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If all of this is functional programming (languages),
isn’t it all overwhelming and difficult?



If all of this is functional programming (languages),
isn’t it all overwhelming and difficult?

{Not at all. And I am here to explain
what
why
+/-



What is Functional Programming? 
What is a Functional Programming Language?



Pop Quiz



Pop Quiz

Though [it] came from many 
motivations, ... one was to find 
a more flexible version of 
assignment, and then to try to 
eliminate it altogether.
  

Favor immutability.
     

Use value objects when possible.
    

:  Who said this? 



Though [it] came from many 
motivations, ... one was to find 
a more flexible version of 
assignment, and then to try to 
eliminate it altogether.
        Alan Kay, 
      History of Sma!talk  (1993)

Favor immutability.
     Joshua Bloch, 

Effective Java (2001)

Use value objects when possible.
    Kent Beck,

Test Driven Development (2001)

Answer: The OO Experts
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One Definition of Functional Programming

same inputsame input

some method

same output

(most of the time)
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some method

another method

explicit
composition

your program

Another Definition



What does this mean concretely?



According to either definition, 
you can program functionally 

in any programming language.



According to either definition, 
you can program functionally 

in any programming language.
A functional language 
ensures that you don’t 

accidentally cheat.
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boolean atMidnight() { ... }
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setToRed();
renderLight();
nextColor();
nextColor();
setTime();
renderLight();
nextColor();

if atMidnight()
 renderWarning()
else 
renderLight();

Imperative Programming



setToRed();
renderLight();
nextColor();
nextColor();
setTime();
renderLight();
nextColor();

if atMidnight()
 renderWarning()
else 
renderLight();

Imperative Programming Functional Programming
State s1 = setToRed()
Image i1 = renderLight(s1)
State s2 = nextColor(s1)
State s3 = nextColor(s2)
State s4 = setTime(s3)
Image i4 = renderLight(s4)
State s5 = nextColor(s4)

Image i5 = 
 atMidnight(s5) ? 
 renderWarning(s5), 
 renderLight(s5)



It all looks easy.



It all looks easy.

So what’s the catch? 



Imagine a state that uses a record, 
which contains vector in each slot, 
and each record contains maps that 

map names to lists of immutable data.
And imagine that you want to equip 

the monster with a dagger.

type State   =
  { monsters : Vector<Monster>,
    fighter  : Status,
    turns    : Natural }
type Monster = 
  Map<String,List<Weapon>> 
type Weapon  = ...           
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state.monsters[i][“orc”].addList(“dagger”);

Imperative Programming

type State   =
  { monsters : Vector<Monster>,
    fighter  : Status,
    turns    : Natural }
type Monster = 
  Map<String,List<Weapon>> 
type Weapon  = ...           



Context x List<Weapon> <c,w> = unzip(state);
List<Weapon> new_list = addList(“dagger”);
zip(c,new_list);

Functional Programming
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Functional Programming

type State   =
  { monsters : Vector<Monster>,
    fighter  : Status,
    turns    : Natural }
type Monster = 
  Map<String,List<Weapon>> 
type Weapon  = ...           

complex 
operations
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State

Context x List<Weapon> <c,w> = unzip(state);
List<Weapon> new_list = addList(“dagger”);
zip(c,new_list);

Functional Programming

coming out

going in
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a problem of 
expressiveness

(“notational” overhead)

a problem of 
algorithmics

(“slow” performance)

solution 1:  zip/unzip & 
functional data structures solution 2:  monads

and other fancy constructs

solution 3:  “bite the bullet” --
allow mutation in FP and FPLs
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solution 1:  functional data
structures do not truly 

eliminate notational overhead

solution 2:  monads
gets close. The remaining 
type overhead is arguably 

an advantage. It helps 
tame side effects. solution 3:  mutation in FP and FPLs

eliminates the problem as much as 
desired. Danger: it opens the flood 

gate for careless programmers.

a problem of 
expressiveness
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functional data structures:  we have 
no proof that functional data 
structures are as efficient as 
imperative programming.  

monads:  they
are implemented imperatively.

