
Functional Programming is Easy,
and Good for You

Matthias Felleisen (PLT)
Northeastern University

I am not a salesman.

Functional Programming

Functional Programming Functional Programming Languages

Functional Programming Functional Programming Languages!=

Functional Programming Functional Programming Languages!=
Theorem

Proof:

Functional Programming Functional Programming Languages!=
Theorem

Proof:

Functional Programming Functional Programming Languages

Functional Programming Functional Programming Languages

pure
Clean

mostly
OCaml

Functional Programming Functional Programming Languages

pure
Clean

mostly
OCaml

lazy
Haskell

strict
all others

Functional Programming Functional Programming Languages

pure
Clean

mostly
OCaml

lazy
Haskell

strict
all others

typed
SML

untyped
Scheme

Functional Programming Functional Programming Languages

pure
Clean

mostly
OCaml

lazy
Haskell

strict
all others

typed
SML

untyped
Scheme

first-order
ACL2

higher-order
all others

Functional Programming Functional Programming Languages

pure
Clean

mostly
OCaml

lazy
Haskell

strict
all others

typed
SML

untyped
Scheme

first-order
ACL2

higher-order
all others

standard VM
F#, Scala

special VM
Racket

Functional Programming Functional Programming Languages

pure
Clean

mostly
OCaml

lazy
Haskell

strict
all others

typed
SML

untyped
Scheme

first-order
ACL2

higher-order
all others

standard VM
F#, Scala

special VM
Racket

distributed
Erlang

parallel
Clojure

If all of this is functional programming (languages),
isn’t it all overwhelming and difficult?

If all of this is functional programming (languages),
isn’t it all overwhelming and difficult?

{Not at all. And I am here to explain
what
why
+/-

What is Functional Programming?
What is a Functional Programming Language?

Pop Quiz

Pop Quiz

Though [it] came from many
motivations, ... one was to find
a more flexible version of
assignment, and then to try to
eliminate it altogether.

Favor immutability.

Use value objects when possible.

: Who said this?

Though [it] came from many
motivations, ... one was to find
a more flexible version of
assignment, and then to try to
eliminate it altogether.
 Alan Kay,
 History of Sma!talk (1993)

Favor immutability.
 Joshua Bloch,

Effective Java (2001)

Use value objects when possible.
 Kent Beck,

Test Driven Development (2001)

Answer: The OO Experts

So one definition of functional
programming is

 no (few) assignment statements
 no (few) mutable objects.

One Definition of Functional Programming

So one definition of functional
programming is

 no (few) assignment statements
 no (few) mutable objects.

One Definition of Functional Programming

some method

So one definition of functional
programming is

 no (few) assignment statements
 no (few) mutable objects.

One Definition of Functional Programming

same inputsame input

some method

So one definition of functional
programming is

 no (few) assignment statements
 no (few) mutable objects.

One Definition of Functional Programming

same inputsame input

some method

same output

(most of the time)

some method

another method

your program

Another Definition

some method

another method

your program

Another Definition

implicit
communication

some method

another method

your program

Another Definition

implicit
communication

some method

another method

explicit
composition

your program

Another Definition

What does this mean concretely?

According to either definition,
you can program functionally

in any programming language.

According to either definition,
you can program functionally

in any programming language.
A functional language
ensures that you don’t

accidentally cheat.

midnight`click’

`click’

initial
states

intermediate
states

final
states

traffic light simulator

imperative OOPL

initial: setToRed
onTick: setTime
onClick: nextColor
stopWhen:atMidnight,renderWarning
toDraw: renderTrafficLight

type State = Color x Time
State current = ...

void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

imperative OOPL

initial: setToRed
onTick: setTime
onClick: nextColor
stopWhen:atMidnight,renderWarning
toDraw: renderTrafficLight

type State = Color x Time
State current = ...

