementation.

Here is a use of RuntimeExceptions for an example from this chapter:

inside of MenuItem :
public boolean lessThan(Object o) {

MenuItem m;
if (o instanceof MenuItem) {

m = (MenuItem)o;
return this.value < m.value; }

else {
throw new RuntimeException("incomparable with MenuItem") ; }

}

At the time when we first designed lessThan for MenuItem (see page 473),
we went with false as the value to return when an instance of some in-
comparable class was given. Now that we once again have the option of
signaling an error, we should do so.

Several of the exercises in the preceding section call for signaling errors,
too. Consider the pop and top methods in exercise 32.9:

inside of IStack :
// remove the top from this stack
void pop();
// the first item on this stack?
Object top();

Since an empty stack has no elements, it is impossible to retrieve the first
and to remove it from the stack. If you solved the exercise, your method
definitions signal errors that are about empty lists. Naturally, this is un-
helpful to a friend or colleague who wishes to use the stack and has no
desire to know how you designed the internals of your Stack class.

In How to Design Programs, you learned how to design checked func-
tions. Now you need to learn how to add checks to methods. We recom-
mend two additions: first, the purpose statement should warn the future
users of IStack that popping or topping an empty stack causes an error; sec-
ond, the method body should check for this situation and signal an appro-
priate error:
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inside of IStack :
// remove the top from this stack
// ASSUMES: the stack is not empty: !(this.isEmpty())
void pop();

inside of Stack implements IStack :

public void pop() {
// −−− contract check
if (this.isEmpty())

throw new RuntimeException("pop: stack is empty");
// −−− end
. . .
}

Note the “ASSUMES” in the first fragment, making it clear that in addi-
tion to the signature, the method needs to enforce additional constraints
on its input. Also note how in the method itself, the checking is visually
separated from the method body proper via visual markers. Following
the practice from How to Design Programs, we call these checks “contract
checks.”87

Exercises

Exercise 32.15 Equip the sort method from figure 163 with an explicit check
that ensures that the items on the list implement IComp. The goal is to signal
an error message that re-states the assumption of the sort method.

Exercise 32.16 Complete the addition of checks to your stack class fromcan we checkExpect for
runtime exceptions? exercise 32.9.

Exercise 32.17 Inspect the method specifications in the IQueue interfaces of
exercise 32.10 for operations that cannot always succeed. Equip the pur-
pose statements with assumptions and the method definitions with appro-
priate checks.

Exercise 32.18 Inspect the uses of lists of shots and charges in your “War
of the Worlds” program from section 27.7. If possible, create a general list
library of moving objects. If not, explain the obstacle.

add exercises on using a
general list structure for
War of the Worlds game,
plus Worm game

87In programming, the word “contract” tends to describe assumptions about a method’s
inputs, or promises about its outputs, that cannot be expressed in the type system of the
underlying language. Parnas introduced contracts in a research paper in 1972, and they
have a long history.



Designing (to) Interfaces 511

33 Designing (to) Interfaces

The time has come to stop for a moment and think about the nature and
the role of interfaces in object-oriented programming. What we have seen
is that object-oriented computing is mostly about creating and probing ob-
jects, via method calls and field inspections. Of course, not every object can
deal with every method call or respond to every field inspection; it can only
do so if its interface allows so.

From this perspective, the goal of object-oriented programming is there-
fore to formulate interfaces for objects. For simple kinds of data, the de-
sign of a single class is the design of an interface for all of its instances.
A class describes how to create these objects, what methods they support,
and what fields they have. For complex forms of data, you design several
classes, but you present them to the rest of the world via a common inter-

face. With the latter you can create objects; the former dictates how you
compute with them.

This book has introduced the idea of programming interfaces and pro-
gramming to interfaces from the very first chapter, without spelling it out
completely. In the process, we neglected two rough corners of this major
programming principle. Furthermore, in this chapter we used interfaces in
a different role. With the following three subsections, we take a close look
at these three issues.

33.1 Organizing Programs, Hiding Auxiliary Methods

If it is the purpose of an interface to announce to the world which methods
it is allowed to invoke on certain objects, you should wonder why we have
placed the method signatures and purpose statements of auxiliary methods
into interfaces. After all, such methods are often only useful to objects
that implement the interface. Worse, their design may rely on assumptions
that are unstated and that hold only when they are invoked by objects that
implement the interface.

Consider the example of sortable lists, which we have discussed exten-
sively in this chapter. Thus far, we have used interfaces such as

interface IList<Item extends IComp> {
// sort this list, according to lessThan in IComp
IList<Item> sort();
// insert i into this sorted list
IList<Item> insert(Item i);
}
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+----------------------------+
| IList<Item extends IComp> |<--------------------+
+----------------------------+ |
+----------------------------+ |
| IList<Item> sort() | |
+----------------------------+ |

| |
/ \ |
--- |
| |

+----------------------------+ |
| AList<Item extends IComp> | |
+----------------------------+ |
+----------------------------+ |
| AList<Item> insert(Item i) | |
+----------------------------+ |

| |
/ \ |
--- |
| |

----------------------------------- |
| | |

+-------------------------+ +--------------------------+ |
| Mt<Item extends IComp> | | Cons<Item extends IComp> | |
+-------------------------+ +--------------------------+ |

| Object first | |
| IList rest |---+
+--------------------------+

Figure 173: Hiding auxiliary methods, step 1: the class diagram

There is no question that sort should be a part of the IList interface, but the
inclusion of insert is dubious. Its purpose statement clearly demonstrates
that it is only intended in special situations, that is, for the addition of an
item to a sorted list. The insert method is at the core of the insertion sort
idea, and its presence in the common interface thus reveals how sort works.
Although making insert available to everyone looks innocent enough, it is
improper. Ideally, the interface should contain just the header of the sort
method and nothing else (as far as sorting is concerned).

Overcoming this problem requires a different organization, but one that
you are already familiar with. Take a look at the diagram in figure 173. It
should remind you of the chapter on abstracting with classes. Like the dia-
grams there, it includes an abstract class between the IList interface and its
implementing classes. This time, however, the primary purpose of the ab-
stract class is not to abstract some common methods from the implement-
ing classes—though it may be useful for this purpose, too. Its purpose is
to hide the auxiliary insert method from the general audience. Specifically,
the interface IList contains only sort now. The insert method header is in
AList; furthermore, it is unlabeled, indicating that only library code may
refer to it. Since everyone else will use only the interface and the public
class constructors to deal with lists, insert is inaccessible to outsiders.

The translation into classes and interfaces appears in figure 174. It is
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interface IList<Item extends IComp> {
// sort this list according to lessThan in IComp
IList<Item> sort();
}

abstract class AList<Item extends IComp> implements IList<Item> {
// insert i into this sorted list
abstract AList<Item> insert(Item i);
}

class Mt<Item extends IComp>
extends AList<Item> {

public Mt() {}

public IList<Item> sort() {
return this;
}

AList<Item> insert(Item i) {
AList<Item r = new Mt<Item>();
return new Cons<Item>(i,r);
}
}

class Cons<Item extends IComp>
extends AList<Item> {

private Item first;
private IList<Item> rest;

public Cons(Item first,
IList<Item> rest) {

this.first = first;
this.rest = rest;
}

public IList<Item> sort() {
AList<Item> r =

(AList<Item>)rest.sort()
1
;

return r.insert(first);
}

AList<Item> insert(Item i) {
AList<Item> r;
if (i.lessThan(first)) {

return
new Cons<Item>(i,this); }

else {
r = (AList<Item>)rest

2
;

return
new Cons<Item>(first,r.insert(i)); }

}
}

Figure 174: Parameteric lists with auxiliary methods, properly organized
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straightforward, though requires the two gray-shaded casts in Cons. Sur-
prisingly, each cast is due to a different type problem. The one labeled with
subscript 1 tells the type system that the value of rest.sort() can be accepted
as an AList<Item>, even though its type is IList<Item> according to the
signature of sort. The cast labeled with 2 is necessary because the rest field
is of type IList<Item> yet this type doesn’t support the insert method.

+----------------------------+
| IList<Item extends IComp> |
+----------------------------+
+----------------------------+
| IList<Item> sort() |
+----------------------------+

|
/ \
---
|

+----------------------------+
| AList<Item extends IComp> |<--------------------+
+----------------------------+ |
+----------------------------+ |
| AList<Item> sort() | |
| AList<Item> insert(Item i) | |
+----------------------------+ |

| |
/ \ |
--- |
| |

----------------------------------- |
| | |

+-------------------------+ +--------------------------+ |
| Mt<Item extends IComp> | | Cons<Item extends IComp> | |
+-------------------------+ +--------------------------+ |

| Object first | |
| AList rest |---+
+--------------------------+

Figure 175: Hiding auxiliary methods, step 2: the class diagram

With a simple refinement of our class and interface arrangement, it is
possible to replace these two casts with a single, centrally located cast. Take
a look at the diagram in figure 175. The most easily spotted difference
between it and the diagram in figure 173 concerns the containment arrow.
It no longer points from Cons to IList, but instead goes from Cons to the
abstract class. In terms of the class definition, this diagram suggests that
the rest field has the more specific type AList rather than the publicly visible
type IList. A second, equally important change is less visible: AList<Item>

overrides the definition of sort with an abstract version. Doing so is not
only legal with respect to the type system, it is also pragmatic. As we have
seen, the recursive calls to sort must produce a list of type AList<Item> so
that it is possible to insert the first item by just chaining the method calls.

Figure 176 displays the final definitions of the classes and interfaces
of our list library. The one remaining cast is again gray shaded. It is lo-
cated in the constructor, making sure that every value in the rest field is
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interface IList<Item extends IComp> {
// sort this list
IList<Item> sort();
}

abstract class AList<Item extends IComp> implements IList<Item> {
abstract public AList<Item> sort();

// insert i into this sorted list
abstract AList<Item> insert(Item i);
}

class Mt<Item extends IComp>
extends AList<Item> {

public Mt() {}

public AList<Item> sort() {
return this;
}

AList<Item> insert(Item i) {
IList<Item> r = new Mt<Item>();
return new Cons<Item>(i,r);
}
}

class Cons<Item extends IComp>
extends AList<Item> {

private Item first;
private AList<Item> rest;
public Cons(Item first,

IList<Item> rest) {
this.first = first;

this.rest = (AList<Item>)rest ;

}

public AList<Item> sort() {
return rest.sort().insert(first);
}

AList<Item> insert(Item i) {
if (i.lessThan(first))

return
new Cons<Item>(i,this);

else
return

new Cons<Item>(first,rest.insert(i));
}
}

Figure 176: Parameteric lists with auxiliary methods, properly organized

of type AList<Item>. Put differently, the cast ensures that every class that
implements IList<Item> also extends AList<Item>—a fact that the library
designer must now keep in mind for any future modifications (or exten-
sions).



516 Section 33

Exercises

Exercise 33.1 Design an example class that tests the sorting algorithm. This
class represents a use of the list library by someone who doesn’t know how
it truly functions.

Exercise 33.2 The definition of insert in Cons of figure 176 uses the construc-
tor with an Item and an AList<Item>. By subtyping, this second expression
is typed as IList<Item>. In the constructor, however, this value is again
exposed to a cast. Suppose casts were expensive. How could you avoid the
cast in this particular case? Does your solution avoid any other casts?

Exercise 33.3 Design a list library that is based on subtyping (as opposed
to generics), supports sorting, and hides all auxiliary operations.

Exercise 33.4 Design a generic list representation that implements the IList
interface from figure 176 but uses the quicksort algorithm to implement
sort. You may add append to the interface, a method that adds some give
list to the end of this list. Hide all auxiliary methods via an abstract class.

From the chapter on generative recursion in How to Design Programs,
recall that quicksort uses generative recursion for non-empty lists L:

1. pick an item P from L, dubbed pivot;

2. create a sorted list from all items on L that are strictly less than P;

3. create a sorted list from all items on L that are strictly greater than P;

4. append the list from item 2, followed by the list of all items that are
equal to P, followed by the list from item 3.

Use the example class from exercise 33.1 to test the sorting functionality of
your new list library.

After you have designed the library, contemplate the following two
questions: (1) Does it help to override sort in the abstract class? (2) Does
it help to override append in the abstract class?
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33.2 Getters, Predicates, and Setters

If it is the purpose of an interface to announce to the world which common
methods some classes provide, you should also wonder how programs that
use the library should get hold of the values in fields. Let’s reconsider the
list library from the proceeding subsection. To the outside, it provides the
following view:

1. IComp;

2. IList<Item extends IComp>, a generic interface;

3. new Mt<Item extends IComp>(), a constructor of no arguments;

4. and new Cons<Item extends IComp>(Item i, IList l), a constructor that
combines an Item with a IList.

As we have seen in the past, programs that use such a library may have
an object los of type IList<Item> constructed from Cons and may just need
to know what the first item is. Since you have declared these fields to be
private, the program can’t get the current values from these fields, even
with a cast that turns the IList<Item> into a Cons<Item>.

If a library needs to grant access to fields in classes that are presented to
the rest of the program via an interface, the best approach is to add methods
that can retrieve the current values of such fields. In the case of our list
library, you may wish to add the following method specification to IList:

inside of IList<Item . . . > :
// retrieve the first item from this list
Item getFirst();

Naturally, getFirst cannot work for Mt, one of the classes that implement
IList; an empty list doesn’t have a first item. Hence, the method should
signal an error by throwing a RuntimeException:

inside of Mt<Item . . . > :
Item getFirst() {

throw new RuntimeException("first: ...");
}

inside of Cons<Item . . . > :
Item getFirst() {

return this.first;
}

Methods such as getFirst are dubbed GETTERS in the object-oriented world.
While throwing an exception is definitely the proper way to deal with

requests for the first element of an empty list, the library should then also
allow the rest of the world to find out whether any given IList is empty.
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This suggest the addition of a method to IList and the addition of an “AS-
SUMES” clause to the purpose statement of getFirst:

inside of IList<Item . . . > :
// is this list empty?
boolean isEmpty();

// retrieve the first item from this list
// ASSUMES: this list isn’t empty: !(this.isEmpty())
Item getFirst();

The isEmpty method returns true for instances of Mt and false for instances
of Cons. It is an example of a PREDICATE.

Finally, on rare occasions you may also wish to grant the rest of the
program the privilege to modify the content of a field. To do that, you add
a SETTER method such as setFirst:

inside of IList<Item . . . > :
// effect: changes what the first item for this list is
// ASSUMES: this list isn’t empty: !(this.isEmpty())
void setFirst(Item newValue);

Providing setters also has the advantage that your library can inspect the
new value for a field before you commit to a change. That is, if values of a
field must satisfy conditions that can’t be expressed via the type system, a
setter method can check whether the new value is proper for the field and
signal an error if it isn’t.

Exercises

Exercise 33.5 Design a stack library that provides the following:

1. the IStack interface of figure 177 and

2. a constructor for empty stacks that is invoked like this: MtStack().

Here is an Examples class, representing a use of the library:
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interface IStack<Item> {
// push i onto this stack
IStack<Item> push(Item i);

// is this stack empty?
boolean isEmpty();

// what is the top item on this stack?
// ASSUMES: this isn’t the empty stack: !(this.isEmpty())
Item top();

// create a stack by removing the top item from this stack
// ASSUMES: this isn’t the empty stack: !(this.isEmpty())
IStack<Item> pop();
}

Figure 177: Another stack interface

class Examples implements Testable {
public void tests(Tester t) {

IStack<Integer> mt = new MtStack<Integer>();
IStack<Integer> s1 = mt.push(1);
IStack<Integer> s2 = s1.push(2);

checkExpect(s2.top(),2,"top");
checkExpect(s2.pop(),s1,"pop");
}
. . .
}

Finally add a setter that changes what the top of a stack is.

Exercise 33.6 Design a queue library that provides the following:

1. the IQueue interface of figure 178 and

2. a constructor for empty queues that is invoked like this: MtQueue().

As you design the library, don’t forget to design a full-fledged examples
class.

Design the front and deq methods so that they use auxiliary methods.
(Hint: These methods should use an accumulator parameter.) Naturally,
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interface IQueue<Item> {
// add i to the end of this queue
IQueue<Item> enq(Item i);

// is this queue empty?
boolean isEmpty();

// what is at the front of this queue?
Item front();

// remove the front item from this queue
IQueue<Item> deq();
}

Figure 178: Another queue interface

you should hide those auxiliary methods using the technique learned in
section 33.1.

33.3 Interfaces as Specifications

While a class is an interface (describing how its instances can interact with
the rest of the world), a Java interface is a linguistic mechanism that de-
scribes the common interface of several classes. In the preceding chapters,
we have acted as if interfaces exist to describe the common methods of
classes that are designed simultaneously. In this chapter, we started using
interfaces for the purpose of telling others what we expect from the classes
that are to work with our libraries.

The most illustrative example is the list library with support for sorting.
Specifically, the sort method applies only if the items in the list implement
a lessThan method specified in the IComp interface (or its relatives). Thus, if
we wish to represent a menu as a sortable list of MenuItems, then MenuItem
must implement the IComp interface. The same is true for the representa-
tion of sortable phone books. In contrast, you cannot create a sortable list of
objects using a (unmodifiable) class that pre-dates IComp, even if the class
contains a method definition for lessThan with the proper signature.88

Of course, sorting is just one thing we can imagine when we think of
phone books or menus. Consider the following requests:

88While many mainstream object-oriented languages are similar to Java in this regard,
some alternative languages are more flexible than Java here.
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. . . Represent phone books in an electronic manner so that it is
possible to extract all those entries whose name field starts with
"A". . . . Represent restaurant menus electronically so that you
can extract all those items that cost between $10 and $20. . . .

If we wanted to use lists to represent these forms of information, they
would have to support a method for creating a list of objects that have a
certain property.

With this chapter’s experience in program design, this kind of problem
shouldn’t pose any challenge. Assuming we have a list representation like
the one in figure 166, we design the method select, which creates a new list
from the given list such that the extracted objects satisfy a certain property.
We express this latter part by insisting that the original list is made up of
objects that have a hasProperty method:

interface IList<Item extends IPred> {
// extract the objects from this list
// that satisfy hasProperty from IPred
IList<Item> select();
}

interface IPred {
// does this object satisfy
// a certain property?
boolean hasProperty();
}

Now you add select to Cons and Mt, and you make sure that MenuItem and
PhnBEntry implement IPred in an appropriate manner. If this is still a bit
fast for you, study the following exercise.

Exercise

Exercise 33.7 Design a representation for restaurant menus. A menu con-
sists of a series of menu items; each menu item names the food and specifies
a price. Include a method for extracting those items from a menu that cost
between $10 and $20; the result is a menu, too.

Design a representation for phone books. A phone book consists of a
series of entries; each entry names a friend and phone number (use plain
numbers for this exercise). Include a method for extracting those entries
from a phone book that list a friend whose name starts with A; for simplic-
ity, the result is a phone book, too.—When you have completed the design,
suggest an alternative form of data for the result of the selection method.

Abstract over the two forms of lists you have designed, including the
method for selecting sub-lists. Use both a subtyping approach as well as a
generic approach. Don’t forget to demonstrate that you can still represent
menus and phone books. This should produce a list representation that
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implements the above IList<Item extends IPred> interface and whose items
are instances of a class that implements IPred.

Our true problem is that we now have two list libraries: one that sup-
ports sorting and one that supports selecting. If you decide to use the for-
mer to represent menus, you need to add your own methods for selecting
menu items in the desired price range. If you decide to use the latter for
phone books, you need to design your own sorting methods. Of course,
what we really want is a list library that supports both methods. Designing
such a library demands a choice, and the choices shed light on the role of
interfaces as we have used them in this chapter.

The first choice is to design a list library whose elements are both com-
parable to each other and can be inspected for a certain property. Contin-
uing with our generic approach, this demands the formulation of an inter-
face that expresses these two constraints. There are two ways to do so:

interface ICompPred {
boolean lessThan(Object o);
boolean hasProperty();
}

interface ICompPred
extends IComp, IPred { }

The interface on the left includes both a lessThan and a hasProperty method
signature. The interface definition on the right introduces a slightly new
notation, namely an extends clause with comma-separated interfaces. Its
meaning is that ICompPred simultaneously extends both interfaces and in-
herits their method signatures. Using this form of an extends clause also
makes ICompPred a subtype of IComp as well as IPred; see section 32.1 and
figure 169.

Once we have ICompPred, we can introduce the interface that defines a
generalized list structure:89

interface IList<Item extends ICompPred> {
// sort this list according to lessThan in ICompPred
IList<Item> sort()

// extract the objects from this list
// that satisfy hasProperty from ICompPred
IList<Item> select();
}

89Java also supports a short-hand for specifying such an interface without introducing
ICompPred: interface IList<I extends IComp & IPred>. This notation exists for convenience,
though, and is otherwise of no interest to program design.



Designing (to) Interfaces 523

All you have to do now is add Mt and Cons classes that implement this
interface and you have a powerful list library. Since this step in the design
is routine, we leave it to the exercises.

Exercises

Exercise 33.8 Finish the design of this list library using generics. Use the
library to represent the menus and phone books from exercise 33.7.

Exercise 33.9 Design a list library like the one in exercise 33.8 using sub-
typing and interfaces. Use the library to represent the menus and phone
books from exercise 33.7.

If you solved the preceding exercises or if you thought through the rest
of the library design, you understand that this kind of design comes with
a serious drawback. Suppose your library exports the interfaces IList and
ICompPred as well as the constructors Cons and Mt. You can use the con-
structors directly to represent some list of objects, or you can derive special-
purpose interfaces and classes and then use those to make up a list. In ei-
ther case, you are forced to design classes of list items that implement the
ICompPred interface. That is, the object on such a list must define a lessThan
and a hasProperty method. It is impossible to create a list of objects that are
only comparable or only inspectable for a property.

In order to represent lists that can compound all kinds of objects, we
need to retort to casts again. Specifically, we need to rewrite the list inter-
face to allow arbitrary items:

interface IList<Item> {
// sort this list according to lessThan in IComp
// ASSUMES: the objects implement IComp
IList<Item> sort()

// extract the objects from this list
// that satisfy hasProperty from IPred
// ASSUMES: the objects implement IPred
IList<Item> select();
}

With an interface like that, your sort and select methods check during pro-
gram execution whether the items on the list implement the IComp or IPred
interface, respectively. If they don’t, the library raises an error.
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interface IPred {
// does this object satisfy the property?
boolean hasProperty();
}

interface IComp {
// is this object less than o?
boolean lessThan(Object o);
}

interface IList<Item> {
// sort this list according to lessThan in IComp
// ASSUMES: the objects implement IComp
IList<Item> sort()

// extract the objects from this list that satisfy hasProperty from IPred
// ASSUMES: the objects implement IPred
IList<Item> select();
}

class Mt<Item>

implements IList<Item> {
. . .
Mt<Item>() { . . . }
. . .
}

class Cons<Item>

implements IList<Item> {
. . .
Cons<Item>(Item i, IList<Item> l) { . . . }
. . .
}

class PlainItem {
. . .
}

class CompItem implements IComp {
. . .
}

class PredItem implements IPred {
. . .
}

class AllItem implements IComp, IPred {
. . .
}

Figure 179: A flexible list library and four kinds of list items
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The top half of figure 179 sketches what this library design looks like to
the rest of the world. This version of the list library exports three interfaces
(IList, IPred, and IComp) plus two constructors (Mt, Cons). The bottom half
sketches four classes whose instances may occur in an instance of IList:

1. PlainItem is a class that doesn’t implement any interface. While you
can create a list from its instances, you cannot design methods that
sort those lists and you can’t have methods that select sub-lists from
them, either.

2. CompItem implements the IComp interface. Hence, a list that consists
of CompItem objects is sortable.

3. Similarly, PredItem implements the IPred interface. Hence, you may
design methods that extract lists with certain properties from lists of
PredItem objects.

4. Lastly, you may design classes that implement two (and more) inter-
faces. AllItem is a class that implements both IComp and IPred, and it
is thus possible to have methods that sort lists of AllItems as well as
methods that select sub-lists.

The key to the last class definition, AllItem, is yet another small extension
to our notation:

class AllItem implements IComp, IPred { . . . }
As you can see, the implements clause lists two interfaces separated by
commas. The meaning is obvious, i.e., the class must define all methods
specified in all the interfaces that it implements. This notational extension
is similar to the one for extends for interfaces; again, see section 32.1 and
figure 169 for the general idea of extends and implements with multiple
interfaces.