Period. assignments in FPLs:  they 
eliminates the problem as 
much as desired. Danger: 
it tempts programmers to 
use mutation too much.

a problem of 
algorithmics:

theory 
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mix and match:  people tend to 
combine monads or mutation with 

functional data structures. 

measuring end-to-end 
performance:  efficiency is in 

practice indistinguishable from 
imperative programming. 

catch:  it takes experience 
to reach this point. 

a problem of 
algorithmics:

in practice 
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About Myself

I am not a purist.
I am not neutral.

research: objects, assignment 
statements, design patterns, 
web servlets, continuations, 

modules, functional I/O, etc.

programming: mostly 
functional, but OO and 

imperative as neede

teaching: start with functional 
programming in purely 

functional, strict languages
for 10,000s of students, starting
in 7th grade all the way to M.S.



Why Functional Programming? 
Why a Functional Programming Language?
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program
create

runtest

maintain

port

Programs must be written for people to 
read, and only incidentally for machines to 
execute.  from: Abelson & Sussman, SICP



The cost of software is a function of the 
cost of programmer communication. 



The cost of software is a function of the 
cost of programmer communication. 

Functional programming and better 
functional programming languages

greatly reduce the cost of communication 
and thus the cost of software. 



There are many sides to the cost story: 
human, training, technical.
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1995:
DrScheme

15 yrs of FP
in high schools

2005: Bootstrap
for grades 6-8

If these students 
can do FP, it is easy

Why did these students 
improve so much in math?

Why do they pass the state test?

Animations

Interactive Games

Distributed Games,
Chat Rooms
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Northeastern University: 
5 year programs, including three 6-month 

supervised co-op positions in industry

2001: 
conventional first-year 

introduction to OO (Java) 
programming and discrete math

only 1/3 of the students 
get co-op positions that 
involve programming

over 2/3 of the students 
get co-op positions that 
involve programming

2006: 
functional-then-OO first-year 
introduction to programming 

and discrete math

Graduate dean: “Industry asks, why can’t 
your MS students program as well as your 

undergraduates?”



Northeastern University: 
2 year MS programs (one co-op)

now comes with a 4-month introduction 
to Functional Program Design 

called “Bootcamp”



Teaching FP has a highly beneficial effect on programmers
even if they don’t end up programming that way.



Teaching FP has a highly beneficial effect on programmers
even if they don’t end up programming that way.

Time to look at some technical points.
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f(x,y,z) =  
     ...⎰ f(g(x), h(y), i(z,x)) dx ...

Mathematics

f(x,y,z) =  
    ...integrate(f(g(x), h(y), i(z,x)))...

Program

Yes, they basically look 
the same and it is easy 

to convince yourself that
they mean the same.

From mathematical models to programs
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type Contract = 
   zero
 | scale of Contract * Double
 | and   of Contract * Contract
 | until of Contract * Observation
 | ...

fun Number value(Contract c, Model m) =
 case c
   zero            -> ...
 | scale(base,fac) -> . value(base,m) .
 | and(c1,c2)      -> . value(c1,m) ...
                      . value(c2,m) ...
 | until(base,obs) -> . value(base,m) ...
 | ...   

algebraic types translate directly into a function outline

Imagine all the OO design patterns you need in Java.

From algebraic types to functions
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void setToRed() { ... }
void nextColor() { ... }
void renderTrafficLight() { ... }
void setTime() { ... }
boolean atMidnight() { ... }
void renderWarning() { ... }

type State = Initial U Intermediate U Final 

Initial setToRed()
State   nextColor(State current) 
Image   renderLight(State current)
State   setTime(State current)
boolean atMidnight(State current) : Final
Image   renderWarning(Final current)

Functional

Imperative

Type signatures convey a lot of information. 

VOID conveys nothing. 

