
LOVE, MARRIAGE & HAPPINESS 

MATTHIAS FELLEISEN, NU PRL



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987
1992



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001

G*DDAMN FOREIGNER



MY CAREER, GEOGRAPHY & NUMBERS (THIS IS PLDI AFTER ALL)

1980

1984

1985

1987

2001

G*DDAMN FOREIGNER





WHAT’S LOVE GOT TO DO WITH IT

πrogramming 

λanguages

You are here because 
you fell in love with 
something about 
programming languages.



YOU CAN’T JUST KEEP YOUR FINGERS OFF 

πrogramming 

λanguages
The most fundamental area 
of computer science. If you 
don’t have a language, you 
can’t compute. 



YOU CAN’T JUST KEEP YOUR FINGERS OFF 

πrogramming 

λanguages
The most fundamental area 
of computer science. If you 
don’t have a language, you 
can’t compute. 

Developers primarily use 
programming languages.  
The tools we build have 
meaning for them. 



YOU CAN’T JUST KEEP YOUR FINGERS OFF 

πrogramming 

λanguages
The most fundamental area 
of computer science. If you 
don’t have a language, you 
can’t compute. 

Developers primarily use 
programming languages.  
The tools we build have 
meaning for them. 

You will get to work with 
elegant mathematics and, 
some of you will develop 
new mathematics. 



YOU CAN’T JUST KEEP YOUR FINGERS OFF 

πrogramming 

λanguages
The most fundamental area 
of computer science. If you 
don’t have a language, you 
can’t compute. 

Developers primarily use 
programming languages.  
The tools we build have 
meaning for them. 

You will get to work with 
elegant mathematics and, 
some of you will develop 
new mathematics. 

Where else do 
you get to work 
with the coolest 
professors on 
the planet?
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ONE LAST WARNING: IF YOU DON’T LOVE IT, LEAVE IT. 

If you want to be famous, get 
into Artificial Intelligence.

If you want to make money, 
do Big Data. 

If you want a career, 
switch majors. I hear our 
Business School is looking 
for students. 



TYPES FOR UNTYPED LANGUAGES, HOW LOVE WORKS
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(define (tautology? p) 

  (cond 

    [(boolean? p) p] 

    [else (and (tautology? (p true)) (tautology? (p false)))])) 
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▸ replace ML’s type algebra (x, *, ->, …) 

▸ with Remy’s extensible records exclusively  

▸ make it work for 100-line purely functional 
programs in quasi-Scheme

▸ grow it to full Chez Scheme 

▸ whole-program inference 

▸ success: speed-up
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WHAT SOFT SCHEME CAN’T DO,

(define (tautology? p) 

  (cond 

    [(boolean? p) p] 

    [else (and (tautology? (p true)) (p false))]))

any sensible type-error 
message,  

just one, please .. .. .. 

formulate

DOZENS OF LINES FOR 
THE TYPE MISMATCH W/O 
TELLING THE DEV WHERE 

THINGS WENT WRONG



WHAT SOFT SCHEME CAN’T DO,

any sensible error message,  

just one, please .. .. .. 

(define (tautology? p) 

  (cond 

    [(boolean? p) p] 

    [else (and (tautology? (p true)) (p false))]))The Problem:  

Gaussian elimination over equations in an 
uninterpreted algebras cannot point back to 
program when the system (of eqs) is inconsistent. 
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PROGRAMS.

1993/94

NEVIN HEINZE SHOWED YOURS 
TRULY SET-BASED ANALYSIS, 

AND IT FELT LIKE AN IDEA THAT 
COULD HELP OUT HERE. 



HEYA, DID YOU CATCH THIS MISTAKE?

▸ derive sub-typing constraints from code 
e.g. dom(f) < rng(g) or int < dom(h) 

▸ solve via the transitive closure through the 
constructors in the constraint algebra 

▸ find type errors by comparing specified 
constraints for prime with computed ones
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FLANAGAN CAN CHECK 3,000 LINES
YOURS TRULY SAYS 

PROGRAMMERS USE 
ASSERTIONS, THEY WILL USE 

“CONTRACTS.”

FLANAGAN CAN EXPLAIN ERRORS
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COMPLETE CODE BASE OF THE 

SYSTEM ITSELF OR ITS CONTEXT. 
WE CAN’T EVEN ‘MODULARIZE’ 

THE ANALYSIS PROPERLY. 



HEYA, DID YOU CATCH THIS MISTAKE?

▸ modules comes with contracts 

▸ type inference turns contracts into 
constraints 

▸ .. and stores derived constraints per 
module



THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE  
CAN DO IT ALL



THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE  
CAN DO IT ALL

2005

PROGRAMMERS DON’T REALLY 
WRITE GOOD CONTRACTS. 

THE TYPES BECOME HUGE AND 
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS, 

MODULAR ANALYSIS REMAINS A 
PIPE DREAM. 



THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE  
CAN DO IT ALL

2005

PROGRAMMERS DON’T REALLY 
WRITE GOOD CONTRACTS. 

THE TYPES BECOME HUGE AND 
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS, 

MODULAR ANALYSIS REMAINS A 
PIPE DREAM. 



THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03

THE DREAM COME TRUE. WE’RE DONE.

MEUNIER’S MRSPIDE  
CAN DO IT ALL

YOURS TRULY SAYS 
“NEVER MIND.”

2005

PROGRAMMERS DON’T REALLY 
WRITE GOOD CONTRACTS. 

THE TYPES BECOME HUGE AND 
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS, 

MODULAR ANALYSIS REMAINS A 
PIPE DREAM. 



THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

2002/03
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“NEVER MIND.”

2005

PROGRAMMERS DON’T REALLY 
WRITE GOOD CONTRACTS. 

THE TYPES BECOME HUGE AND 
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS, 

MODULAR ANALYSIS REMAINS A 
PIPE DREAM. 

THE PROBLEM HAD 
BECOME REAL. IT WAS 

TIME TO THINK 
DIFFERENTLY



LET’S ADD TYPES INCREMENTALLY 
TO A CODE BASE AND MAKE SURE 
THE COMBINATION IS SOUND.
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THE END

▸ And two dozen PhD students, who had 
the guts to work with me and believed 
I could be their scientific and 
emotional guide 

▸ Daniel Friedman, my advisor, 
for showing me what an advisor 
can do for a PhD student

▸ Herrn G. Dopfer, my high school 
mathematics teacher, for encouraging me to 
not take English, focus on math and physics, 
and go to university, a first for our family
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