Exercises

Exercise 33.10 Finish the design of this list library using generics. Use the
library to represent the menus and phone books from exercise 33.7.

Exercise 33.11 Design a list library like the one in exercise 33.10 using sub-
typing. Use the library to represent the menus and phone books from exer-
cise 33.7.
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Given the analysis of this scenario and the preceding chapters, there
appears to be a design tension. In the preceding chapters, we have made
interfaces large, adding as many methods as we wished to provide as much
functionality as needed (for any given problem) for a data representation.
In this chapter, and especially in this subsection, our design analysis sug-
gests making interfaces small, adding just as many method specifications
as needed to let other designers—users of our libraries—know what their
classes must implement.

A close look resolves this tension easily, producing a simple guideline:

GUIDELINE ON INTERFACES

Make an interface as large as needed when designing a data
representation for a programming problem.

Make an interface as small as possible when using it to express
constraints for designers who wish to use a generalized data
representation.

In all cases, design to the interface that comes with data representa-
tions and libraries.

Of course, just as observed at the end of section 31, we don’t really want
lists that can be sorted in one manner only. Similarly, we don’t want lists
from which we can select sub-lists in just one way. Nevertheless, the lesson
on interfaces stands and you must keep it in mind as you move forward.

34 Extensible Frameworks: Abstracting Constructors

The discovery of this chapter is that data libraries are designed by general-
izing the type of structurally similar classes and class frameworks. A data
library consists of interfaces and implementing classes; programmers use
such libraries to represent general forms of information, re-using all the
methods that the interfaces specify and the classes implement. While the
chapter has dealt with just one major example, it is easy to see how creating
libraries can accelerate the design of many mundane programs.

Given this description of a data library, you can and should ponder
these two questions:

1. What should you do if you wish to use a library that you can’t change
but has almost all the functionality needed to solve some problem?
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2. What should you do if you wish to use a library that you can’t change
and that doesn’t quite deal with all the data variants needed?

The questions look strange, considering that in the past we just edited
classes and added whatever we needed. In reality, however, programmers
are handed libraries and are told not to edit them90 and then they are faced
with just these questions.

+-----------+ *
| IIfc | * DATA EXTENSION
+-----------+ *

| *
/ \ *
--- *
| *

+-------------------+---------------------+---------------------+-------*-------+
| | | | * |
| +-----------+ +-----------+ +-----------+ * +-----------+
| | ACls | | BCls | | CCls | * | DCls |
| +-----------+ +-----------+ +-----------+ * +-----------+
| | | | * |

====|=======================================================================================
| FUNCTION EXTENSION| | | * |
| | | | * |

+-----------+ /| | | | * |
| IExt |- |----+--|-------------------+-|------------------+--------------+ |
+-----------+ \| | | | | | | * | |

+-----------+ +-----------+ +-----------+ * +-----------+
| AxCls | | BxCls | | CxCls | * | DxCls |
+-----------+ +-----------+ +-----------+ * +-----------+

Figure 180: Data and functional extensions of frameworks

Figure 180 demonstrates the problem with a class diagram. The dia-
gram is cut into four pieces with a vertical and a horizontal divider line.
The top-left corner represents the library. As far as the world at large is
concerned, this library provides an interface and three classes. The bottom-
left corner shows a use of the library for a concrete purpose. For concrete-
ness, imagine a general list library and a representations of menus, respec-
tively. If the functionality exported via IIfc doesn’t suffice for menus, the
idea—first mentioned but not explored in section 31.2 (page 471)—is to add
methods in this lower tier, unless you can edit the library.

The top-right of the figure 180 shows a fourth class that implements
the IIfc interface from the library. It suggests another way of representing
the information of interest as data. To make it compatible with the rest of

90In general, libraries don’t come in a readable, textual form; even if they do, develop-
ment conventions ensure that edits are ignored in the overall product.



528 Section 34

the library, the new class implements the general interface. Finally, in the
bottom right corner you see a piece of code that uses this data extension of
the library and adds functionality to the overall library, too.

In short, you often don’t just want libraries; you want extensible frame-
works. One reason object-oriented programming languages became popu-
lar is because they promised a solution to just this kinds of programming
problems. In this section we investigate this claim and how to approach
the design of extensible frameworks.91

34.1 Data Extensions are Easy

Object-oriented programming languages do support the extension of data
representations with new variants. Indeed, it is so straightforward that we
just look at one example and exhibit a small problem with the exercises.
Figure 181 presents a simplified list library: it serves as a “list of integers”
representation, which are useful in numeric programs. For simplicity, the
classes implement the familiar methods: count, contains, and asString; a nu-
meric library would provide rather different methods.

As always, the world perceives the library as an interface and two im-
plementing classes, i.e., two constructors. Given the list library, the repre-
sentation of a numeric interval, say [low, high], takes high− low+ 1 instances
of Cons. Thus it is easy to imagine that someone may ask you to address
this problem:

. . . One way to make the representation of intervals compact
is to design a new variant, dubbed Range, which represents an
interval combined with a rest of a list. Do so without modifying
the core library. . . .

Figure 182 shows the result of such a design effort. The Range class
implements the IList interface and is thus a variant of the list representation.
The method definitions are straightforward:

count adds the number of integers in [low,high] to the number of integers
in the rest of the list;

contains checks whether the searched-for integer is in the interval or in the
rest of the list;

91For a full understanding of the solution and its implications, you will need to acquire
knowledge about object-oriented program design that is beyond the scope of this book.
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// a list of integers
interface IList {

// how many objects are on this list?
int count();
// is the given object o on this list?
boolean contains(int o);
// render this list as a string
String asString();
}

class Mt implements IList {
Mt() {}

public int count() {
return 0;
}

public boolean contains (int o) {
return false;
}

public String asString() {
return "mt";
}
}

class Cons implements IList {
int first;
IList rest;

Cons(int first, IList rest) {
this.first = first;
this.rest = rest;
}

public int count() {
return 1 + this.rest.count();
}

public boolean contains(int o) {
return this.first == o || this.rest.contains(o);
}

public String asString() {
return String.valueOf (first).concat(" ")

.concat(rest.asString());
}
}

Figure 181: A list of integers . . .

asString concatenates the mathematical rendering of an interval with the
string that represents the rest of the list.

None of these should harbor any surprise for you.

Exercises
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// represents the interval [low,high] combined with an IList
class Range implements IList {

int low;
int high;
IList rest;

Range(int low, int high, IList rest) {
this.low = low;
this.high = high;
this.rest = rest;
}

public int count() {
return (high − low + 1) + rest.count();
}

public boolean contains(int o) {
return ((low <= o) && (o <= high)) || rest.contains(o);
}

public String asString() {
return "[".concat(String.valueOf (low))

.concat("-")

.concat(String.valueOf (high))

.concat("] ")

.concat(rest.asString());
}
}

Figure 182: . . . and a data extension

Exercise 34.1 Develop examples and tests for all methods of figure 181. Ex-
tend the test class to cope with the library extension in figure 182.

Exercise 34.2 Design a sort method for the library of figure 181.

Then add a sort method to the library extension of figure 182 without
modifying the core library. Hint: To solve this problem, you will need to
design a method that inserts each element in a range into the sorted list. As
you do so, remember the lessons concerning the design of functions that
process natural numbers. Also see section 34.4.
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The second exercise indicates how a data extension may suggest a func-
tion extension as well. A moment’s thought shows that the extension of the
union with a Range variant demands the addition of a method that inserts
a range into a list. We haven’t covered function extensions, however; so
doing so has to wait.

34.2 Function Extension: A Design that doesn’t Quite Work . . .

As in the preceding subsection and sections, this section illustrates libraries
with function extensions through a single example. Let’s start with a prob-
lem statement:

. . . Design a representation of menus that supports four pieces
of functionality: counting the items on a menu; rendering them
as a string; sorting the items by price; and selecting the sub-
menu of items that cost between $10 and $20. You must start
from the list library in (the top half of) figure 183. . . .

The last sentence emphasizes again that you are no longer designing com-
plete programs from scratch but adding components to an existing world.

Following the general idea in figure 180, we extend IList, Mt, and Cons
with an interface and classes for menus, respectively. This lower tier also
adds the select methods to menus because it isn’t provided by the library
itself. Figure 183 displays the class diagram for this concrete case. The
IMenu interface extends IList and specifies select. The MtMenu and Cons-
Menu classes extend Mt and Cons and implement the IMenu interface. Note
how the ConsMenu class refers neither back to IMenu nor to MenuItem it via
a containment arrow.

Translating the bottom half of figure 183 into interfaces, classes and
methods (including examples and tests) is straightforward. You may wish
to practice this step again before proceeding from here; the result (minus
MtMenu) is shown in figure 184. As you can see there, the ConsMenu class
hands over its argument to the super constructor. Hence, the method def-
initions suffer from the same type-mismatch problem that we already en-
countered in section 30.2. Take a look at select in ConsMenu, which contains
two gray-shaded casts via variable declarations. As before, we—the de-
signers and programmers—see that the constructor always uses the super
constructor with an instance of MenuItem and list of type IMenu. The type
checker does not use our kind of reasoning, however. From the perspective
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// The Object List Library

+----------------------------+
| IList |<------------------+
+----------------------------+ | +--------------------+
+----------------------------+ | | IComp |
| int count() | | +--------------------+
| boolean contains(Object x) | | +--------------------+
| String asString() | | | lessThan(Object o) |
| IList sort() | | +--------------------+
+----------------------------+ |

| |
/ \ |
--- |
| |

----------------------------------- |
| | | |

+-------------------------+ | +-------------------------+ |
| Mt | | | Cons | |
+-------------------------+ | +-------------------------+ |

| | | Object first | |
| | | IList rest |--+
| | +-------------------------+
| | |

/ \ | / \
--- | ---
| | |

============================================================================================
| | |
| | |
| +---------------------------+ |
| | IMenu | |
| +---------------------------+ |
| +---------------------------+ |
| | IMenu select() | |
| +---------------------------+ |
| | |
| / \ |
| --- |
| | +-----+
| ------------------------+ | +--------------------+
| | | | | MenuItem |

+-----------------+ +--------------------------+ +--------------------+
| MtMenu | | ConsMenu | +--------------------+
+-----------------+ +--------------------------+ | hasProperty)() |
+-----------------+ +--------------------------+ +--------------------+

Figure 183: Deriving sortable lists from Object lists, the class diagram

of the type checker, rest has type IList.92 Thus if you wrote

rest.select()

the type checker would fail. Instead, the method uses local variable defi-
nitions to cast rest to IMenu and first to MenuItem. The rest of the method
body refers to these local variables instead of the fields.

Exercises

92Remember from footnote 72 though that some programmer could derive a subclass
from ConsSort that assigns instances from other, unrelated classes into these fields.
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interface IMenu extends IList {
// select that part of this menu whose items satisfy hasProperty
IMenu select();
}

class ConsMenu extends Cons implements IMenu {
ConsMenu(Object first, IMenu rest) {

super(first,rest);
}

public IMenu select() {
MenuItem fst = (MenuItem)first;

IMenu rst = (IMenu)rest;

if (fst.hasProperty()) {
return new ConsMenu(fst,rst.select()); }

else {
return rst.select(); }

}
}

Figure 184: Representing menus with Object lists

Exercise 34.3 Define MtMenu in analogy to ConsMenu for the library in fig-
ure 184. Also design a MenuItem class that represents item on a menu and
supports the method hasProperty. Finally, develop examples and tests for
IMenu in figure 184.

Exercise 34.4 Design a generic counterpart to the extensible framework of
figures 183 and 184.

At first glance, everything appears to be working just fine but it isn’t.
The problem is that the methods for menus aren’t collaborating in the ex-
pected manner with the methods of the list library. For a specific example,
imagine a customer who wishes to sort the menu and to select items that
cost between $10 and $20. Here is a formulation of this scenario as a pair of
tests:
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inside of MenuExamples :
MenuItem fish = new MenuItem("Fish & Chips",1295);
MenuItem steak = new MenuItem("Steak & Fries",2095);
MenuItem veggie = new MenuItem("French Veggies",1095);

IMenu mt = new MtMenu();
IMenu m1 = new ConsMenu(fish,mt);
IMenu m2 = new ConsMenu(steak,m1);
IMenu m3 = new ConsMenu(veggie,m2);

. . . checkExpect(m3.select().sort(),. . . ,"composing select and sort") . . .

. . . checkExpect(m3.sort().select(),. . . ,"composing sort and select") . . .

Selecting first and then sorting should produce the same result as sorting
first and then selecting, at least as long as both test cases use the same sort-
ing and selection criteria. Alas, only the first test type-checks; the second
one doesn’t because sort produces an IList not an IMenu and the former
doesn’t implement the select method.

Right here, you may realize that defining the lower tier in figure 184 cor-
responds to the testing step in the design recipe of section 32. This step calls
for overriding all method definitions that don’t match the desired type.
More specifically, it suggests using a context-specific signature for the sort
method and defining it with the help of casts and super calls:

inside of IMenu :
IMenu sort();

inside of ConsMenu :
public IMenu sort() {

IMenu result = (IMenu)super.sort();
return result;
}

Once these changes are in place, both of the above tests type-check.

Unfortunately, evaluating the tests stops with an exception:

Exception in thread "main" java.lang.ClassCastException: Cons
at ConsMenu.sort ...

The first line of this text tells you that your program evaluation failed be-
cause a cast failed. Specifically, the cast found a Cons where it expected
something else. The second line pinpoints the cast that failed. Here it is the
cast that the sort method in ConsMenu needs in order to turn the result of
the super.sort() call into a menu:
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inside of ConsMenu :
public IMenu sort() {

IMenu result = (IMenu)super.sort();

return result;
}

In short, result is not made up of objects that implement IMenu, but of in-
stances of Cons and Mt.

On second thought the exception shouldn’t surprise you. An inspection
of sort in Mt and Cons shows that it creates lists with Mt and Cons. Since
neither of these classes implements IMenu, the cast from the result of sort
to IMenu must fail.

At this point, you might think that the design of sort should have used
ConsMenu instead of Cons. Doing so, however, is wrong because the upper
tier in figure 183 is a library that is useful for representing many different
kinds of data, including menus, electronic phone books, and others. Sepa-
rating those two tiers is the point of creating a widely useful abstraction.

The conclusion is thus obvious:

WARNING ON FRAMEWORK EXTENSIONS

Extending a framework with an additional layer of functionality
fails, if the methods in its classes uses any of its constructors.

If so, any call to the respective methods creates instances of the original
library, not the extension.

34.3 . . . and how to Fix it (Mostly)

The warning isn’t just negative. It says that designers must prepare li-
braries for function extensions; it doesn’t happen automatically. As a mat-
ter of fact, it also suggests a way to do so. To understand why, re-read the
warning. In our running example, the sort method employs the construc-
tor. Hence, if some other code invokes this inherited method on some list
of (sub-)type ISort, it returns a plain list.

An apparent solution is to override insert in MtMenu and ConsMenu so
that they use the proper constructors:
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inside of MtMenu :
public IMenu insert(IComp o) {

return new ConsMenu(o,this);
}

inside of ConsMenu :
public IMenu insert(IComp o) {

if (o.lessThan(first)) {
return new ConsMenu(o,this); }

else {
return

new ConsMenu(first,rest.insert(o)); }
}
}

While doing so solves the problem, it mostly duplicates a method and cre-
ates an obvious candidate for abstraction. After all, the definitions of sort
in the library and in its extensions are equal up to the constructors. Sadly,
though, it is impossible to abstract over constructors or its return types, a
problem we have encountered seen several times now.

It is possible, however, to introduce another method that uses the con-
structor and to use it in place of the constructor:

inside of MtMenu :
public IMenu insert(IComp o) {

return factory (o, factoryMt ());

}

inside of ConsMenu :
public IMenu insert(IComp o) {

if (o.lessThan(first)) {
return factory (o,this); }

else {
return factory (first,rest.insert(o)); }
}
}

Naturally the methods factory and factoryMt just mimic the constructors:

IList factoryMt() {
return new Mt();
}

IList factory(Object f , IList r) {
return new Cons(f ,r);
}

Now there is no need to copy the definitions of sort and modify them; it
suffices to override them if you also override the two factory methods in
each class:

IMenu factoryMt() {
return new MtMenu();
}

IMenu factory(Object f , IList r) {
return new ConsMenu(f ,(IMenu)r);
}

These new definitions create instances of MtMenu and ConsMenu. And
hence, sort on IMenus produces menus, too.
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interface IList {
. . .
// sort this list, according to lessThan
IList sort();

// insert o into this (sorted) list
IList insert(IComp o);

// factory method for Cons
// extensions must override this method
IList factory(Object f , IList r);

// factory method for Mt
// extensions must override this method
IList factoryMt();
}

class Mt implements IList {
. . .
public IList sort() {

return this;
}

public IList insert(IComp o) {
return factory(o,factoryMt());
}

public IList factoryMt() {
return new Mt();
}

public IList factory(Object f , IList r) {
return new Cons(f ,r);
}
}

class Cons implements IList {
. . .
public IList sort() {

IList rst = (IList)rest;
return rst.sort().insert((IComp)first);
}

public IList insert(IComp o) {
if (o.lessThan(first)) {
return factory(o,this); }

else {
return factory(first,rest.insert(o)); }
}

public IList factoryMt() {
return new Mt();
}

public IList factory(Object f , IList r) {
return new Cons(f ,r);
}
}

Figure 185: An extensible list library
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interface IMenu {
. . .
// sort this list, according to lessThan
IMenu sort();

// factory method for Cons
// extensions must override this method
IMenu factory(Object f , IMenu r);

// factory method for Mt
// extensions must override this method
IMenu factoryMt();
}

class MtMenu implements IMenu {
. . .
public IMenu sort() {

return factoryMt();
}

public IMenu factoryMt() {
return new MtMenu();
}

public IMenu factory(Object f ,
IMenu r) {

return new ConsMenu(f ,r);
}
}

class Cons implements IMenu {
. . .
public IMenu sort() {

IMenu r = (IMenu)rest;
IComp f = (IComp)first;
return r.sort().insert(f );
}

public IMenu factoryMt() {
return new MtMenu();
}

public IMenu factory(Object f ,
IMenu r) {

return new ConsMenu(f ,r);
}
}

Figure 186: . . . and its extension

Put a bit more abstractly, we have used an arrangement similar to the
template-and-hook pattern (page 238) for abstraction. Here the templates
are all those methods that use factory and factoryMt to create lists; the two
factory methods are the hooks with which we can extend the meaning of
these templates. Of course, there is no single template and there is no single
hook. And for this reason, this arrangement has its own name: the “factory
method” pattern.
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In general, using the “factory method” pattern prepares a framework
of interfaces and classes for future extensions with a tier of additional func-
tionality. Our FACTORY METHODS have the same signature as a constructor
and perform the same function; all the other methods in the library use fac-
tory methods instead of the constructor. If some designer wishes to extend
this library framework, the extension must override the factory method so
that it creates instances of the extension. Thus, all inherited methods with
references to a factory method use the overridden method and, when in-
voked, create instances of the extension tier, too.

Figures 185 and 186 demonstrate how this pattern works for our con-
crete example. The first figure displays the portion of the interface and
the classes that specify factory methods and their use in sort and insert. To
inform future extension programmers, the comments in the IList interface
flag the factory methods as such and request an overriding definition in
classes that extend Mt and Cons.

The second figure displays the interface and class definitions of the sec-
ond tier, i.e., the extension of the list library that represent menus. The
IMenu interface overrides the sort method so that sorting menus produces
menus. Its two implementing classes override sort with definitions that
accommodate the refined type of IMenu, using either the appropriate fac-
tory method or the super method plus casts. To ensure that the super call
produce instances of IMenu, both implementing classes also override the
factory methods as advertised above.

Exercises

Exercise 34.5 Develop examples and tests that demonstrate the proper be-
havior of both the original list library (figure 185) as well as its exten-
sion 186.

Exercise 34.6 The factory method definitions in Cons are identical to those
in Mt in figure 185. Abstract them. Start with a revised class diagram then
change the class and method definitions. Use the tests of exercise 34.5 to
ensure that the abstraction didn’t introduce typos.

Question: Is it possible to use an analogous abstraction for the same
commonalities in the lower ties, i.e., in the function extension of the library
of figure 186? If possible, do so; if not explain why.

Exercise 34.7 Design the method remove for the library figure 185. Extend
the tests from exercise 34.5 to ensure that remove works properly with the
library extension.
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Exercise 34.8 Since the representation of menus in figure 186 is designed
to be extensible, you can add another function extension layer.

Design a function extension of the menu representation that can extract
vegetarian, vegan, and gluton-free menus from a given menu. The items on
the menu must of course provide appropriate methods. Ensure that sorting
a menu, extracting a reasonably priced sub-menu, and then focusing on
vegetarian items can be done in any order.

Exercise 34.9 A proper object-oriented design for exercise 34.2 extends the
integer list library of figure 181 with a function extension as well as a data
extension, along the lines of figure 180:

1. IListX is the interface that extends IList for integers from figure 181.

2. The function extension equips the library with a method for inserting
an interval into a list:

inside of IListX :
// insert the interval [low,high] into this sorted list
IListX insert(int low, int high);

3. While you could introduce a Range class for the data extension and
a RangeX class for the function extension, you may instead wish to
design a single class that extends the library in both dimensions.

34.4 Function Extension: Take 2

When you first encountered the problem of designing a menu representa-
tion that supports certain methods (see page 34.2), you might have won-
dered why we didn’t just use one of the representations from chapters I
and II. In particular, we could introduce a menu class that keeps track of
all menu items via some field. In case we expect variations of menus, we
could also define an interface for menus so that it is easy to add other im-
plementing classes later on.

Figure 187 displays a code-based sketch of such a solution. The inter-
face on the left specifies all five methods; the class on the right shows how
to design the sort method via a dispatch to a sort method for the items list.
The dispatch follows the containment arrow of a diagram, using the plain
design recipe from the first two chapters. Convince yourself that count,
contains and asString can be designed in an analogous manner.

The select method is left unspecified because it isn’t possible to design
it in this straightforward manner. The chosen list library doesn’t support
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interface IMenu {
// how many items are on this menu?
int count();
// does this menu contain an item named i?
boolean contains(String o);
// render this menu as a String
String asString();
// select those items from this menu
// that cost between $10 and $20
IMenu select();
// sort this menu by price
IMenu sort();
}

class Menu implements IMenu {
IList items;
Menu(IList items) {

this.items = items;
}

. . .

public IMenu sort() {
IList sortedItems = items.sort();
return new Menu(sortedItems);
}

public IMenu select() {
return ???;
}
}

Figure 187: Menus like stacks

a method for selecting items from a list, and the method therefore can’t
just dispatch as sort does. One thing we could try is to design a private,
auxiliary method in Menu for filtering lists and create a menu from the
result:

inside of Menu :
public IMenu select() {

return new Menu(selectAux(items));
}

This definition assumes of course that we can solve the following program-
ming problem:

inside of Menu :
// select those items from items that cost between $10 and $20
private IList selectAux(IList items) {

The most important point to notice is that the purpose statement cannot
(and does not) refer to this menu; instead it talks about the list parameter
of the method.

As it turns out, we must remember our earliest experiences with lists
and the generalization of design recipes to recursive data representations.
From the perspective of selectAux, a list of menu items is defined like this:
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A list of menu items is either

1. an instance of Mt; or

2. an instance of Cons, constructed from a MenuItem and a list of
menu items.

As always, creating data examples follows the data definition: new Mt(),
new Cons(m1,new Mt()), etc. for some MenuItem m1. From there you can
also create functional examples:

1. selectAux(new Mt()) should produce new Mt();

2. the result of selectAux(new Cons(new MenuItem("Fish & Chips",1295),
. . . )) should start with new MenuItem("Fish & Chips",1295);

3. while evaluating selectAux(new Cons(new MenuItem("Steak",2295),
. . . )) should produce a list without this first item.

In order to create a template, we need a predicate that distinguishes
instances of Mt from other objects and selectors that provide access to the
fields of a Cons instances. Fortunately, Java provides the instanceof operator
and, because the fields in Cons aren’t protected, we are free to use field
references to get access to their content. Thus the conventional template
looks roughly like this:

inside of Menu :
private IList selectAux(IList items) {

if (items instanceof Mt) {
return . . . ; }

else {
. . . items.first . . . selectAux(items.rest) . . . ; }

}

The flaw of this template—as any attempt to type check this code shows
you—is that items is of type IList not Cons, and it is therefore illegal to ex-
tract the first and rest fields.

