
LOVE, MARRIAGE & HAPPINESS

MATTHIAS FELLEISEN, NU PRL

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987
1992

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001

G*DDAMN FOREIGNER

MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001

G*DDAMN FOREIGNER

WHAT’S LOVE GOT TO DO WITH IT

πrogramming

λanguages

You are here because
you fell in love with
something about
programming languages.

YOU CAN’T JUST KEEP YOUR FINGERS OFF

πrogramming

λanguages
The most fundamental area
of computer science. If you
don’t have a language, you
can’t compute.

YOU CAN’T JUST KEEP YOUR FINGERS OFF

πrogramming

λanguages
The most fundamental area
of computer science. If you
don’t have a language, you
can’t compute.

Developers primarily use
programming languages.
The tools we build have
meaning for them.

YOU CAN’T JUST KEEP YOUR FINGERS OFF

πrogramming

λanguages
The most fundamental area
of computer science. If you
don’t have a language, you
can’t compute.

Developers primarily use
programming languages.
The tools we build have
meaning for them.

You will get to work with
elegant mathematics and,
some of you will develop
new mathematics.

YOU CAN’T JUST KEEP YOUR FINGERS OFF

πrogramming

λanguages
The most fundamental area
of computer science. If you
don’t have a language, you
can’t compute.

Developers primarily use
programming languages.
The tools we build have
meaning for them.

You will get to work with
elegant mathematics and,
some of you will develop
new mathematics.

Where else do
you get to work
with the coolest
professors on
the planet?

SO WHAT’S IT LIKE TO GET MARRIED TO PL RESEARCH

SO WHAT’S IT LIKE TO GET MARRIED TO PL RESEARCH

IT HAS ITS UPS AND DOWNS.

IT HAS ITS UPS AND DOWNS.

Falling in love.

IT HAS ITS UPS AND DOWNS.

Falling in love.

Being in love.

IT HAS ITS UPS AND DOWNS.

Falling in love.

Being in love.

Getting thru difficult,
troublesome times …

AND LOVE IS WHAT GETS YOU BACK ON TRACK.

AND LOVE IS WHAT GETS YOU BACK ON TRACK.

But really, if you don’t love
PL, getting a PhD is hard.

AND LOVE IS WHAT GETS YOU BACK ON TRACK.

But really, if you don’t love
PL, getting a PhD is hard.

Hard because it’s
an old and now
‘hidden’ discipline.

AND LOVE IS WHAT GETS YOU BACK ON TRACK.

But really, if you don’t love
PL, getting a PhD is hard.

Hard because it’s
an old and now
‘hidden’ discipline.

HARD because it isn’t
‘hot’ with IT industry.

AND LOVE IS WHAT GETS YOU BACK ON TRACK.

But really, if you don’t love
PL, getting a PhD is hard.

Hard because it’s
an old and now
‘hidden’ discipline.

HARD because it isn’t
‘hot’ with IT industry.

H.A.R.D.

ONE LAST WARNING: IF YOU DON’T LOVE IT, LEAVE IT.

ONE LAST WARNING: IF YOU DON’T LOVE IT, LEAVE IT.

If you want to be famous, get
into Artificial Intelligence.

ONE LAST WARNING: IF YOU DON’T LOVE IT, LEAVE IT.

If you want to be famous, get
into Artificial Intelligence.

If you want to make money,
do Big Data.

ONE LAST WARNING: IF YOU DON’T LOVE IT, LEAVE IT.

If you want to be famous, get
into Artificial Intelligence.

If you want to make money,
do Big Data.

If you want a career,
switch majors. I hear our
Business School is looking
for students.

TYPES FOR UNTYPED LANGUAGES, HOW LOVE WORKS

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1987

CORKY CARTWRIGHT
“LET’S WORK ON TYPES

FOR SCHEME”

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1987

CORKY CARTWRIGHT
“LET’S WORK ON TYPES

FOR SCHEME”

1988

(It doesn’t have to be
love at first sight.)