void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

initial: setToRed
onTick: setTime
onClick: nextColor
stopWhen: atMidnight,renderWarning
toDraw: renderTrafficLight

functional

type State =
 Initial U Intermediate U Final

Initial setToRed()
State nextColor(State current)
Image renderLight(State current)
State setTime(State current)
boolean atMidnight(State current) : Final
Image renderWarning(Final current)

initial: setToRed
onTick: setTime
onClick: nextColor
stopWhen: atMidnight,renderWarning
toDraw: renderTrafficLight

functional

type State =
 Initial U Intermediate U Final

Initial setToRed()
State nextColor(State current)
Image renderLight(State current)
State setTime(State current)
boolean atMidnight(State current) : Final
Image renderWarning(Final current)

explicit state
transformations

allow local reasoning

initial: setToRed
onTick: setTime
onClick: nextColor
stopWhen: atMidnight,renderWarning
toDraw: renderTrafficLight

functional

type State =
 Initial U Intermediate U Final

Initial setToRed()
State nextColor(State current)
Image renderLight(State current)
State setTime(State current)
boolean atMidnight(State current) : Final
Image renderWarning(Final current)

explicit state
transformations

allow local reasoning

setToRed();
renderLight();
nextColor();
nextColor();
setTime();
renderLight();
nextColor();

if atMidnight()
 renderWarning()
else
renderLight();

Imperative Programming

setToRed();
renderLight();
nextColor();
nextColor();
setTime();
renderLight();
nextColor();

if atMidnight()
 renderWarning()
else
renderLight();

Imperative Programming Functional Programming
State s1 = setToRed()
Image i1 = renderLight(s1)
State s2 = nextColor(s1)
State s3 = nextColor(s2)
State s4 = setTime(s3)
Image i4 = renderLight(s4)
State s5 = nextColor(s4)

Image i5 =
 atMidnight(s5) ?
 renderWarning(s5),
 renderLight(s5)

It all looks easy.

It all looks easy.

So what’s the catch?

Imagine a state that uses a record,
which contains vector in each slot,
and each record contains maps that

map names to lists of immutable data.
And imagine that you want to equip

the monster with a dagger.

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

Imagine a state that uses a record,
which contains vector in each slot,
and each record contains maps that

map names to lists of immutable data.
And imagine that you want to equip

the monster with a dagger.

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

Imagine a state that uses a record,
which contains vector in each slot,
and each record contains maps that

map names to lists of immutable data.
And imagine that you want to equip

the monster with a dagger.

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

State

Imagine a state that uses a record,
which contains vector in each slot,
and each record contains maps that

map names to lists of immutable data.
And imagine that you want to equip

the monster with a dagger.

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

State

Imagine a state that uses a record,
which contains vector in each slot,
and each record contains maps that

map names to lists of immutable data.
And imagine that you want to equip

the monster with a dagger.

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

State

state.monsters[i][“orc”].addList(“dagger”);

Imperative Programming

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

Context x List<Weapon> <c,w> = unzip(state);
List<Weapon> new_list = addList(“dagger”);
zip(c,new_list);

Functional Programming

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

Context x List<Weapon> <c,w> = unzip(state);
List<Weapon> new_list = addList(“dagger”);
zip(c,new_list);

Functional Programming

type State =
 { monsters : Vector<Monster>,
 fighter : Status,
 turns : Natural }
type Monster =
 Map<String,List<Weapon>>
type Weapon = ...

complex
operations

State

Context x List<Weapon> <c,w> = unzip(state);
List<Weapon> new_list = addList(“dagger”);
zip(c,new_list);

Functional Programming

State

Context x List<Weapon> <c,w> = unzip(state);
List<Weapon> new_list = addList(“dagger”);
zip(c,new_list);

Functional Programming

going in

State

Context x List<Weapon> <c,w> = unzip(state);
List<Weapon> new_list = addList(“dagger”);
zip(c,new_list);