You should recall at this point that casts fix such problems:



Extensible Frameworks: Abstracting Constructors 543

inside of Menu :
private IList selectAux(IList items) {

Cons c;
MenuItem m;
IList r;
if (items instanceof Mt) {

return new Mt(); }
else {

c = (Cons)items;
m = (MenuItem)c.first;
if (m.hasProperty()) {

return new Cons(m,selectAux(c.rest)); }
else {

return selectAux(c.rest); }
}

}

Using the casts poses no danger here, because the if statement has estab-
lished that items is an instance of Cons for the else-branch. The casts are
only used to make the type checker accept the method. Include selectAux
in the Menu class and test it.

Our solution suffers from two problems. First, the design is not based
on the class-based representation of the menu, but on a functional interpre-
tation of the data. It is not object-oriented. Second, the design assumes that
the fields of Cons objects are accessible. If the designer of the list library had
followed the recommendations of section 20.4, however, the fields would
be private and thus inaccessible to others. In that case, we simply wouldn’t
be able to design selectAux.

What this suggests and what other sections in this chapter have sug-
gested is that a list library such as ours should provide a method for in-
specting every item on the list. In How to Design Programs, we have encoun-
tered several functions: map, filter, foldl, and so on. We also worked out how
to design such functions for arbitrary data representations. Clearly, class-
based libraries need equivalent methods if others are to design additional
functionality for them.

In general then, the designers of data libraries face a choice. Since they
cannot anticipate all possible methods that their future users may want,
they must either turn the library into an extensible framework (as explained
in this section) or they must prepare it for arbitrary traversals. The next
chapter shows how to implement this second choice.



544 Section 34

Exercise

Exercise 34.10 When you design classes that use a library, you should pro-
gram to the library’s interface. In our running example, you should design
the selectAux method by using the IList interface. As discussed, this isn’t
possible because selectAux uses instanceof and accesses fields.

Modify the list library so that you need neither instanecof nor field ac-
cess to define selectAux. The former was dealt with in the preceding chap-
ter. Section 33.2 addresses the issue of accessing fields via interfaces. Here
we propose this specific change:

inside of IList :
// is there another item on this list?
boolean hasNext();

// retrieve the first item from this list
// ASSUMES: this list has next: this.hasNext()
Object next();

// retrieve the rest of this list
// ASSUMES: this list has next: this.hasNext()
IList getRest();

Once you have modified the list library, re-formulate selectAux using these
new methods.

Would this kind of extension continue to work if you were to add a
Range-like variant (see subsection 34.1) to the list library?

34.5 Mini Project: The Towers of Hanoi

Many books on programming use a puzzle known as “Towers of Hanoi”
to illustrate recursive programming.93 While it might be possible to justify
such an action, our interest here is not in designing a recursive method
for solving a “Towers of Hanoi” puzzle. Instead, our goal is to design a
graphical program interface that allows people to play the game.

A “Towers of Hanoi” puzzle consists of three poles; we refer to them as
“left pole,” “middle pole,” and “right pole.” Three disks of different sizes

93In the terminology of How to Design Programs, a program that solves an instance of the
“Towers of Hanoi” puzzle illustrates generative recursion.
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Figure 188: The towers of Hanoi

with a hole in the middle are stacked up on the left pole. The largest disk
is at the bottom of the stack; the second largest is in the middle; and the
smallest is on top. The player must move the disks from the left pole to
the right pole, one disk at a time, using the middle pole as an intermediate
resting point. As the player moves one disk, it may not come to rest on top
of a disk that is smaller.

Your graphical program should use a simple white canvas to draw the
current state of the puzzle. See the top-most screen shot in figure 188 for a
drawing of the initial state of the puzzle. A player should specify the move-
ment of disks by pressing single-character keys on the keyboard. Specifi-
cally, if the player presses the letters “L”, “M,” or “R” for the first time,
your program should prepare the move of the top-most disk from the left
pole, middle pole, or right pole, respectively. Since pressing such an “ac-
tion key” puts your program into a different state, your canvas should re-
flect this change; it should indicate what it is about to do. As the second
screen shot in figure 188 shows, our solution places a string at the top-left
corner of the canvas that specifies from where the player is about to remove
the next disk. Finally, when the player presses one of those three letter keys
again, the program completes the move. See the bottom most screen shot
in figure 188 and also note that the message has disappeared. The program
is ready to perform the next disk move.
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The objective of this mini project is to use what you have learned in
this chapter: the design and re-use of data representation libraries; their
adaptation to new situations; and the creation of extensible frameworks
from libraries. As always, the following series of exercises begins with a
top-down plan and then proceeds with a bottom-up design of classes and
methods. The section ends with an integration of the pieces in the “World
of Hanoi” class.

You are going to face two design choices as you solve the following
exercises. One concerns the notion of generics; the other one the use of a
function extension in the spirit of section 34.3 or 34.4. In short, there are
four major outcomes possible based on your current design knowledge.
We encourage you to design as many of these choices as you have time for.

Exercises

Exercise 34.11 The “Tower of Hanoi” puzzle clearly deals with a world of
disks and poles, but also stacks and lists. See section 32.4 if you have for-
gotten about stacks.

Design a data representation, starting with a class that extends World
from the idraw or draw library. Focus on the essence of the objects.

You should start this step with a class and interface diagram, and you
should finish it with data examples.

Exercise 34.12 Design a complete data representation for disks. Equip the
class with a method for drawing a disk into a canvas at some given x and y
coordinates.

Exercise 34.13 Design a generally useful library for representing stateful
stacks based on applicative lists:

1. The Stack class should support methods for pushing items on top of
the stack; retrieving the top item from a stack; popping the first item
off the stack; and determining its current depth and whether the stack
is empty.

2. The IList interface, which specifies that lists support the methods of
retrieving the first item, retrieving the rest of the list, determining its
length and whether it is empty.

3. The Mt class, which implements IList and provides a constructor of
no arguments.
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4. The Cons class, which implements IList and provides the usual two-
argument constructor.

Indicate whether you choose an approach based on subtyping or generics
or both.

Exercise 34.14 Design a data representation for poles. Since a pole acts
like a stack of disks, you must re-use the stack and list library from exer-
cise 34.13 and the disk representation from exercise 34.12. In doing so, en-
sure that, for example, the method for retrieving the top-most item actually
returns a disk.

Equip the data representation with a method for drawing the pole and
the disks on the pole into a canvas at some given x and y coordinates. Do-
ing so you are facing a choice with two alternatives: you may either use
the traversal-based design from this section or the design of extending the
functionality of the list representation of the library. After all, the list repre-
sentation doesn’t come with a method for rendering itself on a canvas.

Exercise 34.15 Design the class Hanoi, which extends World and uses the
results of exercises 34.11 to 34.14 to implement a game for solving three-
disk “Tower of Hanoi” puzzles.

When you have solved the problem and the puzzle to your satisfaction,
consider what it takes to generalize the program so that players can specify
the number of disks in the initial configuration (with or without limits).

If you are curious about how to solve “Towers of Hanoi” puzzles in
general, here is the eureka! insight. Suppose the initial tower has n disks. In
that case you move n− 1 disks to the middle pole. That is, you ignore the
bottom disk. Since the bottom disk is the largest, you can act as if it didn’t
exist while you solve the “Towers of Hanoi” puzzle for n− 1 disks. When
you have done so, you are free to move the largest disk from the left pole
to the right pole. This creates another “Towers of Hanoi” puzzle, namely,
move n− 1 disks from the middle pole to the right pole using the left pole
as an auxiliary. And then you are done.

As you can see, solving such a puzzle means solving two smaller puz-
zles that are like the original one and smaller than the original one. The
former insight tells you that (generative) recursion is the tool of choice for
the discriminating “Towers of Hanoi” puzzler, and the latter tells you that
at some point you will finish. So what is the base case?
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Intermezzo 5: Generic Classes

syntax
typing and subtyping
BUT semantics: compile to the Object based solution with subtyping
error messages are weird:
IList¡I¿; if you drop the ¡I¿, it is not an illegal program but you may get

strange messages; ditto for Cons¡I¿ vs Cons
;; —
C#, a language that is similar to Java, deals with generics differently.
instances of Mt or Cons instantiated at the exact same type. In particular,

using Object in place of String above violates this rule.
Just because a type A is below some other type B, Java does not consider

IList<A> a subtype of IList<B>.

Exercise 35.1 Experiment with the specification syntax for type parame-
ters. In particular, omit the constraints from the Mt and Cons class headers.
What kind of error does your Java implementation signal?
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Purpose and Background

The purpose of this chapter is to introduce the idea of abstraction over
similar traversals in class hierarchies. Studying such cases for abstraction
naturally leads to visitors. It also requires the introduction of objects-as-
functions and type-parameterized methods.

The visitor for lists at void type is forEach. Surprisingly, you can
perform interesting computations with forEach despite the poverty of
void. This prepares students for the introduction of loops proper in the
next chapter.

We assume that students have understood chapter III and that familiar
with the idea of loops in How to Design Programs(chapter iv) specifically
map, filter, and friends.

After studying this chapter, students should be able to abstract over
traversals, design visitors, and to use objects as functions.
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TODO



VI Abstracting Data Traversals

Many methods have the purpose of traversing compound data and “col-
lecting” data from such traversals (all in the form of objects). Some meth-
ods search lists or trees or graphs for objects with certain properties; other
methods collect information from all of them and combine it; and yet others
modify all items in a uniform manner.

If you look closely, these methods share a lot of basic elements with
each other. Bluntly put, they all follow a similar pattern and writing this
same pattern over and over again must violate your sense of proper ab-
straction. At the same time, these patterns don’t fall into the abstraction
categories of the preceding chapters, so even if you recognized the prob-
lem, you couldn’t have abstracted yet.

The lack of abstract traversals also poses a problem for the design and
use of so-called collection libraries. When programmers design libraries
for collections, they must anticipate the methods that are most useful. Of
course, it is generally impossible to anticipate them all. Hence, the pro-
grammers who use the library may have to create extensions to supply the
missing functionality. As the preceding chapter has shown, such extensions
are difficult to build in general and, once built, are difficult to maintain. If
a library offers a general traversal method, however, designing additional
functionality is usually straightforward.

Here we discuss how to design a general traversal method for a data
structure library and how to design uses of such traversal methods. We also
discuss an imperative traversal method and—in preparation of the next
chapter—how it is often abused for applicative computations.

36 Patterns in Traversals

The preceding chapter deals with restaurant menus and their data repre-
sentations. The emphasis there is on creating representations that re-use



552 Section 36

interface IMenu {
// select the items from this menu that cost between $10 and $20
IMenu selectByPrice();
// select the items from this menu that do not start with "Meat:"
IMenu selectByMeat();
}

class Mt implements IMenu {
// constructor omitted

public IMenu selectByPrice() {
return this;
}

public IMenu selectByMeat() {
return this;
}
}

class MenuItem {
private String name;
private int val; // in dollars

public MenuItem(String name, int val) {
this.name = name;
this.val = val;
}

// is this item’s cost betw. $10 and $20
public boolean hasGoodPrice() {

return 10 <= val && val <= 20;
}

// is this item free of ”Meat:”
public boolean hasNoMeat() {

return !(name.startsWith("Meat:"));
}
}

class Cons implements IMenu {
private MenuItem first;
private IMenu rest;
// constructor omitted

public IMenu selectByPrice() {
IMenu r = rest.selectByPrice();
if (first.hasGoodPrice()) {

return new Cons(first,r); }
else {

return r; }
}

public IMenu selectByMeat() {
IMenu r = rest.selectByMeat();
if (first.hasNoMeat()) {

return new Cons(first,r); }
else {

return r; }
}
}

Figure 189: A menu with two select methods



Patterns in Traversals 553

existing data libraries. Here we are interested in methods for processing
menus. Let’s use a concrete problem statement to get started:

. . . Your company is selling software for managing restaurants
menus like these:

Today’s Menu

Garlic Pasta ..................... 9
Vegetarian Pizza ................. 13
Meat: Pepperoni Pizza ............ 18
Meat: Steak and Fries ............ 21
Gnochi ........................... 16

As you can see, this restaurant takes care of its vegetarian clien-
tele with a “Meat:” warning at the head of the line.

Design a menu representation that allows customer to select
those items on the menu that cost between $10 and $20 (inclu-
sive) and those that are vegetarian. . . .

36.1 Example: Menus Designed from Scratch

To keep things simple, we start with a solution that assumes the data rep-
resentation for menus is designed from scratch. Figure 189 shows the ex-
pected collection of classes:

MenuItem: This class represents individual menu items. Given the prob-
lem context, it supports two methods: hasGoodPrice, which deter-
mines whether a menu item costs between $10 and $20; and has-
NoMeat, which ensures that the item’s description doesn’t start with
"Meat:".

IMenu: The interface represents menus as a whole. As you can see from the
signature, this data representation of menus supports two methods,
one for selecting entrees in a certain price range and another one for
selecting dishes not marked with "Meat:".

Mt: The Mt class, for empty menus, implements the interface in the pre-
dicted manner. Just note that both selection methods have the same
method body.
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Cons: The Cons class extends an existing menu with another instance of
MenuItem. Pay close attention to the two selection methods; they
are so similar that they are nearly indistinguishable. The first, select-
ByPrice, uses the hasGoodPrice method from MenuItem. In its place,
the second one, selectByMeat, uses the hasNoMeat method.

Of course, in the real world we would use a field to designate a menu item
as a non-meat item; here we just use the structure of the MenuItem that you
know from the preceding section.

The last clause in the enumeration points out the problem in detail.
Here it is again with the differences high-lighted:

public IMenu selectByPrice() {
IMenu r = rest.selectByPrice();

if (first. hasGoodPrice ()) {
return new Cons(first,r); }

else {
return r; }

}

public IMenu selectByMeat() {
IMenu r = rest.selectByMeat();

if (first. hasNoMeat ()) {
return new Cons(first,r); }

else {
return r; }

}

The two method definitions from Cons are alike except for the two method
calls in gray. If you had encountered such a problem in the context of How
to Design Programs, you would have abstracted over the different methods
with an additional parameter, and the two method definitions would have
been identical after that.

In the world of Java, abstracting over methods is impossible. Unlike
functions in Scheme, methods are not first-class values. Still, the idea of
abstracting over the method call as if methods were first-class objects is
what it takes to avoid this kind of code duplication. Before we do that,
however, let’s look at the menu problem from a slightly different angle.

Exercise

Exercise 36.1 Design a data representation for menu items that allows a
proper accommodation of dietary restrictions (e.g., kosher, vegan, etc). At
a minimum, make sure a dish is properly designated as vegetarian or not.

36.2 Example: Menus Designed as Lists

Once you have understood the preceding chapter, you should first look in
your collection of available libraries before you design a data representa-
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interface IPred {
// does this item have a property?
boolean good();
}

interface IList<I extends IPred> {
// select the items from this list
// that satisfy good (in IPred)
IList<I> select();
}

class Mt<ITEM extends IPred>
implements IList<ITEM> {

// constructor omitted

public IList<ITEM> select() {
return this;
}
}

class Cons<I extends IPred>
implements IList<I> {

private I first;
private IList<I> rest;
// constructor omitted

public IList<I> select() {
IList<I> r = rest.select();
if (first.good()) {

return new Cons<I>(first,r); }
else {

return r; }
}
}

class MenuItem implements IPred {
private String name;
private int val; // in dollars

// constructor intentionally omitted

public boolean good() {
return 10 <= val && val <= 20;
}
}

class MenuItem implements IPred {
private String name;
private int val; // in dollars

// constructor intentionally omitted

public boolean good() {
return !(name.startsWith("Meat:"))
}
}

Figure 190: Selecting items from a menu
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tion from scratch. Since menu items come and go, it is obvious to identify
menus with lists—at least those we have dealt with here.

Figure 190 spells out the details of this approach. Its top-half shows
a generics-based list library that supports a single method: select, because
this is all we need. The method traverses the lists and produces a list whose
items produce true when their good method is invoked. The latter is speci-
fied in the IPred interface of the library.

Using this library requires the design of a class C that implements IPred.
Instances of C can then be collected in an instance of IList<C>. For our spe-
cific case, you need to design the MenuItem class so that it has a public good
method and then you can use IList<MenuItem> as a data representation
for menus.

The bottom-half of figure 190 displays not one, but two designs of Me-
nuItem, and as you can tell, they are distinct. The one on the left supports a
good method that returns true if the item costs between $10 and $20; it is use-
ful for cost-conscientious customers. In contrast, the class on the right de-
fines a good method that identifies vegetarian menu items, i.e., those suited
for a vegetarian visitor.

Unfortunately, it is impossible to combine the two classes in the given
context. The list library has settled on the name good as the one criteria to
be used when objects are selected from a list. If there is a need to use two
distinct criteria to select sub-lists from one and the same list, you cannot use
this library to achieve this goal.

You may recall that we have encountered an instance of this very same
problem in the preceding chapters in the shape of the sort problem. Just like
select in the library of figure 190 use a fixed good method to pick the appro-
priate items, the sort method uses a fixed lessThan method to arrange the
items in the desired order. Sorting the same list according to two different
criteria is impossible because it is impossible to abstract over methods.

36.3 Methods as Objects

If we had encountered the following two function definitions in the context
of How to Design Programs,
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(define (select1 l)
(cond

[(empty? l) empty]
[else

(if ( hasGoodPrice (first l))
(cons (first l) (select1 (rest l)))
(select1 (rest l)))]))

(define (select2 l)
(cond

[(empty? l) empty]
[else

(if ( hasNoMeat (first l))
(cons (first l) (select2 (rest l)))
(select2 (rest l)))]))

we would have abstracted over them like this:

(define (select-abstract l predicate )

(cond
[(empty? l) empty]
[else

(if ( predicate (first l))

(cons (first l) (select-abstract (rest l) predicate ))

(select-abstract (rest l) predicate ))]))

That is, we would have introduced an additional parameter, passed it along
to all recursive function calls, and used it where we used to call specific
functions. In order to validate this abstraction, we would eventually have
defined the original functions in terms of select-abstract:

(define (select1 l)
(select-abstract l hasGoodPrice ))

(define (select2 l)
(select-abstract l hasNoMeat ))

In general, we would have applied select-abstract to a list and a selection
function (hasGoodPrice, hasNoMeat) instead of designing new functions.

While methods aren’t values or objects over which we can parameter-
ize, let us imagine this possibility for just a moment. Given the pair of
methods from figure 189:

public IMenu selectByPrice() {
IMenu r = rest.selectByPrice();

if (first. hasGoodPrice ()) {
return new Cons(first,r); }

else {
return r; }

}

public IMenu selectByMeat() {
IMenu r = rest.selectByMeat();

if (first. hasNoMeat ()) {
return new Cons(first,r); }

else {
return r; }

}

we could then equip the select method with an additional parameter:
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inside of Cons :
// select a sublist of items for which predicate holds
public IMenu selectBy(IMethod predicate) { . . . }

Like above, predicate is the name of a “method parameter,” i.e., it stands for
an object that acts like a method. The name of its type, IMethod suggests an
interface that describes how to represent methods as objects. In this spe-
cific case, the predicate object represents methods that determine whether
an instance of MenuItem has a certain property.

Our next step must be to translate this requirement on predicate into a
method signature for the IMethod interface. The word “determine” implies
that if IMethod describes a method, it is a boolean-valued method. In turn,
the phrase “some instances has a property” means the method consumes
such an instance:

interface IMethod {
// determine whether m has this property
boolean good(MenuItem m);
}

Put differently, IMethod represents objects that support one method. This
method consumes a MenuItem and produces a boolean. If you ponder this
for a moment, it shouldn’t surprise you that such objects represent meth-
ods. After all, all you can do with them is invoke exactly one method.

Equipped with IMethod and an understanding how predicate represents
a method, the next step follows logically, without a choice:

inside of Cons :
public IMenu selectBy(IMethod predicate) {

IMenu r = rest.selectBy(has);

if ( predicate.good(first) )
. . .

}

The test expression in gray invokes the method in predicate on the first Me-
nuItem. The if-test then uses the result to continue as before.

If we can actually implement the IMethod class, the new selectBy method
works and works for general selection criteria. Since abstraction demands
that we show how to get the old programs back, let’s see how we could
represent the hasGoodPrice method. To do so, we act as if we are designing
a method using the design recipe for methods but we do design an imple-
mentation of IMethod with a specific purpose:
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interface ISelect {
// determine whether m has this property
boolean good(MenuItem m);
}

interface IMenu {
// select the items from this menu according to has
IMenu selectByMeat(ISelect);
}

class Mt implements IMenu {
// constructor omitted

public IMenu selectBy(ISelect has) {
return this;
}
}

class Cons implements IMenu {
private MenuItem first;
private IMenu rest;
// constructor omitted

public IMenu selectBy(ISelect is) {
IMenu r = rest.selectBy(is);
if (is.good(first)) {

return new Cons(first,r); }
else {

return r; }
}
}

class HasGoodPrice
implements ISelect {

// is m’s cost betw. $10 and $20
public boolean good(MenuItem m) {

return m.hasGoodPrice();
}
}

class HasNoMeat
implements ISelect {

// is m item free of ”Meat:”
public boolean good(MenuItem m) {

return m.hasNoMeat();
}
}

Figure 191: A menu with two select methods

class HasGoodPrice implements IMethod {
// determine whether m costs between $10 and $20
public boolean good(MenuItem m) {

. . .
}
}
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The signature is dictated by the IMethod interface. The purpose statement
states the obvious, namely, that m should have a “good” price. While we
could go through examples and the rest of the design recipe, you can see
that the method just invokes hasGoodPrice on m.

Figure 191 sums up the discussion. It displays a data representation
of menus with a properly abstracted select method. That is, it includes
only one select method though one that accepts an extra argument. The
latter is a placeholder for objects that represent methods. It is this method-
represented-as-an-object that determines whether select includes an item or
not. The figure uses the name ISelect for the interface that describes the
methods-as-objects representation. The two classes at the bottom show
how to implement this interface: the instances of HasGoodPrice help se-
lect menu items that cost an appropriate amount and the instances of Has-
NoMeat helps compile a vegetarian menu.

Before we move on, let’s take a second look at these two classes and
their methods. This look shows that the good methods in both HasGood-
Price and HasNoMeat do not depend on the instance of MenuItem that they
process. This instance is passed in explicitly, implying that the good meth-
ods really are like functions on MenuItems. While these classes don’t have
fields, even if they did, these fields would be initialized when the “func-
tion” is created not when the MenuItem is created. The following exercises
show how fields in such classes can be useful and thus reinforce that ab-
stracting over traversals requires function-oriented reasoning in the man-
ner of How to Design Programs.

Exercise

Exercise 36.2 For some diners, a price range of $10 to $20 could be too ex-
pensive, for others, it may sound cheap. Design a variant of HasGoodPrice
that allows that customers to select a price range for the selection process.

Exercise 36.3 Re-equip the menu representation in figure 191 with the se-
lectByPrice and the selectByMeat methods of figure 189. Doing so ensures
that the former is as powerful and as useful as the latter.

Exercise 36.4 Use the methods-as-objects idea to abstract the select method
in the list library of figure 190 (see section 36.2). We suggest you proceed as
follows:

1. Design the class Menu, which represents a menu as information about
today’s date, the restaurant’s name, and today’s menu. Use lists for
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the latter. Equip the class with methods for selecting a well priced
menu from the existing menu.

2. Design the abstraction of the select method.

3. Re-design the selection method from item 1 so that it uses the abstrac-
tion from item 2. Also design a method for selecting a vegetarian
sub-menu.

36.4 List Traversals and Polymorphic Methods

Now that we know that representing methods as objects gives us “func-
tions as first-class values” back, we can re-visit the general list traversals
functions from How to Design Programs. If we can reconstruct those traver-
sal functions in an object-oriented setting, we should be able to formulate
a general traversal in the world of classes.

Let’s start with the traversal function that is extremely useful as far as
lists are concerned:

;; map : [Listof X] (X → Y) [Listof Y]

It consumes a function f and a list l of values, applies f to each item on l,
and collects the results on a list again:

(map f (list x1 . . . xn)) = (list (f x1) . . . (f xn))

Adding this function to our list library in Java should give us an idea of
how easy it all is.