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1987

CORKY CARTWRIGHT
“LET’S WORK ON TYPES

FOR SCHEME”

COOL! WORKING WITH
CARTWRIGHT AND FAGAN

1989

1988

(It doesn’t have to be
love at first sight.)

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1987

CORKY CARTWRIGHT
“LET’S WORK ON TYPES

FOR SCHEME”

COOL! WORKING WITH
CARTWRIGHT AND FAGAN

1989

1993/94

THE ONLY USER OF
ANDREW WRIGHT’S SOFT

SCHEME

1988

(It doesn’t have to be
love at first sight.)

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1987

CORKY CARTWRIGHT
“LET’S WORK ON TYPES

FOR SCHEME”

COOL! WORKING WITH
CARTWRIGHT AND FAGAN

1989

1993/94

THE ONLY USER OF
ANDREW WRIGHT’S SOFT

SCHEME

1988

(It doesn’t have to be
love at first sight.)

CO-CREATED SPIDEY
SCHEME WITH CORMAC

FLANAGAN

1995/97

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1987

CORKY CARTWRIGHT
“LET’S WORK ON TYPES

FOR SCHEME”

COOL! WORKING WITH
CARTWRIGHT AND FAGAN

1989

1993/94

THE ONLY USER OF
ANDREW WRIGHT’S SOFT

SCHEME

1988

(It doesn’t have to be
love at first sight.)

CO-CREATED SPIDEY
SCHEME WITH CORMAC

FLANAGAN

1995/97

MODULAR SPIDER WITH
PHILIPPE MEUNIER

1998/2003

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1987

CORKY CARTWRIGHT
“LET’S WORK ON TYPES

FOR SCHEME”

COOL! WORKING WITH
CARTWRIGHT AND FAGAN

1989

1993/94

THE ONLY USER OF
ANDREW WRIGHT’S SOFT

SCHEME

1988

(It doesn’t have to be
love at first sight.)

CO-CREATED SPIDEY
SCHEME WITH CORMAC

FLANAGAN

1995/97

MODULAR SPIDER WITH
PHILIPPE MEUNIER

1998/2003

2005-2016
TYPED RACKET W/
TOBIN-HOCHSTADT

(define (tautology? p)

 (bond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

1987

(define (tautology? p)

 (bond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

1987

(define (tautology? p)

 (bond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

THERE IS LOTS OF LISP OUT THERE
AND THEY MAY WANT TYPES.

1987

(define (tautology? p)

 (bond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

THERE IS LOTS OF LISP OUT THERE
AND THEY MAY WANT TYPES.

1987

WE WANT WIDE-SPECTRUM
PROGRAMMING.

(define (tautology? p)

 (bond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

THERE IS LOTS OF LISP OUT THERE
AND THEY MAY WANT TYPES.

PROGRAMMERS DO NOT WANT TO
COPE WITH THE IDIOSYNCRASIES OF

TYPE SYSTEMS.

1987

WE WANT WIDE-SPECTRUM
PROGRAMMING.

(define (tautology? p)

 (bond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

THERE IS LOTS OF LISP OUT THERE
AND THEY MAY WANT TYPES.

PROGRAMMERS DO NOT WANT TO
COPE WITH THE IDIOSYNCRASIES OF

TYPE SYSTEMS.

IT’LL COME TRUE IN
10 OR 20 YEARS.

1987

WE WANT WIDE-SPECTRUM
PROGRAMMING.

(define (tautology? p)

 (bond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

THERE IS LOTS OF LISP OUT THERE
AND THEY MAY WANT TYPES.

PROGRAMMERS DO NOT WANT TO
COPE WITH THE IDIOSYNCRASIES OF

TYPE SYSTEMS.

IT’LL COME TRUE IN
10 OR 20 YEARS.

1987

WE WANT WIDE-SPECTRUM
PROGRAMMING.

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

WHAT’S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

EASY! TYPE INFERENCE! ML HAS HAD IT SINCE 1978.