Functional Programming

coming out

going in

a problem of
expressiveness

(“notational” overhead)

a problem of
algorithmics

(“slow” performance)

a problem of
expressiveness

(“notational” overhead)

a problem of
algorithmics

(“slow” performance)

solution 1: zip/unzip &
functional data structures

a problem of
expressiveness

(“notational” overhead)

a problem of
algorithmics

(“slow” performance)

solution 1: zip/unzip &
functional data structures solution 2: monads

and other fancy constructs

a problem of
expressiveness

(“notational” overhead)

a problem of
algorithmics

(“slow” performance)

solution 1: zip/unzip &
functional data structures solution 2: monads

and other fancy constructs

solution 3: “bite the bullet” --
allow mutation in FP and FPLs

solution 1: functional data
structures do not truly

eliminate notational overhead

a problem of
expressiveness

solution 1: functional data
structures do not truly

eliminate notational overhead

solution 2: monads
gets close. The remaining
type overhead is arguably

an advantage. It helps
tame side effects.

a problem of
expressiveness

solution 1: functional data
structures do not truly

eliminate notational overhead

solution 2: monads
gets close. The remaining
type overhead is arguably

an advantage. It helps
tame side effects. solution 3: mutation in FP and FPLs

eliminates the problem as much as
desired. Danger: it opens the flood

gate for careless programmers.

a problem of
expressiveness

functional data structures: we have
no proof that functional data
structures are as efficient as
imperative programming.

a problem of
algorithmics:

theory

functional data structures: we have
no proof that functional data
structures are as efficient as
imperative programming.

monads: they
are implemented imperatively.

Period.

a problem of
algorithmics:

theory

functional data structures: we have
no proof that functional data
structures are as efficient as
imperative programming.

monads: they
are implemented imperatively.

Period. assignments in FPLs: they
eliminates the problem as
much as desired. Danger:
it tempts programmers to
use mutation too much.

a problem of
algorithmics:

theory

mix and match: people tend to
combine monads or mutation with

functional data structures.

a problem of
algorithmics:

in practice

mix and match: people tend to
combine monads or mutation with

functional data structures.

measuring end-to-end
performance: efficiency is in

practice indistinguishable from
imperative programming.

a problem of
algorithmics:

in practice

mix and match: people tend to
combine monads or mutation with

functional data structures.

measuring end-to-end
performance: efficiency is in

practice indistinguishable from
imperative programming.

catch: it takes experience
to reach this point.

a problem of
algorithmics:

in practice

About Myself

I am not a purist.
I am not neutral.

About Myself

I am not a purist.
I am not neutral.

research: objects, assignment
statements, design patterns,
web servlets, continuations,

modules, functional I/O, etc.

programming: mostly
functional, but OO and

imperative as neede

About Myself

I am not a purist.
I am not neutral.

research: objects, assignment
statements, design patterns,
web servlets, continuations,

modules, functional I/O, etc.

programming: mostly
functional, but OO and

imperative as neede

teaching: start with functional
programming in purely

functional, strict languages
for 10,000s of students, starting
in 7th grade all the way to M.S.

Why Functional Programming?
Why a Functional Programming Language?

program

program
run

program
create

run

program
create

runtest

program
create

runtest

maintain

program
create

runtest

maintain

port

program
create

runtest

maintain

port

Programs must be written for people to
read, and only incidentally for machines to
execute. from: Abelson & Sussman, SICP

The cost of software is a function of the
cost of programmer communication.

The cost of software is a function of the
cost of programmer communication.

Functional programming and better
functional programming languages

greatly reduce the cost of communication
and thus the cost of software.

There are many sides to the cost story:
human, training, technical.

1995:
DrScheme

15 yrs of FP
in high schools

1995:
DrScheme

15 yrs of FP
in high schools

2005: Bootstrap
for grades 6-8

1995:
DrScheme

15 yrs of FP
in high schools

2005: Bootstrap
for grades 6-8

Animations

Interactive Games

Distributed Games,
Chat Rooms

1995:
DrScheme

15 yrs of FP
in high schools

2005: Bootstrap
for grades 6-8

If these students
can do FP, it is easy

Animations

Interactive Games

Distributed Games,
Chat Rooms

1995:
DrScheme

15 yrs of FP
in high schools

2005: Bootstrap
for grades 6-8

If these students
can do FP, it is easy

Why did these students
improve so much in math?

Why do they pass the state test?