As always we start with a purpose statement and a method signature:

inside of IList<ITEM> :
// apply f to each item on this list; collect the results in new list
IList<ITEM> map(IFun<ITEM> f );

The purpose statement translates the terminology from How to Design Pro-
grams to the one used in this book. The signature clarifies two points:

1. f is of type IFun<ITEM>, which is an interface for the methods-as-
objects we wish to use with in conjunction with map.

2. the result list has the same type as the given list.

Note how the result type simplifies the one from the Scheme version. The
overall problem, though, is sufficiently complex and we return to this sim-
plification issue later after solving the basic problem.
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interface IFun<I> {
// create new data from theItem
I process(I theItem);
}

interface IList<I> {
// apply f to each item on this list; collect in new list
IList<I> map(IFun<I> f );
}

class Mt<I>
implements IList<I> {

// constructor omitted

public IList<I> map(IFun<I> f ) {
return this;
}
}

class Cons<I>
implements IList<I> {

private I first;
private IList<I> rest;

// constructor omitted

public IList<I> map(IFun<I> f ) {
I fst = f.process(first);
return new Cons<I>(fst,rest.map(f ));
}
}

class Add1
implements IFun<Integer> {

public Integer process(Integer i) {
return i + 1;
}
}

class Sub1
implements IFun<Integer> {

public Integer process(Integer i) {
return i − 1;
}
}

Figure 192: Mapping over lists

The IFun interface is similar to the one for the select method in the pre-
ceding subsection:

inside of IFun<I> :
I process(I theItem);

We know from the signature for map that its “processing function” con-
sumes one list item at a time and produces another one. This knowledge
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is translated here into a method specification: the input type is I and so is
the output type. Since we can’t foresee the kinds of applications that may
need to use map, this type is a parameter of the interface definition. It is
instantiated in IList<ITEM> with ITEM, the type of list items.

From IFun<I>, you can see that map invokes the process method from
the given instance of IFun<I> on individual list items:

f.process(anItem)

We should, however, not jump ahead but design map step by step.

The second method design step is to formulate examples that can be
turned into tests. For map two easy sounding examples are ways to add 1
or to subtract 1 from all items on a list of integers.

For map, we first need lists of integers:

inside of Examples :
IList<Integer> mt = new Mt<Integer>();

IList<Integer> l1 =
new Cons<Integer>(1,mt);

IList<Integer> l2 =
new Cons<Integer>(2,l1);

IList<Integer> l3 =
new Cons<Integer>(3,l2);

IList<Integer> r2 =
new Cons<Integer>(2,mt);

IList<Integer> r3 =
new Cons<Integer>(3,r2);

IList<Integer> r4 =
new Cons<Integer>(4,r3);

If you add 1 to all items on the list on the left, you get the list on the right.
Conversely, if you subtract 1 from the lists on the right, you get the list on
the left. In short, mapping something like the add1 function over the left
list produces the right one and mapping a sub1 function over the right list
produces the left one.

The other argument to map is an object that implements IFun<ITEM>.
In order to add or subtract 1, the method must consume and produce an
integer, which implies the following template:

class ??? implements IFun<Integer> {
// add (subtract, . . . ) to the given integer i
public Integer process(Integer i) { . . . }
}

From here, the rest of the design is straightforward. See the bottom of fig-
ure 192 for the actual class definitions.

With sample lists and sample instances of IFun<Integer> in hand, you
can now specify examples and tests for map:
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inside of Examples :
checkExpect(l3.map(new Add1()),r4,"add 1 to all")
checkExpect(r4.map(new Sub1()),l3,"sub 1 to all")

They express in our testing framework what the preceding paragraphs say.
informally.

Putting together the template for map follows proven procedures:

inside of Mt<ITEM> :
I map(IFun<ITEM> f ) {

. . .
}

inside of Cons<ITEM> :
I map(IFun<ITEM> f ) {

. . . first . . . rest.map(f ) . . .
}

Once you have the template, defining the map method itself is as easy as
designing a method in chapter II. The result of the coding step is on display
in figure 192; take a good look, study it in depth, and solve the following
exercises before you move on.

Exercises

Exercise 36.5 Design a data representation for the inventory of a grocery
store, including at least a name (String), a producer (String), a price (a dou-
ble), and an available quantity (int). Then equip the representation with two
applicative methods:

1. inflate, which multiplies the price of each item with 1.1;

2. remove, which sets the available quantity of all items from a specific
producer to 0.

Finally abstract over the two methods by designing a map-like method.

Exercise 36.6 Abstract the classes Add1 and Sub1 in figure 192 into a single
class that implements IFun<Integer>.

Exercise 36.7 Design the following implementations of IFun<ITEM> (for
an appropriate type ITEM):

1. Not, which when applied to an instance of Boolean negates it;

2. Hello, which when applied to an instance of String (referring to a
name) prefixes it with "hello ";

3. Root, which when applied to a Double computes its square root.
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Develop a test suite that uses these classes to map over lists of Booleans,
Strings, and Doubles, respectively.

Exercise 36.8 Design the following implementations of IFun<ITEM> (for
an appropriate type ITEM):

1. And, which when applied to an instance of Boolean computes the con-
junction with some other, fixed but specifiable Boolean;

2. Append, which when applied to an instance of String prefixes it with
some other, fixed but specifiable String;

3. Multiply, which when applied to an instance of Double multiplies it
with some other, fixed but specifiable Double.

Develop a test suite that uses these classes to map over lists of Booleans,
Strings, and Doubles, respectively.

The exercises demonstrate how useful the map method in figure 192 is.
At the same time, they drive home the point that map, as currently avail-
able, always consumes a list of some type and produces one of the same
type. Clearly, this form of traversal function is overly restrictive. As you
may recall from How to Design Programs or from this book, list traversals of
the kind that map represents are common, but usually they produce a list
of a different type than the one given.

Consider the simplistic problem of determining for each integer on a
list of integers whether it is positive (or not). That is, given a list of integers
loi, you want an equally long list of booleans lob such that if the ith item on
loi is positive then the ith item on lob is true. Processing a list of integers in
this manner is clearly a map-style task but defining an appropriate method
as an object fails:

class IsPositive implements IFun<Integer> { // ILL-TYPED CODE
public Boolean process(Integer i) {

return i > 0;
}
}

As you can easily see, the signature of the process method in this class does
not match the signature in IFun<Integer>, and therefore the type checker
cannot approve the implements clause.
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A close look at this example suggests a first and obvious change to the
function interface of the list library:

interface IFun<I,RESULT> {
// create new data from theItem
RESULT process(I theItem);
}

While the definition of figure 192 parameterizes functions only over the
type of the list items, this revised definition parameterizes functions over
both the type of the items as well as the type of the result. Hence, in this
context, you can define the IsPositive class just fine: see the bottom right
class in figure 193. Note, though, that it implements an IFun interface at
Integer, the type of the list items, and Boolean, the type of the result.

So now you just need to check whether this definition of IFun works
with the rest of the list library. Let’s start with IList:

inside of IList<ITEM> :
IList<R> map(IFun<ITEM,R> f );

Since the interface for functions requires two types, we provide I and R.
The former, I, represents the type of list items; the latter, R, is the result
type of the function. In other words, IFun<I,R> is the transliteration of (X
→ Y) into Java’s type notation. From here, you can also conclude that the
result type of map must be IList<R>, because f creates one instance of R
from each instance of I and map collects those in a list.

Problem is that R comes out of nowhere, which you must find disturb-
ing. If you were to submit this revised interface definition to Java’s type
checker as is, it would report two errors:

... cannot find symbol ... R

one per occurrence of R in the code. These error messages mean that R is
an unbound identifier; since we want it to stand for some concrete type, it
is an unbound or undeclared type parameter.

Thus far, we know only one place where type parameters are declared:
to the immediate right of the name of a class or interface definition. You
might therefore wonder whether R should be a parameter of IList:

interface IList<I,R> {
IList<R> map(IFun<I,R> f )
}
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interface IFun<I,R> {
// create new data from theItem
R process(I theItem);
}

interface IList<I> {
// apply each item to process in f , collect in new list
<R> IList<R> map(IFun<I,R> f );
}

class Mt<I>
implements IList<I> {

// constructor omitted

public <R>
IList<R> map(IFun<I,R> f ) {

return new Mt<R>();
}
}

class Cons<I>
implements IList<I> {

private I first;
private IList<I> rest;
// constructor omitted

public <R>
IList<R> map(IFun<I,R> f ) {

R fst = f.process(first);
return new Cons<I>(fst,rest.map(f ));

}
}

class Add1
implements

IFun<Integer,Integer> {
public Integer process(Integer i) {

return i + 1;
}
}

class IsPositive
implements

IFun<Integer,Boolean> {
public Boolean process(Integer i) {

return i > 0;
}
}

Figure 193: Mapping over lists

Obviously this interface definition type checks. Declaring the type param-
eter in this manner poses a serious obstacle, however, as a quick thought
experiment demonstrates. Specifically, consider a Menu class that uses
IList<I,R> to encapsulate a field of menu items:
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class Menu {
IList<MenuItem,XYZ> items;
. . .
}

The XYZ indicates the missing return type for map in IList. Putting a type
here fixes the signature of map to

IList<XYZ> map(IFun<MenuItem,XYZ> f )

once and for all. In other words, all uses of map within Menu must produce
lists of XYZs. This is, of course, impractical because the Menu class may
have to use map at many different return types. Before you read on, come
up with three examples of how map could be used with distinct return types
for menus.

Our conclusion must be that the result type R for map functions cannot
be bound for the entire interface. Instead, it must be instantiated differently
for every use of map. In Java, we can express this independence of map’s
result type from IList’s type parameters with the introduction of a map-
specific type parameter:

inside of IList<ITEM> :
<R> IList<R> map(IFun<ITEM,R> f );

Syntactically, you do so by pre-fixing a method signature with a list of type
parameters in angle brackets. Here a single type, R, suffices. Invocations of
map implicitly specify R from the type of the IFun argument, and the Java
type checker uses this type for the result list, too. Method signatures such
as map’s are said to introduce POLYMORPHIC METHODS.

Figure 193 shows the class and interface definitions for a completely
functional list library with a versatile abstraction of a map-style traversal.
Other than the generalizations of map’s signature and the IFun interface,
nothing has changed from figure 192. The bottom part displays two classes
that implement the new IFun definition; take a good look and get some
practice by solving the following exercises.

Exercises

Exercise 36.9 Recall the parametric Pair class from chapter V (page 461).
In this context, design the following implementations of IFun<I,R> (for
appropriate types I and R):

1. First, which when applied to an instance of Pair<Integer,Boolean> re-
turns the “left” part of the object;



Patterns in Traversals 569

2. Distance, which when applied to an instance of Pair<Double,Double>
computes the distance of this “point” to the origin;

3. And, which when applied to an instance of Pair<Boolean,Boolean>
computes the conjunction of the two paired-up boolean values.

Develop a test suite that uses these classes to map over lists of appropriate
Pairs, using the list library from figure 193 without change.

interface IList<I> {
// f.process() each item, collect in new list
<R> IList<R> map(IFun<I,R> f );

// select the items from this are f.good()
IList<I> select(IPredicate<I> f );

// is x a member of this?
boolean member(I x);

// the first item on this
I first();
}

interface IMap<KEY,VALUE> {
// add the entry [k,value] to this
void add(KEY k, VALUE value);

// does this contain a pair with k k?
boolean contains(KEY k);

// what value comes with k in this
// ASSUMES: contains(k)
VALUE retrieve(KEY k);
}

Figure 194: Lists and maps

Exercise 36.10 An ASSOCIATION MAP is like a dictionary. Instead of asso-
ciating words with explanations of their meanings, though, it associates
arbitrary keys with values. After creating a map, you add key-value pairs;
you may then check whether a given map associates a key with any value;
and you may retrieved the value that a map associates with a key.

The right side of figure 194 displays an interface that has turned this
informal description into a rigorous specification. design an association
map library that implements this IMap interface. Start with composing a
list library with the interface specified on the left in figure 194; use whatever
pieces are available, but do develop a test suite.

36.5 Example: fold

In addition to map-style traversals, you have also encountered traversals
that process each item on a list and collect the results in a single number,
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interface IListInt {
// the sum of integers on this list
int sum();
// the product of integers on this list
int pro();
}

class MtInt implements IListInt {
public MtInt() { }

public int sum() {
return 0 ;
}

public int pro() {
return 1 ;
}
}

class ConsInt implements IListInt {
private int first;
private IListInt rest;

public ConsInt(int first, IListInt rest) {
this.first = first;
this.rest = rest;
}

public int sum() {
return first + rest.sum();
}

public int pro() {
return first ∗ rest.sum();
}
}

Figure 195: Integer lists with addition and subtraction

boolean, string, etc. This is what How to Design Programs and functional
programming call a fold operation, but it has also found its way into object-
oriented programming languages from there.

Figure 195 shows two fold-style list traversals in a data representation
of lists of integers. The first one is the sum method, which adds up all
the numbers on the list. The second is the pro method, which computes
the product of all the numbers. Both methods traverse the entire list and
compute a single number by combining the list items with + or ∗. When
sum reaches the end of the list, it produces 0; pro, in contrast, returns 1.
Following the design recipe for abstraction, figure 195 highlights the two
pairs of differences in gray.

Figure 196 displays a list-of-ints representation that abstracts over these
two traversals, including the introduction of an abstract class to abstract
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abstract
class AListInt implements IListInt {

// process each item of this list,
// collect results with f ; start with e

abstract int arith(IOp f , int e);

public int sum() {
return arith(new Sum(), 0 );
}

public int pro() {
return arith(new Pro(), 1 );
}
}

interface IOp {
// a function that combines x and y
int combine(int x, int y);
}

class MtInt extends AListInt {
public MtInt() { }

protected int arith(IOp f , int e) {
return e;
}
}

class ConsInt extends AListInt {
private int first;
private AListInt rest;

public ConsInt(int first, IListInt rest) {
this.first = first;
this.rest = (AListInt)rest;
}

protected int arith(IOp f , int e) {
return f.combine(first,rest.arith(f ,e));
}
}

class Sum implements IOp {
public int combine(int x, int y) {

return x + y;
}
}

class Pro implements IOp {
public int combine(int x, int y) {

return x ∗ y;
}
}

Figure 196: Integer lists with fold

over the commonalities once the sum and pro methods are abstracted. Let’s
take one step at a time, starting from the differences.

Since the two traversals differ in two places, you should expect that
the abstracted traversal functions consumes two arguments. Figure 196
confirms this with the gray line in the AListInt class at the top:
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inside of AListInt :
abstract int arith(IOp f , int e);

The first parameter abstracts over the operation that the traversal uses to
collect the results. The second parameter abstracts over the constant that
the traversal uses when it encounters an empty list. The second one is also
easy to explain. Both constants are ints in the original traversal, meaning
that the new arith method just consumes the appropriate int constant.

The first parameter of the new arith method requires an explanation.
Unlike in Scheme, where operations are functions, Java does not recognize
operations as first-class values. Hence, it is once again necessary to encode
something as objects; IOp is the interface that we use to specify the behavior
of these objects.

Based on the signature of arith and its explanation, the design of the
arith methods is straightforward. For MtInt, the method just returns e; for
ConsInt, the method uses the “function” argument f to combine the first
item on the list and the result of processing the rest of the list.

Once you have an abstraction of two traversals, you need to recover the
original operations. The first step is to create method invocations of arith
that simulate the traversals:

// aList.sum() is equivalent to:
aList.arith(new Sum(),0)

// aList.pro() is equivalent to:
aList.arith(new Pro(),1)

You can see the definitions of Sum and Pro at the bottom of figure 196. They
implement IOp in the expected manner. Of course, the ideal abstraction
process ends up restoring the two traversals and offering designers the op-
tion of defining more such methods. A moment’s thought shows that doing
so would leave you with two pairs of identical copies of sum and pro, re-
spectively. Because you wish to avoid such replications, you would follow
the design recipe of chapter III, which yields the abstract class in figure 196.

Exercises

Exercise 36.11 Develop a test suite for the list library of figure 195 and use
it to test the library of figure 196, too.

Exercise 36.12 Add the methods isEmpty and first to figure 196. The latter
should assume that the list is not empty.

Use these methods and arith to design the method max (min), which
finds the largest (smallest) item on a non-empty list of ints respectively.
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interface IFun<X,Z> {
// create new data from i and e
Z process(X i, Z e);
}

interface IList<I> {
// f processes each list item and collects results
// start with e if there are no items
<Z> Z fold(IFun<I,Z> f , Z e);
}

class Mt<I> implements IList<I> {
public Mt() { }

public
<Z> Z fold(IFun<I,Z> f , Z e) {

return e;
}
}

class Cons<I> implements IList<I> {
private I first;
private IList<I> rest;

public Cons(I first, IList<I> rest) {
this.first = first;
this.rest = rest;
}

public
<Z> Z fold(IFun<I,Z> f , Z e) {

return f.process(first,rest.fold(f ,e));
}
}

Figure 197: Lists with fold

Exercise 36.13 In the context of figure 196, a list is a union of two variants.
Add a Range variant for representing intervals of integers. See section 33.3
for the idea behind Range. Ensure that sum and pro “just work.”

You may realize from reading How to Design Programs that arith is a
“fold” method, i.e., a method that folds together an entire list into a single
value. Generalizing arith to fold is simple. First, you generalize the type of
the list items from int to I, a type parameter:

inside of AListInt<I> :
int arith(IOp2<I> f , int e)

inside of IOp2<I> :
int combine(I item, int y)
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That is, both arith and combine (from IOp) process Is not ints as inputs. The
remaining occurrences of int in the code refer to the results of arith and com-
bine, respectively.

Naturally, a generalization of arith shouldn’t stop with a parameteriza-
tion of the input type. It should also use a type parameter, say Z, to abstract
over the result:

inside of IListInt<I> :
<Z> Z fold(IFun<I,Z> f , Z e)

inside of IFun<I,Z> :
int combine(I item, Z y)

Of course, the type parameter isn’t a parameter of the list interface, but only
of the fold method itself. Put differently, just like map from the preceding
section, the fold method is parametric. The specification of the combine must
change in analogous manner.

This is all there is to the abstract fold method. For the full definition, see
figure 197. As you can see from the figure, the abstraction of arith to fold
is really just about type abstractions, not an abstraction of the mechanism
per se. The method definitions remain the same; that is, the body of fold in
Cons<I> is identical to the body of fold in ConsInt and the body of fold in
Mt<I> is the same as the body of fold in MtInt.

Exercises

Exercise 36.14 The abstraction of arith to fold isn’t complete without show-
ing that you can redefine some of the motivating examples. Demonstrate
that fold can be used to define sum and pro for lists of integers.

Exercise 36.15 Design a data representation for teams. A single team has
two attributes: a name and a list of members, represented via first names
(String). Add a method that computes a collective greeting of the shape

"Dear Andy, Britney, Carl, Dolly, Emil:"

assuming the team members have the names "Andy", "Britney", "Carl",
"Dolly", and "Emil".

Exercise 36.16 Design a class that represents a list of measurements as a
String (for the source of the measurements) and a list of Doubles, created
with the list library of figure 197. Also design a method that determine
whether all measurements are positive.
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Exercise 36.17 Design a class that represents a bill as a String (for the cus-
tomer) and a list of pairs of type Pair<String,Integer> for the items sold and
their cost. (See chapter V (page 461) for Pair.) Also design a method that
computes the sum total of the billed items.

36.6 Example: Arithmetic Expressions and Traversals

Lists are not the only data representations that can benefit from abstracted
traversal methods. Indeed, all data representations can benefit though the
cost (of designing the abstraction) is often higher than for the simple case
of lists. Still, if the need for repetition shows up, it is almost always best to
create the necessary abstraction.

In order to illustrate the principle of traversal abstraction in a general
setting, let’s look at the problem of representing and processing variable
expressions as found in typical algebra books for middle schools: x + 10,
2 · (x + 10), etc. For concreteness, here is a problem statement:

. . . Design a data representation for manipulating (algebraic)
variable expressions. Equip it with methods for determining
whether an expression is variable-free and for evaluating ex-
pressions that don’t contain variables. . . . Expect requests for
methods that determine the “complexity” of an expression, re-
place variables with numbers, and so on. . . .

While the problem doesn’t spell out all the details, it constraints the setting
in a reasonable manner.

Following the most basic design recipe, our first step is to focus on an
informal description of the information:

A variable expression is either

1. a number; e.g., 5, 3.14, or -20;

2. a variable; e.g., x, y, or z;

3. or an addition expression, which combines two expressions
via +; e.g., x + 10, 10 + y, or 10 + 10 + 10.

As you can see, this description narrows down the kinds of expressions that
your program must deal with initially. It does, however, include the three
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elements that are essential for the original problem statement: numbers,
variables, and the combination of two expressions into one.

The second step is to choose interfaces and classes to represent this kind
of information as data and to ensure that you can translate all the informal
examples into the chosen data representation.94 Figure 198 shows our rep-
resentation. Not surprisingly, it consists of an interface and three imple-
menting variants. The interface represents the type as a whole and descrip-
tions of the methods that it supports. The classes represent the three data
variants.

Exercise

Exercise 36.18 Translate the informal examples of variable expressions into
data examples. How would you represent 10 + x + z? Which of the two
representations do you like best?

Interpret the following data in this context: new Pls(new Var("x",new

Val(2))).

Designing the required methods is straightforward from here. Let’s use
the examples from above to agree on behavioral examples:

Example Variable Free? Value

55 yes 55
5 + x no n/a

z no n/a
3 + 2 yes 5

1 + 1 + 3 yes 5

The table illustrates the meaning of “variable free” and “value of expres-
sion.” It also makes it obvious why looking for the value of expressions
with variables makes little sense; until you know the value of the variables,
you can’t determine the value of the expression. The only line that may
surprise you is the third one, which deals with an expression that consists
of just one item: a variable (z). Although this example is an unusual one,
our methods must deal with it, and you should keep in mind that dealing
with such examples at the level of information is the best we can do.

94You might wonder how a method could turn a textual representation of expressions,
say "x + z + 10", into the chosen data representation. This problem is not the one we
are dealing with. A typical introductory book might give an ad hoc answer. The proper
approach is to study the concept of “parsing” and its well-developed technology.
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interface IExpression {
// is this expression free of variables?
boolean variableFree();
// compute the value of this expression; ASSUMES: variableFree()
int valueOf ();
}

class Num implements IExpression {
private int value;
public Num(int value) {

this.value = value;
}

public boolean variableFree() {
return true;
}

public int valueOf () {
return value;
}
}

class Var implements IExpression {
private String name;
public Var(String name) {

this.name = name;
}

public boolean variableFree() {
return false;
}

public int valueOf () {
throw new RuntimeException(. . . );
}
}

class Pls implements IExpression {
private IExpression left;
private IExpression right;
public Pls(IExpression left, IExpression right) {

this.left = left;
this.right = right;
}

public boolean variableFree() {
return left.variableFree() && right.variableFree();
}

public int valueOf () {
return left.valueOf () + right.valueOf ();
}
}

Figure 198: Expressions and traversals
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Figure 198 displays the complete solution of the problem, for the re-
stricted set of expressions. The interface contains the two obvious signa-
tures and purpose statements. The methods in the implementing classes
are straightforward, except that the “ASSUMES” part is expressed as a sin-
gle test in the one relevant class instead of a test in each.

Exercises

Exercise 36.19 Use the examples from the above table to develop a test
suite for the code in figure 198.

What do you think the results for 10 + z + 55 and 10 + 20 + 30 should
be? Which of the possible data representation do you like best? Does it
make a difference which one you choose? Why or why not?

Exercise 36.20 Design an extension of the data representation of figure 198
that deals with multiplication expressions.

Exercise 36.21 Compare the two methods, variableFree and valueOf , on a
class-by-class basis. Highlight the differences. Can you abstract over the
two traversals?

The last exercise exposes the similarities between variableFree and val-
ueOf . If you invoke either one of them, it traverses the tree of objects that
represent the expression and processes one piece at a time. Since the analo-
gous methods are located inside the same class, it is easy to compare them:

1. in Num, one method always returns true while the other one’s result
depends on the value field:

public boolean variableFree() {
return true;
}

public int valueOf () {
return value;
}

2. in the Var class, the variableFree method naturally produces false and
the valueOf method throws an exception:

public boolean variableFree() {
return false;
}

public int valueOf () {
throw new RuntimeException(. . . );

}
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3. and in Pls both methods traverse the two sub-expressions and then
combine the result:

public boolean variableFree() {
return left.variableFree()

&&
right.variableFree();

}

public int valueOf () {
return left.valueOf ()

+
right.valueOf ();

}

To do so, one uses logical conjunction and the other one uses addition.