WE CAN SAY IT IN OCAML

type proposition = InL of bool | InR of (bool -> proposition)

let rec is_tautology p =

 match p with

 | InL b -> b

 | InR p -> is_tautology(p true) && is_tautology(p false)

is_tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or then InL x else InL y)))

WE CAN SAY IT IN OCAML

type proposition = InL of bool | InR of (bool -> proposition)

let rec is_tautology p =

 match p with

 | InL b -> b

 | InR p -> is_tautology(p true) && is_tautology(p false)

is_tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or then InL x else InL y)))

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE CAN SAY IT IN OCAML

type proposition = InL of bool | InR of (bool -> proposition)

let rec is_tautology p =

 match p with

 | InL b -> b

 | InR p -> is_tautology(p true) && is_tautology(p false);;

is_tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or then InL x else InL y)))

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

WE DON’T WANT TO WRITE DOWN TYPE
DEFINITIONS. WE DON’T WANT TO ADD

INSERTIONS AND PROJECTIONS.

SO HOW COULD WE SAY THIS IN SCHEME?

▸ replace ML’s type algebra (x, *, ->, …)

▸ with Remy’s extensible records exclusively

▸ make it work for 100-line purely functional
programs in quasi-Scheme

SO HOW COULD WE SAY THIS IN SCHEME?

▸ replace ML’s type algebra (x, *, ->, …)

▸ with Remy’s extensible records exclusively

▸ make it work for 100-line purely functional
programs in quasi-Scheme

▸ grow it to full Chez Scheme

▸ whole-program inference

▸ success: speed-up

WHAT SOFT SCHEME CAN DO

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(-> (μ (Proposition)

 (+ Boolean (-> Boolean Proposition)))

 Boolean)

infer via modified HM

WHAT SOFT SCHEME CAN DO

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(-> (μ (Proposition)

 (+ Boolean (-> Boolean Proposition)))

 Boolean)

infer via modified HM

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1989

1993

FAGAN CAN CHECK 100 LINES.

WRIGHT CAN CHECK 1,000 LINES

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1989

1993

FAGAN CAN CHECK 100 LINES.

WRIGHT CAN CHECK 1,000 LINES

YOURS TRULY STRUGGLES WITH
DOZENS OF SMALL AND LARGE

PROGRAMS.

1993/94

WHAT SOFT SCHEME CAN’T DO,

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (p false))]))

WHAT SOFT SCHEME CAN’T DO,

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (p false))]))

DOZENS OF LINES FOR
THE TYPE MISMATCH W/O
TELLING THE DEV WHERE

THINGS WENT WRONG

WHAT SOFT SCHEME CAN’T DO,

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (p false))]))

any sensible type-error
message,

just one, please

formulate

DOZENS OF LINES FOR
THE TYPE MISMATCH W/O
TELLING THE DEV WHERE

THINGS WENT WRONG

WHAT SOFT SCHEME CAN’T DO,

any sensible error message,

just one, please

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (p false))]))The Problem:

Gaussian elimination over equations in an
uninterpreted algebras cannot point back to
program when the system (of eqs) is inconsistent.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1989

1993

FAGAN CAN CHECK 100 LINES.

WRIGHT CAN CHECK 1,000 LINES

YOURS TRULY STRUGGLES WITH
DOZENS OF SMALL AND LARGE

PROGRAMS.

1993/94

NEVIN HEINZE SHOWED YOURS
TRULY SET-BASED ANALYSIS,

AND IT FELT LIKE AN IDEA THAT
COULD HELP OUT HERE.

HEYA, DID YOU CATCH THIS MISTAKE?

▸ derive sub-typing constraints from code
e.g. dom(f) < rng(g) or int < dom(h)

▸ solve via the transitive closure through the
constructors in the constraint algebra

▸ find type errors by comparing specified
constraints for prime with computed ones

WHAT SPIDER CAN DO

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(-> (μ (Proposition)

 (U Boolean (-> Boolean Proposition)))

 Boolean)

infer via componential SBA

AND THEY CAN EXPLAIN ERRORS, HALLELUJAH!