Animations

Interactive Games

Distributed Games,
Chat Rooms

Northeastern University:
5 year programs, including three 6-month

supervised co-op positions in industry

2001:
conventional first-year

introduction to OO (Java)
programming and discrete math

Northeastern University:
5 year programs, including three 6-month

supervised co-op positions in industry

2001:
conventional first-year

introduction to OO (Java)
programming and discrete math

only 1/3 of the students
get co-op positions that
involve programming

Northeastern University:
5 year programs, including three 6-month

supervised co-op positions in industry

2001:
conventional first-year

introduction to OO (Java)
programming and discrete math

only 1/3 of the students
get co-op positions that
involve programming

2006:
functional-then-OO first-year
introduction to programming

and discrete math

Northeastern University:
5 year programs, including three 6-month

supervised co-op positions in industry

2001:
conventional first-year

introduction to OO (Java)
programming and discrete math

only 1/3 of the students
get co-op positions that
involve programming

over 2/3 of the students
get co-op positions that
involve programming

2006:
functional-then-OO first-year
introduction to programming

and discrete math

Northeastern University:
5 year programs, including three 6-month

supervised co-op positions in industry

2001:
conventional first-year

introduction to OO (Java)
programming and discrete math

only 1/3 of the students
get co-op positions that
involve programming

over 2/3 of the students
get co-op positions that
involve programming

2006:
functional-then-OO first-year
introduction to programming

and discrete math

Graduate dean: “Industry asks, why can’t
your MS students program as well as your

undergraduates?”

Northeastern University:
2 year MS programs (one co-op)

now comes with a 4-month introduction
to Functional Program Design

called “Bootcamp”

Teaching FP has a highly beneficial effect on programmers
even if they don’t end up programming that way.

Teaching FP has a highly beneficial effect on programmers
even if they don’t end up programming that way.

Time to look at some technical points.

f(x,y,z) =
 ...⎰ f(g(x), h(y), i(z,x)) dx ...

Mathematics

From mathematical models to programs

f(x,y,z) =
 ...⎰ f(g(x), h(y), i(z,x)) dx ...

Mathematics

f(x,y,z) =
 ...integrate(f(g(x), h(y), i(z,x)))...

Program

From mathematical models to programs

f(x,y,z) =
 ...⎰ f(g(x), h(y), i(z,x)) dx ...

Mathematics

f(x,y,z) =
 ...integrate(f(g(x), h(y), i(z,x)))...

Program

Yes, they basically look
the same and it is easy

to convince yourself that
they mean the same.

From mathematical models to programs

type Contract =
 zero
 | scale of Contract * Double
 | and of Contract * Contract
 | until of Contract * Observation
 | ...

From algebraic types to functions

type Contract =
 zero
 | scale of Contract * Double
 | and of Contract * Contract
 | until of Contract * Observation
 | ...

fun Number value(Contract c, Model m) =
 case c
 zero -> ...
 | scale(base,fac) -> . value(base,m) .
 | and(c1,c2) -> . value(c1,m) ...
 . value(c2,m) ...
 | until(base,obs) -> . value(base,m) ...
 | ...

algebraic types translate directly into a function outline

From algebraic types to functions

type Contract =
 zero
 | scale of Contract * Double
 | and of Contract * Contract
 | until of Contract * Observation
 | ...

fun Number value(Contract c, Model m) =
 case c
 zero -> ...
 | scale(base,fac) -> . value(base,m) .
 | and(c1,c2) -> . value(c1,m) ...
 . value(c2,m) ...
 | until(base,obs) -> . value(base,m) ...
 | ...

algebraic types translate directly into a function outline

Imagine all the OO design patterns you need in Java.

From algebraic types to functions

type State = Color x Time

void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

ImperativeFrom function signatures to understanding

type State = Color x Time

void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

type State = Initial U Intermediate U Final

Initial setToRed()
State nextColor(State current)
Image renderLight(State current)
State setTime(State current)
boolean atMidnight(State current) : Final
Image renderWarning(Final current)

Functional

ImperativeFrom function signatures to understanding

type State = Color x Time

void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

type State = Initial U Intermediate U Final

Initial setToRed()
State nextColor(State current)
Image renderLight(State current)
State setTime(State current)
boolean atMidnight(State current) : Final
Image renderWarning(Final current)

Functional

Imperative

Type signatures convey a lot of information.