Note: The variableFree method does not always traverse the entire
sub-expression. Explain why.

Abstracting over these differences is a tall order. Unlike in the cases of
map and fold, the differences between the methods come in many varieties.
The difference between variableFree and valueOf in Pls looks like those we
dealt with for map and fold. The difference between variableFree and val-
ueOf in Num, however, looks quite different. While one method produces
a constant, the other one actually refers to a local field.

Given these varieties of differences, let’s step back and reflect on the
nature of traversals for a moment. From How to Design Programs, we know
that to traverse a data representation means to visit each object and to pro-
cess it with some function. The map method illustrates this statement in
a particularly elegant manner. It visits each item on the list and applies a
“function,” that is, a method as an object, to the item; eventually it collects
all the results in a list. For fold, the abstraction includes a second argument,
a constant for the empty list, and the collection process is specified by the
caller of fold.

What we are seeing here is that IExpression is implemented by three
different kinds of classes. Hence, an “expression” consists of many nested
instances of Pls as well as Num and Var. Since all three kinds of objects are
processed in a different manner, we should consider the idea of using three
function parameters to abstract over a traversal:

inside of IExpression :
// process all instances of
// – Num in this IExpression with proNum
// – Var in this IExpression with proVar
// – Pls in this IExpression with proPls
??? traverse(INum proNum, IVar proVar, IPls proPls)
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The names of these “functions” as well as the purpose statement of traverse
implies that they consume an instance of Num, Var, and Pls respectively
and produce an appropriate result. In other words, traverse is polymorphic
in its return type and each argument produces the same type as traverse:

inside of IExpression :
<R> R traverse(INum<R> proNum, IVar<R> proVar, IPls<R> proPls)

Each of the three interfaces INum, IVar, and IPls specifies one function
using the methods-as-objects encoding:

interface INum<R> {
R process(Num n)
}

interface IVar<R> {
R process(Var n)
}

interface IPls<R> {
R process(Pls n)
}

The type parameters of these interface definitions represent the respective
return types of course.

A natural alternative to abstracting with three “functions” is to abstract
with one object that provides three different methods, one per case:

inside of IExpression :
<R> R traverse(IProc<R> process)

interface IProc<R> {
R processNum(Num n)
R processVar(Var v)
R processPls(Pls p)
}

The three methods in IProc exist because traverse visits three different kinds
of objects. In the course of doing so, it uses process.processNum to process
instances of Num, process.processVar to process instances of Var, and pro-
cess.processPls to process instances of Pls.

This second way of abstracting over the three differences has an ad-
vantage over the first one, and it is arguably more object-oriented than the
first one. First, the advantage is that the three methods are bundled into
one object. It thus becomes impossible to accidentally invoke traverse on a
proNum object that doesn’t match the intentions of prcessVar. Second, when
things belong together and should always be together, How to Design Pro-
grams and this book have always argued that they should reside in a single
object (structure). In this example, we are dealing with three “functions”
to which traverse should always be applied together. It is thus best to think
of them as one object with three methods. Or, more generally, think of an
object as a multi-entry function.95

95While object-oriented languages could introduce objects as generalizations of first-class
closures in the spirit of functional programming languages, they instead leave it to the pro-
grammer to encode the lexical context in an object manually.
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interface IExpression {
<R> R traverse(IProc<R> f );
}

interface IProc<R> {
R processNum(Num n);
R processVar(Var x);
R processPls(Pls x);
}

class Num implements IExpression {
private int value;
public Num(int value) {

this.value = value;
}

public <R> R traverse(IProc<R> f ) {
return f.processNum(this);
}

public int valueOf () {
return value;
}
}

class Var implements IExpression {
private String name;
public Var(String name) {

this.name = name;
}

public <R> R traverse(IProc<R> f ) {
return f.processVar(this);
}

public String nameOf () {
return name;
}
}

class Pls implements IExpression {
private IExpression left;
private IExpression right;
public Pls(IExpression left, IExpression right) {

this.left = left;
this.right = right;
}

public <R> R traverse(IProc<R> f ) {
return f.processPls(this);
}

public IExpression leftOf () { return left; }

public IExpression rightOf () { return right; }
}

Figure 199: Expressions and abstract traversals
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Now that we have proper signatures and purposes statements, it is pos-
sible to design the methods in a nearly straightforward fashion. We start
with traverse and then deal with process methods. Let’s look at the template
for traverse in Num:

inside of Num :
<R> R traverse(IProc<R> p) {

. . . this.value . . .
}

As you can see, the template reminds you that traverse can use this, the
value field in this, and p to compute its result (plus auxiliary methods).
Since the description of p says that its processNum method consumes an
instance of Num (and processes it), you should consider the following def-
inition obvious:

inside of Num :
<R> R traverse(IProc<R> p) {

return p.processNum(this);
}

The design of the methods in Var and Pls proceeds in a similar manner and
yields similar method definitions:

inside of Var :
<R> R traverse(IProc<R> p) {

return p.processVar(this);
}

inside of Pls :
<R> R traverse(IProc<R> p) {

return p.processPls(this);
}

Indeed, with method overloading, you could make the three methods iden-
tical. We avoid overloading here so that the design remains useful in lan-
guages that don’t support it.

Exercise

Exercise 36.22 If the IProc interface in figure 199 used overloading, the
three traverse method definitions in figure 199 would be identical. The de-
sign recipe from chapter III would then call for abstracting them via the
creation of a common superclass. Why would type checking fail for this
abstraction? You may wish to re-read intermezzo 22.3 concerning over-
loading and its resolution.
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With the design of traverse completed, you should turn your attention to
the final step of the abstraction recipe: the re-definition of the existing meth-
ods. Here we design only the implementations of IProc<R> that compute
whether an expression is variable free and, if so, what its value is.

The return type of variableFree determines the type that we use to instan-
tiate IProc<R>. Here it is Boolean because the original method produced
a boolean result. Designing a class—call it VariableFree—that implements
IProc<Boolean> requires the design of three methods:

1. The processNum method consumes an instance of Num and deter-
mines whether it is free of variables:

inside of VariableFree :
public Boolean processNum(Num n) {

return true;
}

The method return true without looking at n because an expression
that represents a number doesn’t contain any variables. Of course,
you could have just looked at the variableFree method in Num in fig-
ure 198 and used its method body.

2. The processVar method consumes an instance of Var and determines
whether it is free of variables:

inside of VariableFree :
public Boolean processVar(Var v) {

return false;
}

The method return false without looking at v because an expression
that represents a variable is guaranteed not to be variable-free.

3. Last but not least, the processPls method consumes an instance of Pls
and must determine whether it contains a variable. Since an instance
of Pls contains two expressions in two fields, the answer is clearly
non-obvious. So we turn to our design recipe and write down the
template:

inside of VariableFree :
public Boolean processPls(Pls e) {

. . . this . . . e.left . . . e.right . . .
}
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We have explicitly included this in the template to remind you of its
existence.

One way to finish the design is to inspect the original method, the
one that you abstracted, and to adapt it to the re-definition. In this
example, the original variableFree method traverses e.left and e.right to
find out whether both of them are variable free. If so, it says that the
entire Pls expression is variable free.

Adapting this purpose to the new context means to invoke traverse
on e.left and e.right. The purpose of doing so is to determine whether
the two sub-expressions are variable free. To invoke traverse properly,
you need a “function” that inspects each possible kind of object for
free variables. And that of course is this. After all, this represents a
“function” as an object with three methods, and the function’s pur-
pose is to determine whether an expression is variable free.

In summary, the processPls method should look like this:

inside of VariableFree :
public Boolean processPls(Pls e) {

return e.left.traverse(this) && e.right.traverse(this);
}

Unfortunately, the two fields, left and right, are private in Pls, which
means that you can’t just write e.left to get access to the current value
of the field. The natural solution to this problem is to introduce a
getter method into Pls as shown in section 33.2.

For a complete solution of the problem, see the left side of figure 200. The
VariableFree class is an implementation of the IProc<R> interface.

The right side of figure 200 displays an implementation of IProc<R>
for determining the value of a variable-free expression. Like VariableFree,
ValueOf comes with three methods:

1. processNum(Num n) uses the valueOf method from Num to extract the
integer that n represents;

2. processVar(Var v) throws an exception without inspecting v;

3. and processPls(Pls e) traverses the two sub-expressions using traverse
and this and adds the results, just like the original valueOf method.
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class VariableFree
implements IProc<Boolean> {

public Boolean processNum(Num n) {
return true;
}

public Boolean processVar(Var x) {
return false;
}

public Boolean processPls(Pls x) {
return x.leftOf ().traverse(this)

&&
x.rightOf ().traverse(this);

}
}

class ValueOf
implements IProc<Integer> {

public Integer processNum(Num n) {
return n.valueOf ();
}

public Integer processVar(Var x) {
throw new RuntimeException("...");
}

public Integer processPls(Pls x) {
return x.leftOf ().traverse(this)

+
x.rightOf ().traverse(this);

}
}

Figure 200: Expressions and instantiated traversals

You can also see in the figure that ValueOf implements IProc<Integer>,
meaning all three methods produce integers as a results.

One attention-drawing aspect of the two classes is the lack of any use
of v in the processVar methods. Neither VariableFree nor ValueOf needs to
know the name of the variable in v. This suggests that, at least in principle,
the signature could be weakened to

inside of IProc<R> :
R processVar()

The exercises below demonstrate that while this change in signature is fea-
sible for the two problems that motivate the abstraction of the traversal,
other traversals exploit the full functionality of this interface. In addition,
the exercises also explore a more conservative approach to the abstraction
of variableFree and valueOf .

Exercises

Exercise 36.23 Adapt the test suite from exercise 36.19 to the data represen-
tation in figures 199 and 200. Ensure that the revised code passes the same
tests.



586 Section 36

Exercise 36.24 The key to the abstraction of variableFree and valueOf is to
hand the entire object from the traverse method to a method-as-object that
implements IProc<R>. Doing so demands the addition of getter methods,
which make field values widely accessible.

A more conservative approach than this is to hand over those values
directly to the visitor. Here is an interface between such a traverse method
and its process methods:

interface IProc<R> {
R processNum(int n);
R processVar(String x);
R processPls(IExpression left, IExpression right);
}

Design a complete data representation with an abstract traverse method
based on this interface. Design variants of variableFree and valueOf to en-
sure that the abstraction can implement the motivating examples; use the
test suite from exercise 36.23 to ensure this point.

Challenge: Yet another approach to abstracting the two methods is to
optimistically traverse sub-expressions. That is, the traverse method in Pls
would process the left and right fields and hand the results to the visitor:

interface IProc<R> {
R processNum(int n);
R processVar(String x);
R processPls(R left, R right);
}

Design a complete data representation and traversals for this variant.
While this second approach appears to work just like the first one or the

on discussed in this section, there is an essential difference in how the vari-
ableFree method and an instance of (the adapted) VariableFree (class) process
an expression. Explain the difference. Can this difference affect the work-
ings of a program?

Exercise 36.25 Design a traversal for IExpression from figure 199 that col-
lects all the names of the variables that occur in the expression.

Exercise 36.26 Design a traversal for IExpression from figure 199 that deter-
mines the maximal depth of an expression. The depth is a measure of how
many Pls objects a traversal has to reach an instance of Var or Num.
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Exercise 36.27 Design a traversal for IExpression from figure 199 that sub-
stitutes all occurrences of variables with numbers. To this end, the traversal
needs an association between variable names (String) and values (Integer).
Hint: Use the IMap data representation from exercise 36.10 to represent
such variable-value associations.

37 Designing Abstract Traversal Methods

While the preceding section illustrates how to abstract over methods that
traverse collections of objects, it also introduces a powerful and important
idea: representing methods as objects. Indeed, without a mechanism for
turning methods into first-class values, it would simply be impossible to
parameterize traversals properly.

Hence this section first revisits the methods-as-objects idea in depth,
with a look at how this works in the world of plain subtyping and a brief
summary of how it works with generics. It also introduces two additional
notational tools for creating methods as objects wherever and whenever
needed: inner classes and anonymous implementations of interfaces. Then
we study the design principles for abstracting over method calls and for
general data traversals.

37.1 Methods as Objects via Subtyping

Unlike objects, methods are not first-class values. While it is impossible to
pass a method to a method as an argument, passing an object to a method
is common. Similarly, while it is impossible for a method to produce a
method as a result, objects are used as results all the time. Finally, our ob-
jects do contain objects in fields; you cannot do this with methods. Methods
aren’t values.

Indeed, in object-oriented programming languages objects are the only
complex values that are first-class, and they come with behavior. After
all, invoking a method from a first-class object is the way to compute in
this world. Hence, it is natural to think of objects when it comes time to
represent methods if we need programs to pass them around as if they
were first-class values. Since first-class methods-as-objects are analogous
to functions in How to Design Programs, they are called FUNCTION OBJECTS.

Let’s start with the one-line problem that motivates it all. Your program
contains an expression like this one

. . . anObject.aMethod (anotherObject, . . . ) . . .
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and you have determined that you need to abstract over which methods
you want to call on anObject. Following our standard practice of using
interfaces to specify requirements, here is a simple one and a sketch of its
implementation:

// methods as objects
interface IFunction {

Object invoke();
}

class Function implements IFunction {
public Object invoke() {

return . . . // behave like aMethod
}
}

This interface demands that a function object have one method: invoke. In
its most general form, this method is supposed to compute the same results
as the desired method, e.g., aMethod.

Because the behavior of methods, such as aMethod, depends on the ob-
ject on which they are invoked—anObject in the example—you can see from
this sketchy implementation of IFunction that something is wrong. Because
Function doesn’t have fields and invoke takes no additional arguments, in-
voke has no access to anObject. Hence, it must always produce the same
result or a randomly chosen result, neither of which is useful.

The obvious solution is to pass anObject as the first explicit argument to
invoke. Put differently, an interface for function objects must demand that
invoke consume at least one argument:

// methods as objects
interface IFunction {

Object invoke(Object this0);
}

Here this0 is the object on which the abstracted method used to be invoked
and which was then passed implicitly. If it were possible to use this as a
parameter name, it would be the most appropriate one; here we use this0
on occasion to indicate this relationship.

The interface uses Object for the argument and result types, thus mak-
ing the signature as general as possible. Of course, an implementing class
would have to use casts to use this0 at the appropriate type. Furthermore,
it would have to use a more specific return type than Object or the site of
the original method call would have to be modified to use a cast so that the
result is typed appropriately for the context.

For example, if you wished to use IFunction to abstract in conjunction
with the map method from figure 193, you would need casts like the fol-
lowing in the implementing classes:
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// add 1 to an integer
class Add1 implements IFunction {

public Integer invoke(Object this0) {
Integer first = (Integer)this0;
return . . . // an integer,
// as in figure 193;

}

// is the integer positive?
class Positive implements IFunction {

public Boolean invoke(Object this0) {
Integer first = (Integer)this0;
return . . . // a boolean,
// as in figure 193;

}

While the method representations use proper return types (Integer, Boolean),
the type checker still calculates that map produces a list of Objects because it
uses IFunction as the type for the method representations. Hence, the con-
text that uses map’s result must use casts to convert them to lists of Integers
or lists of Booleans.

This situation clearly isn’t satisfying. In some special cases, it is possible
to use specialized interfaces that describe the desired methods with just the
right types:

interface IFunInt2Int {
Integer invoke(Integer this0);
}

interface IFunInt2Bool {
Positive invoke(Integer this0);
}

In a reasonably complex context, such methods for general traversals, this
approach doesn’t work because the interfaces are too narrow and would
immediately lead to code replication again.

Finally, your abstraction may demand the processing of additional ar-
guments, the explicit arguments of method invocations. One way to ab-
stract in this case is to introduce interfaces with the exact number of param-
eters needed, e.g., an abstraction over a call with two explicit arguments:

// methods as objects
interface IFunction3 {

Object invoke(Object this0, Object arg1, Object arg2);
}

Another one is to collect all explicit arguments in a list and to pass along
this list of objects:

// methods as objects
interface IFunctionN {

Object invoke(Object this0, IListObject allArguments);
}

If you choose the latter, you have the most general interface for abstraction.
The abstracted call passes the ith argument as the ith item on the list. It is
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then up to the implementing method to check that the correct number of
arguments was passed along and to select the arguments from allArguments
as needed.

Again, to avoid casts, length checks, and other extraneous computa-
tions, it is best to specify interfaces with precise method signatures. For
example, if you know that your traverse methods always consume and pro-
duce int lists, the following interface is the most precise specification:

interface IFunIntInt2Integer {
Integer invoke(Integer this0, Integer accumulator);
}

In the ideal case, your methods-as-objects implementations then needs nei-
ther casts nor length checks for lists. The disadvantage of precise interfaces
is that you narrow down the range of possible instantiations of your ab-
straction. You make them less useful than they could be. Once again, you
can see that representing methods as objects via subtyping is feasible, the
preceding section shows that the use of generics is superior.

Exercise

Exercise 37.1 Design the classes Add3 and Add3Again, which implement
IFunctionN and IFun3, respectively. They both are to represent methods as
objects that consume exactly three integers and produce their sum.

Which interface would you use to produce the list of sums of a list of
lists of integers? How would you use it?

37.2 Methods as Objects via Generics

The first section of this chapter uses generics exclusively for abstracting
over method calls. Indeed, this particular use of generics illustrates the
power of generics like no other example.

With generics you can set up a single library of interfaces for functions,
i.e., methods represented as objects, and use those interfaces whenever you
wish to abstract over method calls. Figure 201 shows the first few interfaces
in this library. As you can see, these interfaces are type-level abstractions of
the Object-typed interfaces from the preceding section. Specifically, IFun0 is
an interface that specifies the existence of the method invoke that consumes
a single argument; IFun1 is about methods that consume two arguments;
and IFun2 specifies a method with three arguments. In all cases, the types
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interface IFun0<RANGE,DOMAIN> {
RANGE invoke(DOMAIN this0);
}

interface IFun1<RANGE,DOMAIN,DOMAIN1> {
RANGE invoke(DOMAIN this0, DOMAIN1 arg1);
}

interface IFun2<RANGE,DOMAIN,DOMAIN1,DOMAIN2> {
RANGE invoke(DOMAIN this0, DOMAIN1 arg1, DOMAIN2 arg2);
}

Figure 201: Generic function interfaces for all cases

of the arguments and the result type are parameters of the interface speci-
fication. Furthermore, if these interfaces are used to abstract over method
calls, we assume that the formerly implicit argument, that is, the object on
which the method is invoked, is passed as the first argument.

As you can guess from the arrangement in figure 201, the three inter-
faces represent just the beginning of a (n infinitely) long series. Since you
can’t predict the kind of functions you will need to represent, you need—
at least in principle—signatures for all possible numbers of parameters. In
practice, though, programmers do not—and should not—design methods
with more than a handful of parameters. Thus, spelling out, say, 10 of these
interfaces is enough.96

Exercise

Exercise 37.2 Define a generic interface that is analogous to IFunctionN at
the end of section 37.1.

37.3 Abstracting over Method Calls, Anonymous Inner Classes

The preceding two subsections lay the ground work for abstracting over
method calls, i.e., the analog to functional abstraction from How to Design
Programs. With “function” interfaces like those, it is possible to specify
the type of objects that represent methods as first-class values. Although

96Scala, an object-oriented language derived from Java, provides just such a library. An
alternative is to develop an abstraction mechanism that allows the specification of all such
interfaces as instances of a single parameterized interface.
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abstractions over method calls are particularly useful in conjunction with
general data traversal methods, they also make sense by themselves.

As always the first step for abstracting method calls is to recognize the
need for abstraction. Here we focus on the occurrence of two similar meth-
ods in the same class C:

inside of C :
Type method1(. . . ) {

. . .
o.methodA(. . . )
. . .
}

inside of C :
Type method2(. . . ) {

. . .
o.methodB(. . . )
. . .
}

In other words, we assume that class C contains two methods that are alike
except for a method call. Even though such a coincidence is unlikely, con-
sidering this case is good practice for considerations of complex situations.

Further following the usual design recipe for abstraction, you need to
equip method1 and method2 with an additional parameter so that the two
method bodies become the same:

inside of C :
Type method1a( IFun<...> f , . . . ) {

. . .
f.invoke(o,. . . )
. . .

}

inside of C :
Type method2a( IFun<...> f , . . . ) {

. . .
f.invoke(o,. . . )
. . .

}
The key for this step is to pick a type that specifies the demands on the
additional parameter and IFun from the preceding section serve just this
purpose. Since the two methods are now basically identical, you may elim-
inate them in favor of a single method, dubbed method.

You must next show that you can re-create the original methods from
this new abstraction. As figure 202 shows, doing so takes three classes:

1. You need to modify class C and equip it with a (private) method that
performs the computations. It is abstracted over an object that repre-
sents a method. Hence, the original methods may just invoke method
passing along appropriate methods represented as objects.

To complete the re-creation of the original methods, we must address
the question of how to create appropriate objects that implement the
IFun interface. From what you know, the most direct way of doing so
requires the design of two classes that implement IFun and instanti-
ating those classes.
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class C {

private Type method(IFun<...> f , . . . ) {
. . .
f.invoke(o,. . . );
. . .
}

Type method1(. . . ) {
return method( new FunA(. . . ) ,. . . );

}

Type method2(. . . ) {
return method( new FunB(. . . ) ,. . . );

}
}

class FunA implements IFun<...> {
public . . . invoke(. . . ) {

// a computation like methodA

}
}

class FunB implements IFun<...> {
public . . . invoke(. . . ) {

// a computation like methodB

}
}

Figure 202: Abstracting over methods

2. Class FunA introduces a data representation for methods that com-
pute like methodA.

3. Class FunB is a representation for methods that compute like methodB.

Obviously the notational cost of creating extra classes and instantiating
them elsewhere is large. First, introducing three classes where there used
to be one means you and future readers need to re-establish the connec-
tion. Second, it is far less convenient than creating first-class functions with
lambda in Scheme (see How to Design Programs); so you know that there
must be a simpler way than that.

Before we discuss these additional linguistic mechanisms, let us intro-
duce the term COMMAND PATTERN, which is what regular programmers
call methods-as-objects. The simplest explanation of a command pattern
is that a program uses objects to represent computational actions, such as
drawing a shape or changing the value of some field. Sophisticated pro-
grammers understand, however, that useful actions are parameterized over
arguments and often produce values, which is why our objects really rep-
resent something akin to functions, also known as closures in functional
programming languages such as Scheme.
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37.4 Inner Classes, Anonymous Classes

class C {

private Type method(IFun<...> f , . . . ) {
. . .
f.invoke(o,. . . );
. . .
}

Type method1(. . . ) {
return method( new FunA(. . . ) ,. . . );

}

Type method2(. . . ) {
return method( new FunB(. . . ) ,. . . );

}

private
class FunA implements IFun<...> {

public . . . invoke(. . . ) {
// a computation like methodA

}
}

private
class FunB implements IFun<...> {

public . . . invoke(. . . ) {
// a computation like methodB

}
}

}

class C {

private Type method(IFun<...> f , . . . ) {
. . .
f.invoke(o,. . . );
. . .
}

Type method1(. . . ) {
return

method(
new IFun<...>() {

public . . . invoke(. . . ) {
// a computation like methodA

}
})

}

Type method2(. . . ) {
return

method(
new IFun<...>() {

public . . . invoke(. . . ) {
// a computation like methodB

}
})

}
}

Figure 203: Abstracting over methods

The notational overhead of creating separate classes explains why you
will hardly ever encounter Java programs that abstract over a method call
(in a simple method as opposed to a traversal method). In order to manage
this overhead, the designers of Java added two linguistic mechanisms:

1. inner classes, which are class definitions that occur within a class def-



Designing Abstract Traversal Methods 595

inition;

2. and anonymous implementations of interfaces.

In this section, we briefly study these mechanisms in general. They are rel-
atively simple and easy to use, which we do in later sections of this chapter.

The left column in figure 203 is a reformulation of the classes in fig-
ure 202 as a single class. Nested within the class definition are two more
class definitions; see the framed boxes. A comparison of figure 203 with fig-
ure 202 shows that these nested class definitions are those we introduced
to re-create method1 and method2. Since these NESTED CLASSES are used
only for this purpose, they are intimately linked to class C, which is what
the textual nesting expresses and signals to any future reader. The figure
also shows that, just like methods and fields, classes come with privacy
attributes; we label classes used for command patterns with private.