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (p false))]))

(-> (μ (Proposition)

 (U Boolean (-> Proposition)))

 Boolean)

inspect errors via
flow graphs and
slices drawn on
top of code

AND THEY CAN EXPLAIN ERRORS, HALLELUJAH!

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (p false))]))

(-> (μ (Proposition)

 (U Boolean (-> Proposition)))

 Boolean)

inspect errors via
flow graphs and
slices drawn on
top of code

EVEN WITH 3RD
UNDERGRADUATES

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1995-97

FLANAGAN CAN CHECK 3,000 LINES
STUDENT PROGRAMS

FLANAGAN CAN EXPLAIN ERRORS

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1995-97

FLANAGAN CAN CHECK 3,000 LINES
STUDENT PROGRAMS

FLANAGAN CAN EXPLAIN ERRORS
1998

WE CANNOT ANALYZE THE
COMPLETE CODE BASE OF THE

SYSTEM ITSELF OR ITS CONTEXT.
WE CAN’T EVEN ‘MODULARIZE’

THE ANALYSIS PROPERLY.

WHAT THEY CAN’T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

an analysis of large
programs or a truly modular
analysis of such systems

BUT …

WHAT THEY CAN’T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

an analysis of large
programs or a truly modular
analysis of such systems

BUT …

WHAT THEY CAN’T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

an analysis of large
programs or a truly modular
analysis of such systems

BUT …

WE KNOW TRANSITIVE CLOSURE IS
BASICALLY O(N^3) .. BUT ..

WHAT THEY CAN’T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

an analysis of large
programs or a truly modular
analysis of such systems

BUT …

WE KNOW TRANSITIVE CLOSURE IS
BASICALLY O(N^3) .. BUT ..

O(n^8)

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1998

1995-97

FLANAGAN CAN CHECK 3,000 LINES

FLANAGAN CAN EXPLAIN ERRORS

WE CANNOT ANALYZE THE
COMPLETE CODE BASE OF THE

SYSTEM ITSELF OR ITS CONTEXT.
WE CAN’T EVEN ‘MODULARIZE’

THE ANALYSIS PROPERLY.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

1998

1995-97

FLANAGAN CAN CHECK 3,000 LINES
YOURS TRULY SAYS

PROGRAMMERS USE
ASSERTIONS, THEY WILL USE

“CONTRACTS.”

FLANAGAN CAN EXPLAIN ERRORS

WE CANNOT ANALYZE THE
COMPLETE CODE BASE OF THE

SYSTEM ITSELF OR ITS CONTEXT.
WE CAN’T EVEN ‘MODULARIZE’

THE ANALYSIS PROPERLY.

HEYA, DID YOU CATCH THIS MISTAKE?

▸ modules comes with contracts

▸ type inference turns contracts into
constraints

▸ .. and stores derived constraints per
module

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE
CAN DO IT ALL

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE
CAN DO IT ALL

2005

PROGRAMMERS DON’T REALLY
WRITE GOOD CONTRACTS.

THE TYPES BECOME HUGE AND
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS,

MODULAR ANALYSIS REMAINS A
PIPE DREAM.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE
CAN DO IT ALL

2005

PROGRAMMERS DON’T REALLY
WRITE GOOD CONTRACTS.

THE TYPES BECOME HUGE AND
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS,

MODULAR ANALYSIS REMAINS A
PIPE DREAM.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE
CAN DO IT ALL

YOURS TRULY SAYS
“NEVER MIND.”

2005

PROGRAMMERS DON’T REALLY
WRITE GOOD CONTRACTS.

THE TYPES BECOME HUGE AND
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS,

MODULAR ANALYSIS REMAINS A
PIPE DREAM.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE
CAN DO IT ALL

YOURS TRULY SAYS
“NEVER MIND.”

2005

PROGRAMMERS DON’T REALLY
WRITE GOOD CONTRACTS.

THE TYPES BECOME HUGE AND
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS,

MODULAR ANALYSIS REMAINS A
PIPE DREAM.