From function signatures to understanding

type State = Color x Time

void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

type State = Initial U Intermediate U Final

Initial setToRed()
State nextColor(State current)
Image renderLight(State current)
State setTime(State current)
boolean atMidnight(State current) : Final
Image renderWarning(Final current)

Functional

Imperative

Type signatures convey a lot of information.

VOID conveys nothing.

From function signatures to understanding

type State = Color x Time

void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

type State = Initial U Intermediate U Final

Initial setToRed()
State nextColor(State current)
Image renderLight(State current)
State setTime(State current)
boolean atMidnight(State current) : Final
Image renderWarning(Final current)

Functional

Imperative

Type signatures convey a lot of information.

VOID conveys nothing.

From function signatures to understanding

Subtract $10 for every VOID return
type in your programmers code.

test case {
 setUpForSetTime();
 setTime();
 testCurrentState(expectedState);
 testFrameConditions();
 tearDownSetTime()
}

ImperativeFrom functions to testing

test case {
 setUpForSetTime();
 setTime();
 testCurrentState(expectedState);
 testFrameConditions();
 tearDownSetTime()
}

test case {
 compare(setTime(someState),expectedState);
}

Functional

ImperativeFrom functions to testing

test case {
 setUpForSetTime();
 setTime();
 testCurrentState(expectedState);
 testFrameConditions();
 tearDownSetTime()
}

test case {
 compare(setTime(someState),expectedState);
}

Functional

Imperative

state is transferred explicitly
and can be understood in isolation

From functions to testing

test case {
 setUpForSetTime();
 setTime();
 testCurrentState(expectedState);
 testFrameConditions();
 tearDownSetTime()
}

test case {
 compare(setTime(someState),expectedState);
}

Functional

Imperative

state is transferred explicitly
and can be understood in isolation

From functions to testing

Tests in the functional world become
“one liners”. And that works for

compositions, too.

search_good_solution(
 criteria,
 generate_all_solutions(model, state0));

Function Composition in Action

search_winning_move(
 improve_likelihood(current_state),
 generate_all_moves(model, state0));

search_winning_move(
 improve_likelihood(current_state),
 generate_all_moves(model, state0));

all?

search_winning_move(
 improve_likelihood(current_state),
 generate_all_moves(model, state0));

Yes, on demand.
Lazy data structures enable

a powerful, yet simple
 compositional style

all?

search_winning_move(
 improve_likelihood(current_state),
 generate_all_moves(model, state0));

game tree

search_winning_move(
 improve_likelihood(current_state),
 generate_all_moves(model, state0));

game tree

evaluate some nodes, not all

search_winning_move(
 improve_likelihood(current_state),
 generate_all_moves(model, state0));

game tree

evaluate some nodes, not all

Imperative OOP can express this idea,
but only in extremely ugly ways,

too ugly for this slide.

Function composition is pervasive,
even in the strict world.

Financial Contracts as Functional Compostion

type Contract ... Observation ... Currency

fun Contract zero() ...
fun Contract one(Currency c) ...
fun Contract when(Obs t, Contract c) ...
fun Contract scale(Double s, Contract c)...
fun Observation at(Date d) : Obs ...

Combinator DSL

Financial Contracts as Functional Compostion

type Contract ... Observation ... Currency

fun Contract zero() ...
fun Contract one(Currency c) ...
fun Contract when(Obs t, Contract c) ...
fun Contract scale(Double s, Contract c)...
fun Observation at(Date d) : Obs ...

Combinator DSL

fun zero_coupon_discount_bond(t,x,k) =
 when (at t) (scale (konst x) (one k))

Financial Contracts as Functional Compostion

type Contract ... Observation ... Currency

fun Contract zero() ...
fun Contract one(Currency c) ...
fun Contract when(Obs t, Contract c) ...
fun Contract scale(Double s, Contract c)...
fun Observation at(Date d) : Obs ...