While the nesting of the two auxiliary classes expresses their intimate
connection to class C, it does not reduce the textual overhead. For this
purpose, Java supports a mechanism for directly instantiating an interface
without first defining a class. In general, the direct instantiation of an inter-
face has the following shape:

new IInterface () {
. . .
}

where the . . . define those methods that IInterface specifies. Naturally, if
IInterface is parameterized over types, you need to apply it to the correct
number of types, too: IIinterface<Type1, ...>. In either case, it is unnec-
essary to name a new class, which is why people speak of ANONYMOUS

INSTANTIATION.
Using the direct instantiation of interfaces, you can complete the last

step of the design recipe in a reasonably compact manner: see the right
column of figure 203. It shows that you can formulate the two methods-
as-objects exactly where you need them. No future reader of this class
must search for auxiliary class definitions—global or nested—just to find
out what the invoke methods compute. Instead, the code comes right along
with the re-definitions of the original methods.

The mechanism for instantiating interfaces directly facilitates the use of
this pattern but it is not essential. Indeed, the designers of many object-
oriented programming languages have added constructs for creating first-
class functions directly because the instantiation of interfaces is still cum-
bersome. Because this book isn’t about Java (alone), we use anonymous
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instantiation, mostly in section 38 in preparation of chapter VII. If you end
up working with Java, though, read up on the details of anonymous and
inner classes and learn to use them properly.

37.5 Visitor Traversals and Designing Visitors

When you find a data representation with two similar traversals, you have
an opportunity to create a powerful abstraction. If you anticipate any fu-
ture extensions or revisions involving traversals, or if you anticipate turn-
ing the data representation into a library—especially one that others should
use and can’t modify—you should create a general traversal method.

As the preceding chapter shows, extending a library and adding traver-
sal methods is a complex undertaking. Sometimes you, the library de-
signer, can’t even allow that.97 Once you add an all-powerful traversal
method, though, it becomes easy to use your library because your “clients”
can always create a specialized traversal from the general traversal method.

The creation and use of a general, all-powerful traversal method com-
bines a fixed set of methods with the very first design recipe you encoun-
tered. Professional programmers know the arrangement as the VISITOR

PATTERN. The pattern assumes that you have a self-referential data def-
inition that provides a common interface I to the world and has several
implementing variants: C1, C2, . . . . In this context, you can add a general
traversal method in three mandatory steps plus one optional one:

1. add a generic signature that specifies a general traversal method to
the common interface I:

inside of I :
<RESULT> RESULT traverse(IVisitor<RESULT> v)

The signature specifies that each implementing variant comes with a
parametric method that consumes a visitor object v. The result type
RESULT of the traversal process is declared with the method signa-
ture and handed to the generic visitor interface.

Naturally, if your chosen language is a version of Java that does not
support generics or an object-oriented language without type abstrac-
tions, you use subtyping to make the visitor as general as possible.

2. add a generic interface IVisitor to the library:

97Remember to look up final in a Java description.
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interface IVisitor<RESULT> {
RESULT visitC1(C1 x);
RESULT visitC2(C2 x);
. . .
}

The interface specifies one visit method per class that implements I.

If your chosen programming language supports overloading, you
may wish to specify an appropriate number of overloaded methods:

interface IVisitor<RESULT> {
RESULT visit(C1 x);
RESULT visit(C2 x);
. . .
}

For clarity, we forgo Java’s overloading here.

3. to each variant C1, C2, . . . , add the following implementation of the
visit method:

inside of C1 :
public

<R>
R traverse(IVisitor<R> x) {

return x.visitC1(this);
}

inside of C2 :
public

<R>
R traverse(IVisitor<R> x) {

return x.visitC2(this);
}

. . .

. . .

. . .

. . .

. . .

. . .

Note: If you use overloading, the visit methods in all variants look
identical. Since Java’s type checker must resolve overloaded method
calls before evaluation, however, it is impossible to apply the design
recipe of lifting those methods to a common superclass.

4. to each class C1, C2, . . . , you may also have to add getters for private

fields so that the visit methods may gain access as appropriate.

Equipping the data representation with such a traverse method ensures
that it invokes a visit method on each object that it reaches during a traver-
sal. If the visit method chooses to resume the traversal via a call to traverse
for fields with self-referential types, the traverse method resumes its compu-
tation and ensures that visit is invoked on the additional objects. In short,
the terminology of “visitor pattern” is justified because the traverse method
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interface IList<I> {
<R> R traverse(IVisitor<I,R> f );
}

interface IVisitor<I,R> {
R visitMt(Mt<I> o);
R visitCons(Cons<I> o);
}

class Mt<I> implements IList<I> {

// constructor omitted

public
<R> R traverse(IVisitor<I,R> f ) {

return f.visitMt(this);
}

}

class Cons<I> implements IList<I> {
private I first;
private IList<I> rest;
// constructor omitted

public
<R> R traverse(IVisitor<I,R> f ) {

return f.visitCons(this);
}

public I getFirst() { return first; }
public IList<I> getRest() { return rest; }
}

Figure 204: Lists and visitors

empowers others to specify just how many objects in a collection of inter-
connected objects must be visited and processed.

Figure 204 illustrates the result of adding a visitor-based traversal to our
conventional list representation. The top left is the list interface equipped
with a traverse signature; the top right shows the interface for a list visitor.
The implementing classes—at the bottom of the figure—contain only those
methods that the above items demand.

Although the creation of the general traversal method itself doesn’t re-
quire a design recipe, using the method does. Specifically, when you design
an implementation of the IVisitor interface—which we call a VISITOR—you
are after all designing a class-based representation of a method, which we
also call a function object. Thus, using the visitor abstraction is all about
formulating a purpose for methods and functions, illustrating it with ex-
amples, designing a template, filling in the gaps, and testing the examples.

Let’s enumerate the steps abstractly and examine them in the context of
the concrete list example:

1. The data definitions are already implemented; this step is of no con-
cern to you when you are designing visitors.

2. Thus, the real first step is to formulate a contract and a purpose state-
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ment. For visitors, you formulate it for the entire class, thinking of it
(and its instances) as a function that traverses the data. In the same
vein, the contract isn’t a method signature; it is an instantiation of the
IVisitor interface at some type, requiring at a minimum the specifica-
tion of a result type. Still, instantiating the interface determines the
function’s contract, what it consumes and what it produces.

Example: Suppose you are to design a list traversal for integer lists
that adds 1 to each item on a list of integers. Describing the purpose
of such a function is straightforward:

// a function that adds 1 to each number on a list of integers
class Add1 implements IListVisitor<Integer,IList<Integer>> {

public Add1() { }
public IList<Integer> visitMt(Mt<Integer> o) { . . . }
public IList<Integer> visitCons(Cons<Integer> o) { . . . }
}

The signature is the instantiation of IListVisitor with a list item type
(Integer) and a result type (IList<Integer>).

Let’s generalize the example a bit to “adds or subtracts a fixed integer
to the items on the list.” In the context of How to Design Programs, a
purpose statement and header for this problem would look like this:

;; addN : Number [Listof Number] → [Listof Number]
;; add n to each number on a list of numbers
(define (addN n alon) . . . )

Note how the purpose statement refers to the parameter n, the num-
ber that is to be added to each list item.

Since the methods in the visitor interface are about one and only
one kind of argument—the pieces of the data structure that is to be
traversed—there appears to be no room for specifying any extra pa-
rameters, such as n. At the same time, you know that of the two
arguments for addN, n is fixed throughout the traversal and alon is
the piece of data that addN must traverse. Hence we can turn n into a
field of the class:
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class AddN implements IListVisitor<Integer,IList<Integer>> {
private int n;
public AddN(int n) {

this.n = n;
}
. . .
}

The field is initialized via the constructor, meaning that each instance
of AddN is a function that adds a (potentially different) number to
each integer on the traversed list.

In the world of How to Design Programs, this separation of parame-
ters corresponds to the creation of closures via curried, higher-order
functions:

;; addN-curried : Number → ([Listof Number] → [Listof Number])
;; add n to each number on a list of numbers
(define (addN-curried n)

(local ((define (addN alon) . . . ))
addN))

3. Next you determine functional, also known as behavioral, examples:

Example:

inside of Examples :
IList<Integer> mt = new Mt<Integer>();
IList<Integer> l1 = new Cons<Integer>(1,mt);
IList<Integer> l2 = new Cons<Integer>(2,l1);
IList<Integer> l3 = new Cons<Integer>(3,l2);
IList<Integer> r2 = new Cons<Integer>(2,mt);
IList<Integer> r3 = new Cons<Integer>(3,r2);
IList<Integer> r4 = new Cons<Integer>(4,r3);

checkExpect(l3.traverse( new AddN(1) ),r4,"add 1 to all");

This simple example shows how to create a function that adds 1 to
each integer on the list; see the gray box. Invoking traverse on a list of
integers with this function-as-object should yield a list where every
integer is increased by 1.
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4. The templates for the visit methods is about the fields in the objects
on which the method is invoked (plus the fields of the visitor). To this
end you must know the fields in the classes of the data representation;
if fields are private, you must use the getter methods to access them.
For all fields in the visited object that refer back to the interface I, i.e.,
for all self-referential classes in the data representation, add

o.getField().traverse(this)

to the method body, assuming o is the parameter of the visit method.
This expression reminds you that the method may recur through the
rest of the data representation if needed.

This last point distinguishes a template for visit methods from a reg-
ular method template. While the two kinds of template are similar
in principle, the emphasis here is on the object that is being visited,
not the visitor object. The complete traversal is accomplished via an
indirect call to traverse (with this instance of the visiting class) not via
a recursive call to visit.

While you will use this for the recursive use of a visitor in most cases,
you will need different traversals to complete the processing on some
occasions. For an example, see below as well as the finger exercises
in the next two subsections.

Example:

inside of AddN :
IList<Integer>

visitMt(Mt<Integer> o) {
. . . n . . .

}

inside of AddN :
IList<Integer>

visitCons(Cons<Integer> o) {
. . . n . . .
. . . o.getFirst() . . .
. . . o.getRest().traverse(this) . . .

}

For lists you have just one class that refers back to the list representa-
tion (IList), so it is not surprising that only visitCons invokes traverse.

5. Now it is time to define the visit methods. As always, if you are
stuck, remind yourself what the various expressions in the template
compute—using the purpose statement if needed—and then find the
proper way to combine these values.
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Example: Let’s start with the reminder. The expression n in visitMt
reminds you of the int constant that comes with AddN; the parameter o
is the empty list of integers. The expressions o.getFirst() and o.getRest()
access the first item on the non-empty list o and the rest of the list.
Then, o.getRest().traverse(this) creates the list that is like the rest with
n added to each integer, because this is what the purpose statement
tells us. With these reminders, defining the two methods is easy:

inside of AddN :
IList<Integer>

visitMt(Mt<Integer> o) {
return o;

}

inside of AddN :
IList<Integer>

visitCons(Cons<Integer> o) {
int a = n + o.getFirst();
IList<Integer> r =

o.getRest().traverse(this);
return new Cons<Integer>(a,r);

}

6. After you have finished the design of the visitor implementation, it is
time to test the examples.

Example: Turn the above examples into proper tests and run them.
Can you use AddN to subtract 1 from a list of integers?

Let’s look at another example, a visitor that checks whether all integers
on some list are positive:

1. The purpose statement is given; the interface instantiation specifies
that the “function” consumes a list of Integers and produces a Boolean:

// are all integers on the list greater than 0?
class Positive implements IListVisitor<Integer,Boolean> {

public Positive() {}
public Boolean visitMt(Mt<Integer> o) { . . . }
public Boolean visitCons(Cons<Integer> o) { . . . }
}

2. Here are two examples, one for each kind of outcome:

inside of Examples :
IList<Integer> mt = new Mt<Integer>();
IList<Integer> m1 = new Cons<Integer>(1,mt);
IList<Integer> m2 = new Cons<Integer>(2,m1);
IList<Integer> m3 = new Cons<Integer>(−3,m2);
Positive isPositive = new Positive();
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checkExpect(m3.traverse(isPositive),false);
checkExpect(m2.traverse(isPositive),true);

Since m3 starts with −3, you should expect that the visitor can pro-
duce false without looking at the rest of the list, m2. In particular, be-
cause m2 contains only positive integers—as the second test shows—
traversing it contributes nothing to the final result of checking m3.

3. Given that instances of Positive consume the same kind of data as
AddN functions, we just adapt the template from the first example:

inside of Positive :
Boolean

visitMt(Mt<Integer> o) {
. . .

}

inside of Positive :
Boolean

visitCons(Cons<Integer> o) {
. . . o.getFirst() . . .
. . . o.getRest().traverse(this) . . .

}

4. The final method definitions look almost identical to the method def-
initions that you would have designed without traverse around:

inside of Positive :
public Boolean

visitMt(Mt<Integer> o) {
return true;

}

inside of Positive :
public Boolean

visitCons(Cons<Integer> o) {
return (o.getFirst() > 0) &&

(o.getRest().traverse(this));
}

In particular, the visitCons method first checks whether the first item
on the list is positive and traverses the rest only after it determines that
this is so. Conversely, if the invocation of getFirst produces a negative
integer, the traversal stops right now and here.

5. Complete the code and run the tests.

What this second example shows is that the design of a visitor according
to our design recipe preserves traversal steps. That is, the visitor steps
through the collection of objects in the same manner as a directly designed
method would. The abstraction works well.

The third example recalls one of the introductory exercises from How to
Design Programs on accumulator-style programming:
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interface IList {
// convert this list of relative
// distances to a list of absolutes
IList relativeToAbsolute();
}

abstract class AList implements IList {
public IList relativeToAbsolute() {

return relAux(0);
}

abstract
protected IList relAux(int soFar);

}

class Mt extends AList {
public Mt() { }

protected IList relAux(int soFar) {
return this;
}
}

class Cons extends AList {
private int first;
private AList rest;
public Cons(int first, IList rest) {

this.first = first;
this.rest = (AList)rest;
}

protected IList relAux(int soFar) {
int tmp = first+soFar;
return new Cons(tmp,rest.relAux(tmp));
}
}

Figure 205: Relative to absolute distances

. . . Design a data representation for sequences of relative dis-
tances, i.e., distances measured between a point and its prede-
cessor, and sequences of absolute distances, i.e., the distance of
a point to the first one in a series. Then design a method for
converting a sequence of relative distances into a sequence of
absolute distances. For simplicity, assume distances are mea-
sure with integers. . . .

Figure 205 displays a complete solution for this problem. It uses a plain list
representation for both kinds of lists. The design is properly abstracted, lo-
cating the main method in an abstract class and pairing it with an auxiliary
(and protected) method based on accumulators.

While a solution like the above is acceptable after the first three chapters
of this book, a proper solution re-uses an existing list library and provides
the functionality as a visitor:

1. The purpose statement is the one from figure 205 and the class signa-
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ture is just like the one from AddN:

// convert this list of relative distances to a list of absolutes
class RelativeToAbsolute

implements IListVisitor<Integer,IList<Integer>> {
public RelativeToAbsolute() { }
public IList<Integer> visitMt(Mt<Integer> m) { . . . }
public IList<Integer> visitCons(Cons<Integer> c) { . . . }

}

2. If (3, 2, 7) is a list of relative distances between three points (and the
origin), then (3, 5, 12) is the list of absolute distances of the three
points from the origin:

inside of Examples :
IList<Integer> mt = new Mt<Integer>();
IList<Integer> l1 = new Cons<Integer>(7,mt);
IList<Integer> l2 = new Cons<Integer>(2,l1);
IList<Integer> l3 = new Cons<Integer>(3,l2);

IList<Integer> r2 = new Cons<Integer>(12,mt);
IList<Integer> r3 = new Cons<Integer>(5,r2);
IList<Integer> r4 = new Cons<Integer>(3,r3);
RelativeToAbsolute translate = new RelativeToAbsolute();

checkExpect(l3.traverse(translate),r4,"relative to absolute");

3. Since the signature of RelativeToAbsolute is the same as the one for
AddN, the template remains the same.

4. From there, the definitions of the methods should fall out but we fail,
just like in How to Design Programs:

inside of RelativeToAbsolute :
IList<Integer>

visitMt(Mt<Integer> o) {
return this;

}

inside of RelativeToAbsolute :
IList<Integer>

visitCons(Cons<Integer> o) {
return

new Cons<Integer>(

o.getFirst()+ ??? ,

o.getRest().traverse( ??? ));
}
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The method in Cons should add the first distance to those that pre-
ceded it in the original list, and it should pass along the first distance
to the computations concerning the rest of the list. Put differently, the
function should accumulate the distance computed so far but doesn’t.

Note: The method could also use AddN repeatedly to add the first dis-
tance of any sublist to the distances in the rest of the list. This solution
is, however, convoluted and needs too much time to evaluate.

Here is a second start:

1. Since the class is to represent an accumulator-style function, it comes
with an additional, constructor-initialized field:

class RelativeToAbsolute
implements IListVisitor<Integer,IList<Integer>> {

int dsf ; // distance so far
RelativeToAbsolute(int dsf ) {

this.dsf = dsf ;
}
public IList<Integer> visitMt(Mt<Integer> m) { . . . }
public IList<Integer> visitCons(Cons<Integer> c) { . . . }
}

Ideally this dsf field should be 0 initially but we ignore this detail
for the moment and assume instances are always created with new

RelativeToAbsolute(0).

2. The revised template is like the one for AddN except for the recursion
in Cons:

inside of RelativeToAbsolute :
IList<Integer>

visitCons(Cons<Integer> o) {
. . . o.getFirst() . . .

. . . o.getRest().traverse( new RelativeToAbsolute(. . . ) ) . . .

}

Instead of just using this, we indicate that a new instance of the class,
distinct from this, is possibly needed.

3. With this revision, working definitions are in plain sight:



Designing Abstract Traversal Methods 607

inside of RelativeToAbsolute :
IList<Integer>

visitCons(Cons<Integer> o) {
int tmp = dsf + c.getFirst();
RelativeToAbsolute processRest = new RelativeToAbsolute(tmp);
return new Cons<Integer>(tmp,c.getRest().traverse(processRest));

}

4. To complete the first draft, it remains to test the visitor with the ex-
amples from above.

What also remains is to revise the draft class so that it doesn’t expose a
constructor that may initialize the field to the wrong value.

Exercise

Exercise 37.3 Use privacy specifications and overloading to revise the first
draft of RelativeToAbsolute so that it becomes impossible to accidentally mis-
use it.

Finally, an implementation of IVisitor doesn’t have to use concrete types;
it may use type variables, just like plain methods that traverse a piece of
data. Suppose you wish to design an implementation of IListVisitor that
acts like map from figure 192:

inside of IList<I> :
<RESULT> IList<RESULT> map(IFun<I,RESULT> f );

To do so, you must design a class whose result type is IList<RESULT> and
whose visit methods process items of type ITEM:

class Map<I,RESULT> implements . . .

Using the fresh type parameters, you can describe what kind of visitor the
instances of Map implement:

// process each item, collect in new list
class Map<I,RESULT>

implements IListVisitor<ITEM,IList<RESULT>> {
. . .

public IList<RESULT> visitMt(Mt<I> m) { . . . }
public IList<RESULT> visitCons(Cons<I> c) { . . . }

}
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Of course, these type choices are also reflected in the signatures for the visit
methods; they consume lists of ITEMs and produce lists of RESULTs. The
rest of this example is an exercise.

Exercises

Exercise 37.4 Reformulate the design instructions for visitor classes in a
world with just subtyping, i.e., without generics. Then formulate a design
recipe for visitors.

Exercise 37.5 Demonstrate the workings of your design recipe from exer-
cise 37.4 with the definition of a general visitor pattern for list classes and
designs for the two visitor classes from this section: AddN and Positive.

37.6 Finger Exercises: Visiting Lists, Trees, Sets

Exercise 37.6 Design the following visitors for the list library of figure 204:

1. Sum, which computes the sum of a list of Integers;

2. Contains, which determines whether a list of Strings contains an item
that is equal to some given String;

3. ContainsAll, which determines whether a list of Strings l1 is contained
in some given list l2, that is, all Strings on l1 are also on l2.

4. Append, which creates the juxtaposition of two lists.

Exercise 37.7 Design the following generic visitors for the list library of
figure 204:

1. Map, which consumes a method, represented as an object, plus a list.
It produces the list that results from applying the given method to
each item on the list and collecting the results.

2. Fold, which mimics the behavior of the fold method in figure 197.

3. Filter, which consumes a predicate P, i.e., an object representation of
a boolean-producing method . It extracts those items i from the list
for which P.invoke(i) returns true.
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4. Sort, which sorts a list of arbitrary objects. Parameterize the “func-
tion” over the comparison used; represent the comparison method as
an object that consumes two list items and produces a boolean. De-
fine a single class though add nested classes as needed.

Exercise 37.8 Figures 23 and 24 (see pages 45 and 45) introduce a data rep-
resentation for the representation of geometric shapes.

Equip this data representation with an abstract traversal method using
the visitor pattern.

Design In, a visitor that determines whether or not some position is
inside some given geometric shape.

Design Area, which computes the area of some given geometric shape.
Design BB, which constructs a representation of a bounding box for the

given shape. See section 15.3 for the definition of a bounding box.

interface ITree {}

class Leaf implements ITree {
int t;
Leaf (Object t) {

this.t = t;
}
}

class Branch implements ITree {
ITree left;
ITree right;
Branch(ITree left, ITree right) {

this.left = left;
this.right = right;
}
}

Figure 206: Visiting trees

Exercise 37.9 Figure 206 displays the class definitions for representing bi-
nary trees of integers. Equip this binary tree representation with an abstract
traversal, using the visitor pattern.

Design the visitor Contains, which determines whether a tree contains
some given integer.

Design Sum, which visits a binary tree and determines the sum of inte-
gers in the tree.

Exercise 37.10 Generalize the data representation of figure 206 so that it
represents binary trees of objects instead of just ints. Equip it with a visitor
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traversal and design the visitor class Contains for this binary tree represen-
tation (see exercise 37.9). Do not use generics for this exercise.

Exercise 37.11 Section 32.4 introduces two distinct data representations of
sets, one using lists (exercise 32.8) and another one using binary search
trees (exercise 32.14). Furthermore, the two exercises request the design
of generalizations using generics as well as subtyping, meaning you have
four different ways of representing sets.

Equip your favorite set representation with a visitor-based traversal
method so that you can design visitors that process all elements of a set.
To test your traversal method, design three visitors. The first one adds 1 to
each element of a set of integers, producing a distinct set of integers. The
second one uses the draw package to draw the elements onto a canvas. The
third one maps the elements of a set of integers to a set of corresponding
Strings.

37.7 Extended Exercise: Graphs and Visitors
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interface IGraph {
// does this graph contain a node labeled i?
// effect: mutate the nodes of this graph
void addNode(int i);

// does this graph contain a node labeled i?
boolean contains(int i);

// connect node i to node j in this graph
// effect: mutate the edges of this graph
// ASSUMES: contains(i) && contains(j)
void connect(int i, int j);
}

Figure 207: Graphs and visitors

Equipping data representations with visitor-based traversal methods
and designing visitors is also useful for collections of objects with cyclic
connections. Take a look at the left side of figure 207. It displays an exam-
ple of a graph. Concretely speaking, a graph is a collection of nodes, often
labeled with distinct markers (ints for us), and edges, i.e., connections going
from one node to another. A connection from node n to node k represents
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the fact that you can “move” from n to k in the world of information. If, in
this world, you can also move from k to n, you need to add an edge to the
graph that points from k to n.98

General speaking, a graph is an abstract rendering of many forms of
real-world information. For example, the nodes could be intersections of
streets in a city and the edges would be the one-way lanes between them.
Or, a node may stand in for a person and an edge for the fact that one
person knows about another person. Or, a node may represent a web page
and edges may signal that one web page refers to another.

As for a data representation of graphs, you should expect it to be cyclic.
Nothing in our description prevents nodes from referring to each other;
indeed, the description encourages bi-directional connections, which auto-
matically create cycles. The IGraph interface on the right side of figure 207
follows from the design recipe of chapter IV. It suggests constructing basic
data first, which means the collection of nodes for graphs, and providing
a method for establishing connections afterwards, which for us means a
method for adding edges. Thus the graph library provides the interface
and a plain graph constructor:

inside of Graph implements IGraph :

public Graph() { }
Once you have a graph, you can specify the collection of nodes with the
addNode method and the collection of edges with the connect method.