THE PROBLEM HAD
BECOME REAL. IT WAS

TIME TO THINK
DIFFERENTLY

LET’S ADD TYPES INCREMENTALLY
TO A CODE BASE AND MAKE SURE
THE COMBINATION IS SOUND.

ADD TYPES INCREMENTALLY

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

ADD TYPES INCREMENTALLY

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

‣ You want to add types.

‣ And now you have two problems:

‣ You should not change code that works, other
than adding type annotations and definitions.
Respect existing idioms of the language.

‣ You want the existing untyped code to play well
with the newly typed code. Respect the central
theorem of programming languages, type
soundness.

ADD TYPES INCREMENTALLY

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

ADD TYPES INCREMENTALLY

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

ADD TYPES INCREMENTALLY

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

(define-type Proposition (U Boolean (Boolean -> Proposition)))

(: tautology? (-> Proposition Boolean))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda ({x : Boolean}) (lambda ({y : Boolean}) (or x y))))

ADD TYPES INCREMENTALLY

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

ADD TYPES INCREMENTALLY

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

(define-type Proposition (U Boolean (Boolean -> Proposition)))

(: tautology? (Proposition -> Boolean))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

(define-type Proposition (U Boolean (Boolean -> Proposition)))

(: tautology? (Proposition -> Boolean))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

: PROPOSITION

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

(define-type Proposition (U Boolean (Boolean -> Proposition)))

(: tautology? (Proposition -> Boolean))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

: PROPOSITION

: BOOLEAN

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

(define-type Proposition (U Boolean (Boolean -> Proposition)))

(: tautology? (Proposition -> Boolean))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

: PROPOSITION

: BOOLEAN

: (-> BOOLEAN PROPOPSITION): (-> BOOLEAN PROPOPSITION)

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

(define-type Proposition (U Boolean (Boolean -> Proposition)))

(: tautology? (Proposition -> Boolean))

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

: PROPOSITION

: BOOLEAN

: (-> BOOLEAN PROPOPSITION): (-> BOOLEAN PROPOPSITION)ICFP 2010

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

.. … …

(provide:

 (big? (-> Integer Bool))

.. … …

.. … …

(require A)

(big? “hello world”)

.. … …

module A

module B

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

.. … …

(provide:

 (big? (-> Integer Bool))

.. … …

.. … …

(require A)

(big? “hello world”)

.. … …

module A

WHAT PREVENTS MODULE B FROM APPLYING
THE BIG? FUNCTION TO A STRING?

CONTRACTS!

module B

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

.. … …

(provide:

 (big? (-> Integer Bool))

.. … …

.. … …

(require A)

(big? “hello world”)

.. … …

module A

WHAT PREVENTS MODULE B FROM APPLYING
THE BIG? FUNCTION TO A STRING?

CONTRACTS!

module B

DLS 2006

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

(require A)

.. (provvide

 (all-from A)) ..

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

.. … …

(provide:

 (big? (-> Integer Bool))

.. … …

.. … …

(require B)

(big? “hello world”)

.. … …

module A

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

(require A)

.. (provvide

 (all-from A)) ..

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

.. … …

(provide:

 (big? (-> Integer Bool))

.. … …

.. … …

(require B)

(big? “hello world”)

.. … …

module A

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

(require A)

.. (provvide

 (all-from A)) ..

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

.. … …

(provide:

 (big? (-> Integer Bool))

.. … …

.. … …

(require B)

(big? “hello world”)

.. … …

module A

POPL 2008

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

WHAT’S
MISSING?

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

OBJECT-
ORIENTED RACKET

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

OBJECT-
ORIENTED RACKET

THERE IT
IS!

THERE IT
IS!

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

WE HAVE A DESIGN FOR OO RACKET.

2013

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

WE HAVE A DESIGN FOR OO RACKET.

2013

WE HAVE AN IMPLEMENTATION.

2015

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE IDEA IS WORKED OUT

THE CONTRACTS WORK

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010

WE HAVE A DESIGN FOR OO RACKET.