From  function signatures to understanding

Subtract $10 for every VOID return 
type in your programmers code.
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test case { 
   setUpForSetTime();
   setTime();
   testCurrentState(expectedState);
   testFrameConditions();
   tearDownSetTime()
}

test case {
 compare(setTime(someState),expectedState);
}

Functional

Imperative

state is transferred explicitly
and can be understood in isolation

From  functions to testing

Tests in the functional world become 
“one liners”. And that works for 

compositions, too. 



search_good_solution(
   criteria,
   generate_all_solutions(model, state0));

Function Composition in Action
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search_winning_move(
   improve_likelihood(current_state),
   generate_all_moves(model, state0));

Yes, on demand. 
Lazy data structures enable 

a powerful, yet simple
 compositional style

all?
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search_winning_move(
   improve_likelihood(current_state),
   generate_all_moves(model, state0));

game tree

evaluate some nodes, not all

Imperative OOP can express this idea, 
but only in extremely ugly ways, 

too ugly for this slide.



Function composition is pervasive, 
even in the strict world.
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Financial Contracts as Functional Compostion

type Contract ... Observation ... Currency

fun Contract zero() ...
fun Contract one(Currency c) ...
fun Contract when(Obs t, Contract c) ...
fun Contract scale(Double s, Contract c)...
fun Observation at(Date d) : Obs ...

Combinator DSL

fun zero_coupon_discount_bond(t,x,k) =
  when (at t) (scale (konst x) (one k))

One Contract
Simon Peyton Jones 
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Simple functions represent basic ideas.

Combinator functions combine ideas.

With function composition 
programmers create and communicate 

programs in combinator DSLs. 



Functional programming 
languages in the LISP tradition 
use a “template” approach to 

DSLs in addition to combinators
(Scheme, Clojure, Racket, 

Template Haskell).



The last part of the functional story:
parallelism.

Compilers think, too.



some expression

another expression

your program

Remember the  Definition

implicit
communication
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aFun( , )
implicit
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your program

aFun( , )
run in parallel

In the purely functional world, 
the compiler does not need proof 

of non-interference. It is built into 
the programming language. 



Implicit parallelism is free 
in functional programming languages.
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and yet it contains the key to a parallel future.



Sadly, this story is naive and unrealistic, 
and yet it contains the key to a parallel future.

In the imperative world 
mutation creates too few 
opportunities for automatic 
parallel execution.

In the functional world a lack 
of dependencies means too 
many opportunities for 
automatic parallel execution.



Sadly, this story is naive and unrealistic, 
and yet it contains the key to a parallel future.

In the imperative world 
mutation creates too few 
opportunities for automatic 
parallel execution.

In the functional world a lack 
of dependencies means too 
many opportunities for 
automatic parallel execution.

The imperative world 
will see explicit parallel 
programming and the 
big battle against race 
condition bugs. 



Sadly, this story is naive and unrealistic, 
and yet it contains the key to a parallel future.

In the imperative world 
mutation creates too few 
opportunities for automatic 
parallel execution.

In the functional world a lack 
of dependencies means too 
many opportunities for 
automatic parallel execution.

The imperative world 
will see explicit parallel 
programming and the 
big battle against race 
condition bugs. 

The functional world will 
provide explicit parallel 
programming with fewer 
race conditions.
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25 years of research on 
parallelism for FORTRAN calls 
for mostly functional 
intermediate compiler 
representations (PDGs, SSAs). 

Functional programming 
languages make the 
dependencies explicit and 
thus facilitate the 
compiler’s reasoning task.

Explicit parallelism is easy 
in functional programming 

languages.



So what is my favorite functional language?
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The Racket language
 - pattern matching et al.
 - classes
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams 
 - lazy trees 

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The FrTime language
 - functional reactive programming

The Web language

The Scribble language
The Slideshow language

The Foundation (10 core constructs)                                                                                   

powerful DSL Framework
Matthew Flatt, UUtah



Summary



Functional programming is 
about clear, concise 

communication between 
programmers. 

A good transition needs 
training, but training pays off.

Functional programming 
languages keep you honest 

about being functional.



Thank You



Though Smalltalk came from many 
motivations, ... one was to find a more 
flexible version of assignment, and 
then to try to eliminate it altogether.
        Alan Kay, 
      History of Sma!talk  (1993)

Favor immutability.
     Joshua Bloch, 

Effective Java (2001)

Use value objects when possible.
    Kent Beck,

Test Driven Development (2001)

Thank You