Exercises

Exercise 37.12 Turn the information example from figure 207 into a data
example, based on the informal description of the library.

Exercise 37.13 Design an implementation of the specified library. Use a
generic list library, equipped with a visitor-based traversal, to represent the
collection of nodes and the neighbors of each node.

Constraint: Do not modify the list library for the following exercises.
Design a visitor for use with the list traversal method instead.

Exercises
98We are dealing here with directed graphs. In so-called undirected graphs, every edge

indicates a two-way connection.
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Exercise 37.14 Design a method for the graph library from exercise 37.13
that given the (integer) label of some node in a graph, retrieves the labels
of its neighbors.

Exercise 37.15 Design the interface IGraphNode, which represents nodes for
visitors. Then equip the graph library with a traverse method for process-
ing the collection of nodes in a graph. Finally, design a visitor that com-
putes the labels of all the nodes in a graph.

Exercise 37.16 Design an implementation of the graph visitor interface to
discover the sinks and sources of a graph.

A node i in a graph is a sink if there is no edge going from i to any other
node. In figure 207, the node labeled 3 is a sink.

A node o in a graph is a source if there is no edge from any other node
to o. In figure 207, the node labeled 0 is a source.

The node labeled with 4 is both a source and a sink.

As you may recall from How to Design Programs, a node i in a graph is
reachable from a node o if i = o or if there is a neighbor r of o from which i
is reachable. Thus, in figure 207 node 3 is reachable from node 0, because
node 2 is a neighbor of node 0 and node 3 is reachable from node 2. The
latter is true because node 3 is a neighbor of node 2. Note the recursive
nature of the description of the reachability process!

One way to compute the set of reachable nodes for any given node is to
start with its neighbors, to add the neighbors of the neighbors, the neigh-
bors of those, and so forth until doing so doesn’t add any more nodes.
Proceeding in this manner is often called computing the transitive closure
(of the neighbor relation) for the node.

Exercises

Exercise 37.17 Design the method reachable. Given a node n (label) in a
graph, the method computes the list of nodes reachable from n.

Exercise 37.18 Design a graph visitor that computes for every node the list
of all reachable nodes. Use the solution of exercise 37.17.

A mathematician’s description of graphs doesn’t usually use lists but
sets. The former emphasizes the existing of an sequential arrangement
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among objects and allows for repetitions; the latter assumes no ordering
and allows no repetition of elements. Thus, when we suggested the use of
lists for the collection of nodes in the graph or for the collection of neigh-
bors per node, we committed to an ordering where none seems needed.

Exercise

Exercise 37.19 Inspect all the method signatures in IGraph and IGraphNode,
including the ones you have added. For all occurrences of IList<T> decide
whether it makes sense to replace it with ISet<T>. In other words, deter-
mine whether repetition of items matters and whether the sequencing of
the item matters.

Re-design the methods using the interface from section 32.4. First use
the set library based on lists, then use the one based on binary trees. Do
you have to change any of your code when you switch?

37.8 Where to Use Traversals, or Aggregation

At this point, you know how to add a general traversal to a data represen-
tation and how to design a visitor that uses this traversal. You have also
practiced this skill with a few problems. For each of those, you defined an
Examples class and tested the visitor within this example class. The ques-
tion remains, however, where traversals are used, meaning where visitor
classes are located and instantiated.

+--------------+ +--------+
| UFOWorld |-------->| IShots |<----------+
+--------------+ +--------+ |
| IShots shots | +--------+ |
+--------------+ | |

/ \ |
--- |
| |

------------------- |
| | |

+--------+ +-------------+ |
| MtShot | | ConsShot | |
+--------+ +-------------+ | +------+
+--------+ | Shot first |----->| Shot |

| IShots rest |-+ +------+
+-------------+ +------+

+--------------+
| UFOWorld |
+--------------+ * +------+
| ????? shots |----->| Shot |
+--------------+ +------+

+------+

Figure 208: An aggregation diagram

The answer to these question is closely related to a concept known as
AGGREGATION. Roughly speaking, an aggregation is a relationship be-
tween one class and a collection of others Thus far, when this situation
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came up, we spelled out the details of an aggregation, usually as a list of
things, sometimes as a tree of items, as a graph of nodes, etc. Examples are
UFOWorld and its association with many Shots, Worm and WormSegments,
Library and Books, and so on. Since aggregation shows up so often, it has its
own special arrow in class diagrams.

Figure 208, left side, reminds you of our usual representation of an asso-
ciation between UFOWorld and the many Shots that have been fired. On the
right, you see how to represent this situation as an “aggregation scenario.”
The containment arrow comes with an asterisk, which indicates that the
class at UFOWorld is associated with a collection of Shots.

The aggregation arrow is more than just a convenience. First, it ex-
presses that a UFOWorld comes with many Shots but it doesn’t spell out
whether it is a list, a search tree, a set, or something else. In this regard,
it delays the decision of how to represent the collection until we define
classes, and it even allows you to change the representation choice later.
Second, it also informs a reader that the methods of UFOWorld have to deal
with entire collections of Shots at once and thus implies that those methods
are formulated as traversals. More generally, classes that refer to aggregates
are where traversals are used, and they are also where you place/find visi-
tor classes.

Let’s look at some examples, starting with a task queue:

. . . A task queue keeps track of tasks that have been assigned
to an employee. Customers or other employees enter tasks into
the queue. The employee works on the tasks in a first-come,
first-served order. Some of the tasks come with expiration dates,
however, and overdue tasks are filtered out on a regular basis.
. . .

Even the first sentence in this problem statement suggests that a task queue
comes with a collection of tasks

Here is a translation into a class diagram:

+--------------------+
| TaskQueue | +------+
+--------------------+ *| Task |
| tasks |--------->+------+
+--------------------+ +------+
| ... |
| void expireTasks() |
| ... |
+--------------------+

A second look at the problem suggests that the method for dropping ex-
pired tasks must traverse the collection of Tasks. We have therefore added
a signature for such a task to the box for TaskQueue.
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For now assume that, like in section 32.4, queues contain a list of Tasks,
represented via the list library from figure 204:

class TaskQueue {
public TaskQueue() { }
private IList<Task> tasks = new Mt<Task>();
private int howMany = 0;
. . .

// effect: remove those tasks from this queue that are expired
public void expireTasks() {

. . . tasks . . . howMany . . .
tasks . . .
howMany . . .
return ;
}
}

The class fragment also spells out the first three steps of the design recipe
for the expireTasks method: its purpose and effect statement, its signature,
and its template. The latter reminds you that the method may use the val-
ues of the two (private) fields and that it can change them.

Skipping the examples step for now, we turn to the method definition
step. Given that the TaskQueue refers to its collection of tasks via a list, the
method should traverse this list, eliminate the expired tasks, and retain the
remaining ones. Describing in this manner suggests the design of a visitor
for the list library:

inside of TaskQueue :
public void expireTasks() {

tasks = tasks.traverse(new ByDate());
howMany = . . .
}

// select those tasks from the list that haven’t expired yet
private class Expired implements IListVisitor<Task,IList<Task>> {

public Expired() { }
public IList<Task> visitMt(Mt<Task> this0) { . . . }
public IList<Task> visitCons(Cons<Task> this0) { . . . }
}

Following the advice from section 37.4, this auxiliary class is nested and
hidden with TaskQueue because its methods are the only one that use it.
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As you can see from the purpose statement of the visitor, it determines
for each Task object on the list whether it is expired and retains those that
aren’t. Since “expired” typically means with respect to some time, the Ex-
pired class should probably grab the current data and/or time:

// select those tasks from the list that haven’t expired yet
class Expired implements IListVisitor<Task,IList<Task>> {

private Date today = . . .
private Time now = .
public Expired() { }..
public IList<Task> visitMt(Mt<Task> this0) { . . . }
public IList<Task> visitCons(Cons<Task> this0) { . . . }
}

We leave it to you to complete the design from here. The point is that
you have seen that the traversal is used in TaskQueue and that therefore the
visitor class is nested with TaskQueue.

Now take a look at this second problem:

. . . You are to design an electronic address book for a small
company. On request, the check-out clerks enter a customer’s
name, email, and zip code into the address book; the cash reg-
ister adds what the customers have bought. The company uses
this address book for customer assistance (returns, information
about purchased items) but also for sending coupons for select
stores to customers. . . .

Here the problem implies that an address book is an aggregation of cus-
tomer records:

+-----------------------+
| AddressBook | +--------------+
+-----------------------+ *| Customer |
| customers |--------->+--------------+
+-----------------------+ | String name |
| ... | | String email |
| IList<Customer> | | String zip |
| select(String z) | | ... |
| ... | +--------------+
+-----------------------+

How the AddressBook class is associated with its collection of Customers re-
mains unspecified. The desire to look up individual customers quickly—
while they wait—implies that a binary search tree is a better choice than
a plain list. No matter which choice you make, however, you do need a
method for selecting the customers with some specific zip code so that the
company can mail coupons to specific regions. Just as before this select
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method traverses the entire collection of Customers and retains those with
the given zip code attribute. Thus, select uses traverse and, to this end, you
must place a visitor class in AddressBook.

Exercises

Exercise 37.20 Design an AddressBook, including the select method, using
the list library from figure 204. Also add a method addCustomers, which
consumes a list of Customers and adds them to the AddressBook.

Exercise 37.21 Design an AddressBook, including the select method, using
the general binary search tree representation that you designed for exer-
cise 32.13 (page 507). Start by adding a traverse method to the library. Don’t
forget to add a method addCustomers, which consumes a list of Customers
and adds them to the AddressBook.

An aggregation doesn’t have to involve collections such as lists or trees;
it may re-use a class that represents a collection. For example, the preced-
ing section ended with the suggestion to use a Set class instead of the IList
library to associate a graph with a collection of nodes.

37.9 Object-Oriented and Functional Programming

Now is a good time to step back and reflect on the nature of general traver-
sals and the design of visitors. Let’s start with the structure of traversal
computations and then re-visit the design question.

Imagine a self-referential data representation that consists of an inter-
face I and several implementing classes (Co, Cp, . . . ). Also assume a regular
recursive method for processing objects that implements I. In this context
every (plain or recursive) invocation of m on some instance o of Co, uses
the method definition of m in Co to compute the result. This process is
dubbed polymorphic method dispatch (see section 13.1) and is considered
the essence of object-oriented computing.

Contrast this scenario with one where the data representation comes
with a visitor-based traversal method. In order to process an object now,
your program creates an instance v of a visitor—a method represented
as an object—and evaluates o.traverse(v). While the invocation of traverse
proceeds via polymorphic method dispatch, it immediately invokes a visit
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method in v. People tend to use the terminology DOUBLE DISPATCH99 for
this step. Within the chosen visit method in v, computation proceeds as if
m had been called on o directly (except for invocations of getter methods)
until a recursive call is needed to resume the traversal. At this point, an-
other double dispatch moves the evaluation from v to o and back again. In
short, all essential computations take places in the methods of the visitor;
the traverse and visit methods exist only for navigating the maze of objects.

How to Design Programs Visitors
data definition pre-existing traverse
function purpose & contract class purpose & interface signature
functional examples functional examples
template: conditional structure visit methods in interface
template: conditions visit per implementing class
template: layout access methods & calls to traverse
coding: start with base cases coding: start with base cases
coding: connecting expressions coding: connecting expressions
testing examples testing examples

Figure 209: Visitors and functions

Because of this separation of activities, the traversal methods within
the data representations—its interface and its classes—are schematic while
the methods in the visitor look like those usually found in data representa-
tions. Indeed, the differences concern just two parts: recursion and access
to fields. The reason is that the design process for visitors is basically the
one for functions in How to Design Programs. Figure 209 shows is a table that
compares the two design recipes. You can see from the table that the visitor
design has the advantage over the function design that the visitor interface
(IVisitor) dictates how many “cond” lines you must consider and the poly-
morphic dispatch (via traverse) to the appropriate visit method eliminates
the need to formulate conditions. Other than that, designing a visitor is just
like designing a function.

What all this really means is that the visitor pattern re-introduces func-
tional programming into the world of class and library design. The very
moment you wish to abstract over traversals, which is common, you de-
sign almost as if you are designing functions and your visitors compute

99We also encountered double dispatch in our first discussion of extensional equality
(section 21).
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almost as if they were functions (though they use polymorphic dispatch
heavily). All the case separation and all the action is located in the visitor
class and its instances.

38 Traversing with Effects

The preceding sections of this chapter use few stateful and imperative ex-
amples, and none of the traversals use an imperative method. Indeed, if
you were to try to use traverse with imperative methods, you would have
to instantiate the IVisitor signature with void as the result type and doing so
would fail.100 The illusion that we provide of void being a regular type with
one (invisible) value is just that, an illusion. Thus, if you need imperative
traversals—and you will!— you must design them specially.

This section starts with an explanation of the forEach method, which
performs a computation “action” on each item of a list, without any results.
It then demonstrates how to use this method and how to abuse it. The latter
is important because Java actually forces you to do something like that, as
the next chapter explains.

38.1 Abstracting over Imperative Traversals: the forEach Method

Following our convention, we create abstractions from concrete examples,
and for the design of forEach, we look to the “war of the worlds” project for
inspiration. It comes with numerous needs for processing entire lists of ob-
jects: moving lists of shots, drawing lists of shots, moving lists of charges,
drawing lists of charges, and a few more. In the imperative setting of chap-
ter IV (section 27.7), all of these list traversals have the goal of changing the
state of the objects.

Recall that the UFOWorld class contains a move method whose task it is
to move all objects for every tick event:

100You may wonder whether there is Void related to void like Integer is related to int. While
Java comes with a class Void, its role is different than Integer’s, and it has no use here.
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// imperative methods as objects
interface IAction<I> {

// invoke the represented method
void invoke(I c);
}

// list with imperative traversals
interface IList<I> {

// invoke f.invoke on each item
void forEach(IAction<I> f );
}

class Mt<I> implements IList<I> {
public Mt() { }

public void forEach(IAction<I> f ) {
return ;
}
}

class Cons<I> implements IList<I> {
private I first;
private IList<I> rest;

public Cons(I first, IList<I> rest) {
this.first = first;
this.rest = rest;
}

public void forEach(IAction<I> f ) {
f.invoke(first);
rest.forEach(f );
return ;
}
}

Figure 210: The forEach method

inside of UFOWorld :
// move all objects in this world
public void move() {

ufo.move();
aup.move();
shots.move();
charges.move();
return ;
}

For simplicity, this move method assumes that the methods it invokes con-
sume no additional arguments.

The method definitions for moving the Shots on a list look like this:
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inside of MtShot :
void move() {

return ;
}

inside of ConsShot :
void move() {

first.move();
rest.move();
return ;
}

The method on the left performs no computation at all; the method on the
right invokes the move method on the first instance of Shot and recurs on
the rest of the list.

If you were to look back at other imperative methods that process lists,
you would find that this arrangement is quite common, which is why you
want to abstract it. Roughly speaking, the abstraction is just like the map
method with two exceptions. First, it uses methods-as-objects that are im-
perative and have return type void. Second, the results of processing the
first item and traversing the rest of the list are combined by sequencing the
two effects, throwing away the results of the first computation.

Figure 210 displays the complete design of a general and imperative
traversal method for lists. The method is dubbed forEach, implying that it
performs some action for each item on the list. Otherwise the design has
the expected elements:

1. The IAction interface specifies the shape of methods as objects that the
forEach method consumes.

2. The IList interface includes the signature for the forEach method, indi-
cating that forEach consumes an IAction<I> whose second argument
has type I, the type of a list item.

3. The two implementations of IList define forEach in the manner dis-
cussed. Specifically, the method in Mt performs no action; the method
in Cons invokes the action on first and then recurs on rest.

In short, forEach really is closely related to map and less so to traverse. Be-
fore you proceed with your readings, you may wish to consider in which
situations you would rather have a traverse style method.

38.2 Using the forEach Method

When you have an abstraction, you need to demonstrate that it subsumes
the motivating examples. That is, we should design actions for moving and
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drawing objects from the UFOWorld class, because it aggregates the Shots
and other collections of objects.

Let’s start with an action for moving all the shots Shot. Keep in mind
that the instances of the class represent methods that are invoked on every
Shot on the list, one at a time:

1. The purpose statement is just that of the move method in Shot:

inside of UFOWorld :
// move the shots on this list
private class Move implements IAction<Shot> {

public void invoke(Shot s) { . . . }
}

2. Just like for the design of any method, you need examples. In the
case of imperative methods you need behavioral examples. That is of
course also true if you represent methods as objects:

inside of Examples :
IList<Shot> mt = new Mt<Shot>();

IList<Shot> l1 = new Cons<Shot>(s1,mt);
IList<Shot> l2 = new Cons<Shot>(s2,l1);
IList<Shot> l3 = new Cons<Shot>(s3,l2);

IList<Shot> m1 = new Cons<Shot>(t1,mt);
IList<Shot> m2 = new Cons<Shot>(t2,m1);
IList<Shot> m3 = new Cons<Shot>(t3,m2);

l3.forEach(new Move()) ;

. . . checkExpect(l3,m3) . . .

The gray box highlights the invocation of forEach on l3 using an in-
stance of Move. Below the box, a checkExpect expression formulates
our expectation that forEach changes l3.

3. Like the template for all imperative methods, the one for invoke sug-
gests that the method may use its arguments (this, s) and the fields of
its invocation object (none):
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inside of Move :
public void invoke(Shot s) {

. . . s . . .
return ;
}

4. Filling in the template leaves us with the expected invocation of move
on the given shot:

inside of Move :
public void invoke(Shot s) {

s.move();
return ;
}

5. Finally it’s time to run the tests.

With Move in place, you can now move the shots in UFOWorld via an
invocation of forEach:

inside of UFOWorld :

public void move() {
ufo.move();
aup.move();

shots.forEach(new Move());

charges.move();
return ;
}

inside of UFOWorld :
private IAction<Shot> mS = new Move();

public void move() {
ufo.move();
aup.move();

shots.forEach(mS);

charges.move();
return ;
}

On the left you see the most direct and notationally most concise way of
doing so. On the right you see the best version from a computationally
perspective. Specifically, while the version on the left creates one instance
of Move per tick event, the version on the right instantiates Move only once
for the entire world. Although it is unlikely that a player or viewer can tell
the difference, it is important for you to begin to appreciate this difference.

For a second design example, consider the case of drawing a list of
Shots. Remember that draw in UFOWorld is called to refresh theCanvas,
which comes with every World:



624 Section 38

inside of UFOWorld :
// draw all objects in this world onto theCanvas
public void draw() {

drawBackground();
. . .
shots.draw(theCanvas);
. . .
}

The code snippet ignores that the draw methods actually consume the World
so that they can find out its dimensions. From here, we proceed as before:

1. The purpose statement and the contract are straightforward again:

inside of UFOWorld :
// draw a shot to the given canvas
private class Draw implements IAction<Shot> {

public void invoke(Shot s) { . . . }
}

Like Move, Draw implements IAction<Shot>. Its invoke method pro-
cesses one shot at a time. We know, however, that draw methods al-
ways consume a Canvas into which they draw a shape. As with AddN
use a field to store the chosen Canvas throughout the entire traversal:

inside of UFOWorld :
// draw a shot to the given canvas
private class Draw implements IAction<Shot> {

private Canvas can;
public Draw(Canvas can) {

this.can = can;
public void invoke(Shot s) { . . . }
}

2. The template for invoke lists both a parameter and a field:

inside of Draw :
public void invoke(Shot s) {

. . . s . . . this.can . . .
return ;
}
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3. Filling in the template leaves us with the expected method body:

inside of Draw :
public void invoke(Shot s) {

s.draw(this.can);
return ;
}

The method invokes draw on s and passes along the Canvas.

You can now draw a list of Shots with forEach and a Canvas:

inside of UFOWorld :

public void draw() {
drawBackground();
. . .
shots.forEach(new Draw(theCanvas));
. . .
}

inside of UFOWorld :
private IAction<Shot> dS =

new Draw(theCanvas);
public void draw() {

drawBackground();
. . .
shots.forEach(dS);
. . .
}

We show both solutions again, the notational concise version as well as the
one that creates only one object to represent the method.

As you can see, designing actions for imperative traversals is straight-
forward. Following the design recipe is too much work for such non-
recursive methods, also because you (should) have internalized it all. Even
the notational overhead seems high; you add private classes and instanti-
ate them, even if just once. If you recall How to Design Programs’s lambda-
defined functions, you sense that there should be an easier way. Fortu-
nately, there is.

Exercises

Exercise 38.1 Use the list library from figure 210 to design the method
drawAll. The method consumes a list of Posns and draws them as red dots
on a 200 by 200 canvas. Add the method to an Examples class.

Exercise 38.2 Use the list library from figure 210 to design the method
swap. The method consumes a list of Posns and imperatively swaps the
x with the y coordinates in each Posn.
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Exercise 38.3 Design a simplistic representation for a grocery store. Think
of the latter as an object that aggregates a collection of sales items, where
each item comes with a name and a price. Use the list library from fig-
ure 210 to represent this aggregation here. Then design the method inflation
for the Store class. The method raises the price on all grocery items in the
store by some given factor.

38.3 Using forEach with Anonymous Classes

In section 37.4 we briefly alluded to the idea of implementing and instanti-
ating interfaces without defining a class explicitly. Let’s consider a sim-
ple case. Suppose you are using a library that exports an Object-based
“method” interface:

interface IFunII {
int invoke(int i);
}

The interface describes a methods-as-objects representation for methods
that consume and produce ints.

Now imagine that you need an instance of a specific implementation of
IFunII in one—and only one—class C. Based on what you know, you would
have to define an implementation of IFunII and instantiate it in C:

class FunII implements IFunII {
public int invoke(int i) {

return i+1;
}
}

class C {
. . .
. . . new FunII() . . .
. . .
}

For these cases—when there is a single reference to a class that implements
an interface—you’re best off implementing the interface anonymously, that
is, without giving it a name and without even introducing a class definition:

class C {
. . .
. . . new IFunII() {

public int invoke(int i) {
return i+1;
}
}

. . .
}
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That is, new is useful in conjunction with an interface I if the new I() is
followed by a “block” that defines the specified methods of I.

Notes: Since it is impossible to define a constructor for an anonymous
class—we don’t even have a name for it—you need to initialize the fields of
an anonymous interface implementation directly. As you do so, you may
wish to use local fields, which is legal in Java, or local variables, which isn’t
(immediately) legal in Java, though in other object-oriented languages. Be-
cause of the Java specificity of this issue, we recommend that you look up
the exact rules and mechanisms when you are to design lasting programs
in Java. Until then, keep in mind that it is about design principles not lan-
guage details.

When you are dealing with generic interfaces, the anonymous imple-
mentation must also specify type arguments for the type parameters. Here
is, for example, an anonymous instantiation of IAction:

new IAction<Shot> () {
public void invoke(Shot s) {

s.move();
return ;
}
}

Because the interface is parameterized over the type of list items that its
invoke method must process, the generic interface is applied to one type,
Shot in this case. Furthermore, because the interface specifies one method
signature in terms of its type parameter, the anonymous implementation
consists of a “block” with a single method on Shots.

As you can easily tell, both Move (for Shot) and Draw (also for Shot)
occur once in UFOWorld . Hence these classes are candidates for replacing
them with anonymous implementations and instantiations. Indeed, doing
so is relatively easy; it is just like the above, abstract example:



628 Section 38

inside of UFOWorld :
public void move() {

ufo.move();
aup.move();
shots.forEach(

new IAction<Shot> () {
public void invoke(Shot s) {

s.move();
return ;
}
} );

charges.move();
return ;
}

inside of UFOWorld :
public void draw() {

drawBackground();
ufo.draw(theCanvas);
aup.draw(theCanvas);
shots.forEach(

new IAction<Shot> () {
public void invoke(Shot s) {

s.draw(theCanvas);
return ;
}
} );

charges.draw(theCanvas);
return ;
}

The one aspect worth a remark is the reference to theCanvas from the anony-
mous instantiation of IAction in the draw method. Because theCanvas is a
field in the surrounding class—indeed, a field in the superclass—this refer-
ence is legal.

Let’s look at one last example, the creation of a complete card deck.
Card games exist in many different cultures and come in many different
forms. All of them, though, involve a deck of cards, and cards belong to a
suit and have a rank. Figure 211 summarizes the scenario in those terms.