2013

WE HAVE AN IMPLEMENTATION.

2015

EVERYTHING
HUNKY DORY?

ADDING TYPES INCREMENTALLY: PERFORMANCE MEASUREMENTS

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology? lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true))

 (tautology? (p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

lambda (x)

 (or x y))))

 false)

lambda (x)

 (or x y))))

 false)

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology?
(p true))

 (tautology?
(p false)))]))

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology?

;; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

 (tautology? POPL 2016

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

PERFORMANCE. PERFORMANCE.
PERFORMANCE.

2016

BACK TO THIS LOVE AND PHD BUSINESS.

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

IS SOUND GRADUAL TYPING DEAD?

2016

1993

1996

2002
2009 2015

1991

TYPE INFERENCE

INCREMENTALLY ADDED
EXPLICITLY STATIC TYPES

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

IS SOUND GRADUAL TYPING DEAD?

2016

1993

1996

2002
2009 2015

1991

TYPE INFERENCE

INCREMENTALLY ADDED
EXPLICITLY STATIC TYPES

RESEARCH IS WHEN IT CAN FAIL

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

IS SOUND GRADUAL TYPING DEAD?

2016

1993

1996

2002
2009 2015

1991

TYPE INFERENCE

INCREMENTALLY ADDED
EXPLICITLY STATIC TYPES

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

IS SOUND GRADUAL TYPING DEAD?

2016

1993

1996

2002
2009 2015

1991

TYPE INFERENCE

INCREMENTALLY ADDED
EXPLICITLY STATIC TYPES

THIS HAPPENS TO ADVISORS
WITH A LONG-TERM RESEARCH

PROGRAM

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

IS SOUND GRADUAL TYPING DEAD?

2016

1993

1996

2002
2009 2015

1991

TYPE INFERENCE

INCREMENTALLY ADDED
EXPLICITLY STATIC TYPES

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

IS SOUND GRADUAL TYPING DEAD?

2016

1993

1996

2002
2009 2015

1991

TYPE INFERENCE

INCREMENTALLY ADDED
EXPLICITLY STATIC TYPES

AND IT HAPPENS TO STUDENTS
DURING A PHD PROGRAM.

PHD RESEARCH: BE PREPARED FOR UPS AND DOWNS

PhD research, like a
relationship, has its
ups and downs.

The downs can feel
very down. Really.

The memories of
“falling in love” can
get you going again. The ups feel good.

PHD RESEARCH: BE PREPARED FOR UPS AND DOWNS

PhD research, like a
relationship, has its
ups and downs.

The downs can feel
very down. Really.

The memories of
“falling in love” can
get you going again. The ups feel good.

YES, THIS IS IRRATIONAL BUT WHILE DESIGN,
ENGINEERING, & SCIENCE PRODUCE RATIONAL RESULTS,

THE MOTIVATION NEEDS AN IRRATIONAL ELEMENT.

PHD RESEARCH: BE PREPARED FOR UPS AND DOWNS

PhD research, like a
relationship, has its
ups and downs.

The downs can feel
very down. Really.

The memories of
“falling in love” can
get you going again. The ups feel good.

▸ And your advisor’s emotional
wavelength matters, a lot.

▸ So choose your advisor well.

PHD RESEARCH: BE PREPARED FOR UPS AND DOWNS

PhD research, like a
relationship, has its
ups and downs.

The downs can feel
very down. Really.

The memories of
“falling in love” can
get you going again. The ups feel good.

▸ And your advisor’s emotional
wavelength matters, a lot.

▸ So choose your advisor well.

LOVE, LOVE IS WHAT YOU REALLY NEED.

THE END

▸ And two dozen PhD students, who had
the guts to work with me and believed
I could be their scientific and
emotional guide

▸ Daniel Friedman, my advisor,
for showing me what an advisor
can do for a PhD student

▸ Herrn G. Dopfer, my high school
mathematics teacher, for encouraging me to
not take English, focus on math and physics,
and go to university, a first for our family

QUESTIONS?