Combinator DSL

fun zero_coupon_discount_bond(t,x,k) =
 when (at t) (scale (konst x) (one k))

One Contract

Financial Contracts as Functional Compostion

type Contract ... Observation ... Currency

fun Contract zero() ...
fun Contract one(Currency c) ...
fun Contract when(Obs t, Contract c) ...
fun Contract scale(Double s, Contract c)...
fun Observation at(Date d) : Obs ...

Combinator DSL

fun zero_coupon_discount_bond(t,x,k) =
 when (at t) (scale (konst x) (one k))

One Contract
Simon Peyton Jones

Simple functions represent basic ideas.

Simple functions represent basic ideas.

Combinator functions combine ideas.

Simple functions represent basic ideas.

Combinator functions combine ideas.

With function composition
programmers create and communicate

programs in combinator DSLs.

Functional programming
languages in the LISP tradition
use a “template” approach to

DSLs in addition to combinators
(Scheme, Clojure, Racket,

Template Haskell).

The last part of the functional story:
parallelism.

Compilers think, too.

some expression

another expression

your program

Remember the Definition

implicit
communication

some expression another expression

your program

aFun(,)
implicit

communication

some expression another expression

your program

aFun(,)
run in parallel

some expression another expression

your program

aFun(,)
run in parallel

In the purely functional world,
the compiler does not need proof

of non-interference. It is built into
the programming language.

Implicit parallelism is free
in functional programming languages.

Sadly, this story is naive and unrealistic,
and yet it contains the key to a parallel future.

Sadly, this story is naive and unrealistic,
and yet it contains the key to a parallel future.

In the imperative world
mutation creates too few
opportunities for automatic
parallel execution.

In the functional world a lack
of dependencies means too
many opportunities for
automatic parallel execution.

Sadly, this story is naive and unrealistic,
and yet it contains the key to a parallel future.

In the imperative world
mutation creates too few
opportunities for automatic
parallel execution.

In the functional world a lack
of dependencies means too
many opportunities for
automatic parallel execution.

The imperative world
will see explicit parallel
programming and the
big battle against race
condition bugs.

Sadly, this story is naive and unrealistic,
and yet it contains the key to a parallel future.

In the imperative world
mutation creates too few
opportunities for automatic
parallel execution.

In the functional world a lack
of dependencies means too
many opportunities for
automatic parallel execution.

The imperative world
will see explicit parallel
programming and the
big battle against race
condition bugs.

The functional world will
provide explicit parallel
programming with fewer
race conditions.

25 years of research on
parallelism for FORTRAN calls
for mostly functional
intermediate compiler
representations (PDGs, SSAs).

Explicit parallelism is easy
in functional programming

languages.

25 years of research on
parallelism for FORTRAN calls
for mostly functional
intermediate compiler
representations (PDGs, SSAs).

Functional programming
languages make the
dependencies explicit and
thus facilitate the
compiler’s reasoning task.

Explicit parallelism is easy
in functional programming

languages.

So what is my favorite functional language?

What is my favorite
functional programming language?

The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The FrTime language
 - functional reactive programming

The Web language

The Scribble language
The Slideshow language

The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The FrTime language
 - functional reactive programming

The Web language

The Scribble language
The Slideshow language

The Foundation (10 core constructs)

The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The FrTime language
 - functional reactive programming

The Web language

The Scribble language
The Slideshow language

The Foundation (10 core constructs)

powerful DSL Framework

The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The FrTime language
 - functional reactive programming

The Web language

The Scribble language
The Slideshow language

The Foundation (10 core constructs)

powerful DSL Framework
Matthew Flatt, UUtah

Summary

Functional programming is
about clear, concise

communication between
programmers.

A good transition needs
training, but training pays off.

Functional programming
languages keep you honest

about being functional.

Thank You

Though Smalltalk came from many
motivations, ... one was to find a more
flexible version of assignment, and
then to try to eliminate it altogether.
 Alan Kay,
 History of Sma!talk (1993)

Favor immutability.
 Joshua Bloch,

Effective Java (2001)

Use value objects when possible.
 Kent Beck,

Test Driven Development (2001)

Thank You