The Game class corresponds to the World class with which we always
start to lay out what we have. It sets up the legal suits and ranks for the
game, both individually and as lists. The next field creates a deck. The rest
is left to a setUp method, which is presumably responsible for creating the
deck, shuffling it, dealing the cards to players, and so on. Its first action
is to invoke createDeck, which is to add cards of all (specified) suits at all
(specified) ranks to the initially empty deck. All of this is captured in the
method’s purpose and effect statement.

Our goal here is to design this createDeck method. With the purpose
statement given, we can move straight to the examples, which is best done
with a table here:

Seven Eight Nine . . . Ace

Clubs . . . . . . . . . . . . . . .

Diamonds . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
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class Game {
Suit d = new Suit("Diamond");
Suit c = new Suit("Clubs");
. . .
Rank seven = new Rank("seven");
. . .
Rank ace = new Rank("ace");
IList<Suit> s0 = new Mt<Suit>();
IList<Suit> s1 = new Cons<Suit>(d,s0);
. . .
IList<Suit> suits = new Cons<Suit>(c,. . . );
IList<Rank> r0 = new Mt<Rank>();
IList<Rank> r1 = new Cons<Rank>(seven,r0);
. . .
IList<Rank> ranks = new Cons<Rank>(ace,. . . );
Deck deck = new Deck();

. . .
public void setUp() {

this.createDeck();
. . .
}

// effect: add all suits at all ranks to the deck
private void createDeck() { . . . }
}

class Card {
Suit s;
Rank r;
// constructor omitted
}

class Rank {
String v;
// constructor omitted
}

class Suit {
String s;
// constructor omitted
}

class Deck {
private IList<Card> listOfCards = new Mt<Card>();
public Deck() { }

// add a card to this deck
public void addCard(Card c) {

listOfCards = new Cons<Card>(c,listOfCards);
}
}

Figure 211: Card games and decks of cards

The first row specifies some of the possible ranks, the first column lists the
possible suits. For each pairing of suits and ranks, the createDeck method
must create a card and add that card to the deck. The problem statement
implies that the order appears to be irrelevant.
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Both the purpose statement and the examples suggest that the method
must traverse ranks as well as suits. Following the advice in How to Design
Programs, we should consider three cases: processing one while treating the
other as a constant; processing both in parallel; and processing the cross
product. The table suggests the last option, meaning the method should
traverse one list and then, for each item on that list, the other.

At this point, you guess and choose one of the lists as the primary list
for iteration. If the design fails, you choose the other order. Let’s start with
suits for now and lay out the template for forEach:

void createDeck() {
suits.forEach(new IAction<Suit> () {

public void invoke(Suit s) {
. . . s . . . ranks . . .
return ;
}
});

return ;
}

This template is dictated by the choice to traverse suits with forEach and the
shape of IAction<Suit>. Concretely, the two say that you must design an
invoke method and that invoke is applied to one suit at a time.

The template’s body tells us that s and ranks are available. From the ex-
ample step we know that the method is to traverse the list of ranks and pair
each with s. Put differently, invoke must traverse ranks. Since a traversal
within a traversal sounds complex, the proper decision is to design an aux-
iliary method or actually class, because methods are represented as objects:

void createDeck() {
suits.forEach(new IAction<Suit> () {

public void invoke(Suit s) {
ranks.forEach(new PerRank(s));
return ;
}
});

return ;
}

// effect: add all ranks at suit s
// to the deck of this game
class PerRank

implements IAction<Rank> {
Suit s;
PerRank(Suit s) {

this.s = s; }
public void invoke(Rank r) { . . . }
}

The full method definition on the left assumes that we can design the auxil-
iary “method.” For the latter, the partial class definition on the right shows
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how much we know: the purpose and effect statement, the outline of the
class, and that it needs a field to keep track of the current suit (s).

Designing PerRank proceeds just like the design of any method. For
examples, we can take examples for createDeck and formulate examples for
PerRank. More precisely, PerRank holds the suit constant and looks at all
ranks, meaning it is one row of the above table. To translate this into a
template, we sketch out the body of the invoke method:

incPerRank
public void invoke(Rank r) {

. . . s . . . r . . .
}

where s is the chosen suit and r is the rank that the method is currently
processing. With all this information laid out, you can translate the purpose
and effect statement into a full method definition:

void createDeck() {
suits.forEach(new IAction<Suit> () {

public void invoke(Suit s) {
ranks.forEach(new PerRank(s));
return ;
}
});

return ;
}

// effect: add all ranks at suit s
// to the deck of this game
class PerRank

implements IAction<Rank> {
Suit s;
PerRank(Suit s) {

this.s = s; }
public void invoke(Rank r) {

deck.addCard(new Card(s,r));
return ;
}
}

For completeness, we re-state the definition of both the main method, cre-
ateDeck, as well as the full definition of the auxiliary “method.” Figure 212
summarizes the design.

38.4 Mini Projects, including a Final Look at “War of the Worlds”

The following exercises propose small projects that use one and the same
list library (exercise 38.4) without modification for representing aggrega-
tions or collections of objects. Each exercise involves the use of either forE-
ach or traverse or both. Try to design anonymous instantiations of the cor-
responding interfaces where possible; if not, explain why and use inner
classes. As you tackle these projects, don’t forget that the first draft of any
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class Game {
IList<Suit> suits = new Cons<Suit>(c,. . . );
. . .
IList<Rank> ranks = new Cons<Rank>(ace,. . . );
Deck deck = new Deck();

. . .
public void setUp() {

this.createDeck();
. . .
}

// effect: add all suits at all ranks to the deck
private void createDeck() {

suits.forEach(new IAction<Suit> () {
public void invoke(Suit oneSuit) {

ranks.forEach(new PerRank(oneSuit));
return ;
}
});

return ;
}

// effect: add all ranks of a given suit to the deck of this game
private class PerRank implements IAction<Rank> {

Suit s;
PerRank(Suit s) { this.s = s; }
public void invoke(Rank r) {

deck.addCard(new Card(s,r));
return ;
}
}
}

Figure 212: Card games and decks of cards, refined

design is just that: a draft. Don’t forget to use one method per task, and
don’t forget to use the recipes for abstraction to edit your programs.

Exercises

Exercise 38.4 Equip the list library from figure 210 with a visitor-based
traversal method.
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Exercise 38.5 Re-design your “War of the World” project. Start from a ver-
sion of the game that allows the UFO to drop charges on a random basis
(see exercise 19.20, page 284).

Exercise 38.6 Re-design the imperative version of your “Worm” project.
See section 19.9 for the original case study and exercise 27.16 (page 408) for
the development of the imperative version.

Figure 213: Action in the “Fire Plane” game

Exercise 38.7 The interactive computer game “Fire Plane” is about extin-
guishing wild fires, a nuisance and occasionally a serious danger in the
western states of the US and in many other countries, too.101 Imagine a
prairie with fires flaring up at random places. The player is in control of a
fire plane. Such an airplane has water tanks that it can empty over a fire,
thus extinguishing it.

Design a minimal “Fire Plane” game:

1. Your game should should display one fire when the game starts.

2. While any fire is burning, your game should add other fires at ran-
dom places. The number of fires should be unlimited, though, you
should be careful not to start too many fires at once.

3. Also, your game should offer the player one fire plane with a fixed
number of water loads. The fire plane should move continuously.
You are free to choose the means by which the player controls the
movements of the plane and which movements it may perform.

101We thank Dr. Kathi Fisler for the idea of the fire-fighting game.
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4. Finally, write a brief introduction for players.

See figure 213 for a screenshot; your program should render the airplane in
a simpler manner than our prototype.

Exercise 38.8 Design a data representation for a library. For our purposes,
a library owns a collection of books. Naturally it starts with no books and
acquires them one at a time. For this exercise, a book has a title, a “check
out” status, and a unique identification number. The latter is issued when
the book is added to the library.

Imagine for this last part that the “book addition” method makes up a
unique number (int) and draws it on a paper label that is then attached to
the book’s spine. Your data representation should also support a method
for checking out individual books. To this end, the librarian enters the
unique identification number from the book’s label (via a barcode reader),
and the software uses this number to locate the book and to mark it as
checked out. Finally, books are returned in bunches. Add a method for
returning several books by their identification number.

Exercise 38.9 A web crawler is a program that explores web pages on the
internet and acquires knowledge about how the pages are interconnected.
Companies then use this information to provide all kinds of services.

Think of giving a web crawler one web page and asking it to visit all
reachable web pages. To reach the first web page, a crawler is given a link—
also known as a URL or URI. It then looks at the page to find links to other
pages. When web page A contains URLs to web pages B, C, etc., then the
latter are recorded as immediate neighbors of A. Once the crawler is done
with A, it asks its knowledge base whether there are more pages to visit,
and if so, requests the link for the next page to visit. In addition to recording
the “neighborhood” relationship among web pages, the web crawler also
records how many times a web page has been reached. Notice that reaching
a web page differs from visiting it.

Design a data representation for the knowledge base of a web crawler.
If you have solved the exercises in section 37.7, adapt one of those graph
libraries for this exercise; otherwise design one using the hints from that
section. At a minimum, the main class of the data representation should
support methods for recording that some pages are neighbors of a given
page; for marking a page as visited; for determining whether there are more
pages to visit; for picking another page to visit; for determining how many
times a page has been reached; and for the graph of web pages acquired
(thus far).
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38.5 Abusing the forEach Method

Traditional approaches to programming abuse methods such as forEach for
computations for which it isn’t intended. Worse, some programming lan-
guages necessitate such abuses for various reasons. As it turns out, Java is
one of those languages. The next chapter explains Java’s problem; how this
problem forces programmers to abuse a construct similar to forEach; and
how you must cope with this problem. This subsection prepares the next
chapter with an introduction to the idea of using imperative constructions
to compute functional results.

Unlike other parts of the book, we use simplistic examples to illustrate
the idea. Let’s start with a list of integers:

inside of Examples :
IList<Integer> mt = new Mt<Integer>();
IList<Integer> n1 = new Cons<Integer>(1,mt);
IList<Integer> n2 = new Cons<Integer>(2,n1);
IList<Integer> n3 = new Cons<Integer>(3,n2);

In the first part of this chapter we have seen how to use abstract traversals,
such as map or traverse to compute values from such lists. Here is a method
that uses traverse to compute the sum of such lists:

inside of Examples :
// determine the sum of l
public int sum(IList<Integer> l) {

return l.traverse(new IListVisitor<Integer,Integer> () {
public Integer visitMt(Mt<Integer> o) {

return 0;
}
public Integer visitCons(Cons<Integer> o) {

return o.getFirst() + o.getRest().traverse(this);
}

});
}

It is like a Scheme function, using a visitor to distinguish between the two
cases and to recursively add up the numbers.

Now imagine that someone evil had whimsically decided to equip the
list library only with the forEach method and to make it impossible to mod-
ify or extend the library. At this point you have two choices: design your
own list representation, duplicating some of the work, or use the existing
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library. If you try the latter, you must figure out how to define sum with
forEach instead of traverse:

inside of Examples :
// determine the sum of l
public int sumFE(IList<Integer> l) {

l.forEach(new IAction<Integer> () {
public void invoke(Integer i) {

. . . i . . .
return ;
}
});

return . . . ;
}

Given that forEach produces no result, the invocation of the method on l
can’t be the last part of the method. Similarly, invoke’s return type is also
void, meaning it too can’t produce a value via a plain return. Thus the
first conclusion is that we need an stateful field102 and an assignment to
this field in invoke to communicate the sum from inside of invoke to its sur-
roundings:

inside of Examples :
private int sumAux = 0;
public int sumFE(IList<Integer> l) {

l.forEach(new IAction<Integer> () {
public void invoke(Integer i) {

. . . i . . .
sumAux = . . .
return ;
}
});

return . . . ;
}

The new field is called sumAux because it is associated with sumFE. Also
note that, following the design recipe for imperative methods, invoke now
comes with a partial assignment statement to the new field.

The template is suggestive enough to make progress. If invoke adds i to
sumAux for each item on the list, sumAux should be the sum of all integers

102We can’t use a local variable that is hidden inside of sumFE due to Java’s restrictions.
See the note on this issue in the preceding section.
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after the invocation of forEach is evaluated:

inside of Examples :
private int sumAux = 0;
public int sumFE(IList<Integer> l) {

l.forEach(new IAction<Integer> () {
public void invoke(Integer i) {

sumAux = sumAux + i;
return ;
}
});

return sumAux ;
}

The result looks as succinct as the original sum method, though it does use
effects to compute a value. All that remains at this point is testing.

While we usually leave testing to you, running the tests is highly in-
structive here. Thus add the following tests to Examples:

inside of Examples :
. . . checkExpect(sumFE(n1),1,"one element list") . . .
. . . checkExpect(sumFE(n3),6,"three element list") . . .

and run them to experience the following surprise:

Ran 2 tests.
1 test failed.

...
actual: 7
expected: 6

The second test fails, because sumFE returns 7 when 6 is expected.

Stateful classes and fields are tricky, and we have just been bitten. While
the sumAux field is initialized to 0, the sumFE method just keeps adding to
sumAux never re-setting it when it is done with a list. There are two obvious
solutions: one is to set sumAux to 0 before the list is traversed and another
is to set it to 0 afterwards. The first solution is simpler to write down than
the second one and easier to comprehend:
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inside of Examples :
private int sumSoFar;
public int sumFE(IList<Integer> l) {

sumSoFar = 0;
l.forEach(new IAction<Integer> () {

public void invoke(Integer i) {
sumSoFar = sumSoFar + i;

return ;
}
});

return sumSoFar ;
}

A close look at this definition shows that initializing the field to 0 at the very
beginning has two advantages. First, the initialization and the assignment
in the forEach traversal show the reader that the purpose of the field is to
represents the sum of the integers encountered so far. We have therefore
renamed the field to sumSoFar. Second, the initialization avoids accidental
interferences, just in case some other method uses the field.

Let’s consider a second example, selecting all positive numbers from
a list. Since the problem statement contains a perfectly phrased purpose
statement, we just add a contract to get started:

inside of Examples :
// select all positive integers from the given list
public IList<Integer> allPositiveV(IList<Integer> l) { . . . }

and move straight to the example step of the design recipe:

inside of Examples :
IList<Integer> mt = new Mt<Integer>();
IList<Integer> i1 = new Cons<Integer>(0,mt);
IList<Integer> i2 = new Cons<Integer>(1,i1);

IList<Integer> o1 = new Cons<Integer>(1,mt);

. . . checkExpect(allPositive(i1),mt) . . .

. . . checkExpect(allPositive(i2),o1) . . .

The examples remind you of two points. First, allPositive isn’t a method (of
the integer list representation), but a function-like construction. Second,
because 0 isn’t positive, the function drops it from both i1 and i2.

Furthermore, the two examples fail to explore the problem statement
properly. Although the design of proper examples and tests is a topic for a



Traversing with Effects 639

book of its own, this sample problem demands a third test, one that can tell
whether the function-method preserves the order of the numbers:

inside of Examples :
IList<Integer> i3 = new Cons<Integer>(2,i2);

IList<Integer> o2 = new Cons<Integer>(2,o1);

. . . checkExpect(allPositive(i3),o2) . . .

While the preservation of order is not mentioned in the problem statement,
you—the problem solver—should wonder about it and writing down an
example shows that you did.

At this stage in your development, you can skip the template and write
down the definition:

inside of Examples :
// select all positive integers from the given list
public IList<Integer> allPositiveV(IList<Integer> l) {

return l.traverse(
new IListVisitor<Integer,IList<Integer>> () {

public IList<Integer> visitMt(Mt<Integer> o) {
return new Mt<Integer>();

}
public IList<Integer> visitCons(Cons<Integer> o) {

int f = o.getFirst();
if (f > 0) {

return new Cons<Integer>(f ,o.getRest().traverse(this)); }
else {

return o.getRest().traverse(this); }
}
});

}
Given that the purpose of the method is to traverse the given list and to
make a decision for each integer on the list, it is natural to invoke the tra-
verse method and to use an anonymous implementation and instantiation
of the IListVisitor interface. This visitor’s first method returns an empty list
for a given empty list, and its second method inspects the first integer be-
fore it decides whether to add it to the result of traversing the rest.

Following the first example, we can obviously abuse forEach in a similar
way, using a (private) field to keep track of the positive integers so far:
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inside of Examples :
// select all positive integers from the given list
private IList<Integer> posSoFar;
public IList<Integer> allPositiveFE(IList<Integer> l) {

posSoFar = new Mt<Integer>();
1

l.forEach(new IAction<Integer>() {
public void invoke(Integer f ) {

if (f > 0) {
posSoFar = new Cons<Integer>(f ,posSoFar);

return ; }
else {
return ;}
}

});
2

return posSoFar;
3

}

Like the definition of sumFE, the one for allPositiveFE consists of three parts,
each highlighted in gray and labeled with a subscript:

1. The first part initializes the auxiliary private field to the proper value.
Here this means an empty list, because no positive integer has been
encountered so far.

2. The second part is an imperative traversal based on forEach. For each
positive integer encountered, the invoke method updates the private
field via an assignment statement. It thus adds the most recently en-
countered positive number to the list of positives seen so far before
forEach continues to process the list.

3. The third part of the method returns the current value of the field.

Our description says that allPositiveFE proceeds like sumFE. While the latter
starts with 0 as the sum seen so far and adds integers as it encounters them,
allPositiveFE starts with an empty list and adds positive integers.

This last thought suggests that the results of allPositiveFE and allPositive
differ in the order in which the numbers appear on the result list. And
indeed, adding appropriate examples and tests spells out and confirms this
difference in plain view:
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. . . checkExpect(allPositive(i3),
new Cons<Integer>(2,new Cons<Integer>(1,mt)) . . .

. . . checkExpect(allPositiveFE(i3),
new Cons<Integer>(1,new Cons<Integer>(2,mt)) . . .

The two examples suggest that methods based on forEach traversals are
accumulator versions of their traverse-based counterparts. You may wish to
re-visit How to Design Programs, chapter VI, to refresh your memory of the
differences between naturally recursive functions and their accumulator-
style counterparts. We continue to explore the topic, as well as the abuse of
forEach, in the exercises.

Exercises

Exercise 38.10 Design accumulator-based variants of sum and allPositive.
In other words, design applicative visitor classes and use instances of these
visitors in conjunction with sum and allPositive.

Exercise 38.11 While allPositiveFE and allPositive obviously produce differ-
ent results, this doesn’t appear to be true for sumFE and sum. Can you think
of a list of integers for which the two methods would produce different re-
sults? How about doubles?

Exercise 38.12 Design two variants of juxtapose, which consumes a list of
Strings and computes their juxtaposition. The first uses traverse to accom-
plish its purpose, the second uses forEach. Do their results differ for the
same input?

Exercise 38.13 Design two variants of the method min, one using traverse
and the other using forEach. The method consumes a non-empty list of ints
and determines the minimum.

Exercise 38.14 Design two variants of the method closeTo, one using tra-
verse and the other using forEach. The method consumes a list of Posns and
determines whether any one of them is close to the origin. For the purpose
of this exercise, “close” means a distance of less or equal to 5 (units). Does
one variant have an performance advantage over the other?

Exercise 38.15 Use forEach to design the method sort, which consumes a
list of ints and produces one sorted in ascending order.
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LIBRARY
+-----------+ +----------+ *
| IIfc | | IVisitor | *
+-----------+ +----------+ *

| | *
/ \ / \ *
--- --- *
| *****************|***************** FUNCTIONS

+---------------+----------------+-------+ * +--------+--------+------------+
| | | | * | | | |

+-----------+ +-----------+ +-----------+ | * +--------+ +--------+ +----------+
| ACls | | BCls | | CCls | | * | Visit1 | ... | Visitn | | Visitn+1 |
+-----------+ +-----------+ +-----------+ | * +--------+ +--------+ +----------+

| *
* * * * * * * * * * * * * * * * * * * * * * * * | *
DATA EXTENSION |

|
+-----------+
| DCls |
+-----------+

Figure 214: Data and functional extensions of frameworks

39 Extensible Frameworks with Visitors

the core library comes in the same old shape: an interface and a bunch of
implementing classes, plus a visitor interface

functions can be defined inside or outside the library by just implement-
ing the visitor interface. great

how about data extensions? if you design a class DCls that implements
IIfc and you create instances, what will your visitors do? they can’t cope,
because they are intimately tied to the organization of the union in the core
library.

research problem: how can you add extensions and simultaneously re-
vises your visitors, too? does it always work?103

keep this small; it isn’t as relevant as the for loop stuff

103See SK, DF, MF, plus MF/DF
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Intermezzo 6: Generic Methods, Inner Classes

syntax
typing and subtyping
BUT semantics: compile to the Object based solution with subtyping
error messages are weird:
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TODO

purpose: to apply programming via refinement in the Java context



VII Loops and Arrays

Java suffers from a serious design flaw that impinges on proper object-
oriented design.104

it is not just tail-recursion, there is something else too (i wish i could
recall)

and
void for(...)
is the only loop that Java provides. this forces a programmer to write

imperative code almost all the time, even though Java by design is an
object-oriented language otherwise.

41 The Design Flaw

42 Loops

42.1 Designing Loops

42.2 Designing Nested Loops

deck of cards

IList<Suit> suits = ...
IList<Rank> ranks = ...

suits.forEach(new IAction<Suit> () {
public void invoke(Suit suit) {
ranks.forEach(new IAction<Rank> () {
public void invoke(Rank rank) {
deck.add(new Card(suit,rank));

104Guy Steele, a co-specifier of the language, has repeatedly agreed with this statement in
public, the last time during a talk in Northeastern University’s ACM Curriculum Series.
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}
})

}
})

for (Suit suit : suits)
for (Rank rank : ranks)

sortedDeck.add(new Card(suit, rank));

42.3 Why Loops are Bad

43 From Design to Loops

44 ArrayLists

relative to absolute distances
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Intermezzo 7: Loops

syntax
typing and subtyping
BUT semantics: compile to the Object based solution with subtyping
error messages are weird:
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TODO

purpose: some more Java linguistic (static, packages); some Java lib stuff
(collections, stacks); some Java GUI stuff (world, if you don’t have our li-
braries)



VIII Java

46 Some Java Linguistics

packages
final
+ is overloaded for strings
static inner classes

47 Some Java Libraries

collections, maps, stacks, queues, ...

48 Java User Interfaces

48.1 Scanning and parsing

48.2 Graphical User Interfaces

some minor swing and friends

49 Java doc



650 Section 49

To CHECK

Developing Large Programs
Iterative Refinement
Layers of Data Abstraction

1. AM I INTRODUCING OVERLOADED METHODS PROPERLY?

2. AM I INTRODUCING OBJECT as SUPER before V?

3. WHEN do I drop ”this”?

———————————

4. cross-check all figures: captions, code arrangements

5. cross-check all code displays: left margin, top margin

(a) frame classes, interfaces separately

(b) arrange boxes similarly

(c) format Java comments properly // $\\mbox{ ... }

use this

the purpose statement of every boolean typed method should be
a question

(d) diagrams: classes that implements interfaces shouldn’t repeat
methods

From David: Diagram conventions for classes with no fields ver-
sus interfaces are inconsistent.

Sometimes (eg. Fig 16) an interface is denoted with double un-
derline:

+--------------+
| ITaxiVehicle |
+--------------+
+--------------+

Sometimes (eg. Fig 18) it is denoted with single underline:

+------+
| ILog |
+------+
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Most of the time (eg. Fig 30), a class with no fields is drawn with
single underline:

+---------+
| MTShots |
+---------+

But sometimes they are drawn with a double underline, as in Fig
31:

+------+
| Blue |
+------+
+------+

(e) code: add(?) information about the package imports to world-
ish figures

6. cross check all Designing subsections for style/content

7. check on examples clases, should they have 0-ary constructors?
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To Do

1. make sure to say how to create instances of Object at the end of chap-
ter 4 when Object is introduced

2. part should be chapter

3. should stub definitions replace headers in the design recipe?

4. else { should be on a line by itself. The whole if { } else { } type setting
requires a close look.

5. templates shouldn’t have comments

6. CHANGE RECIPE SO THAT STUDENTS USE THE TYPES OF THE
INVENTORY ITEMS

7. ?? replace ”template” with ”inventory”, plus footnote ??

8. use ’natural recursion’ a lot in chapters 2 and forth

9. drop this. from iv on up

10. add exercises to the section on method dispatch and type checking

11. ProfessorJ Companion Guide (appendix? on-line?)

12. Eclispe transition as a separate guide (appendix? on-line?)
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Unallocated Goals
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File allocations
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