
DEVELOPING DEVELOPERS
MATTHIAS FELLEISEN, PLT, NUPRL

THE BEGINNING (1992/95)

CS I

SiCP

C,
Pascal,
Ratfor,
Fortran

AP, high schools

the “better math”
“computational” physics

economics “come alive”

C++

THE BEGINNING (1992/95)

CS I

SiCP

C,
Pascal,
Ratfor,
Fortran

C++

TeachScheme!

Program By Design

Bootstrap

‣ Robby Findler

‣ Kathi Fisler

‣ Matthew Flatt

‣ Shriram Krishnamurthi

‣ Emmanuel Schanzer

C++
CS II: if CS I is about
“Scheme”, what roles
does CS it serve?

Sw Dev ~ just
before students
study Sw Eng

Dist Sys Dev

‣ Robert Cartwright (Rice)

‣ Robby Findler

‣ Peter Druschel (MPI-SWS)

‣ Mike Ernst (UW)

THE BEGINNING (1992/95)

CS I

SiCP

C,
Pascal,
Ratfor,
Fortran

C++
CS II: if CS I is about
“Scheme”, what roles
does CS it serve?

Sw Dev ~ just
before students
study Sw Eng

Dist Sys Dev

C++

WHERE I AM TODAY

TODAY’S WORLD @ NU CCIS: TECHNICAL SKILLS & COMMUNICATION SKILLS

CS I

LiCSCS II

OOD

Sw Dev

CO OP
technical skills:
systematic
creation of code

communication
skills: conversing
about code

CS I

LiCSCS II

OOD

Sw Dev

CO OP

systematic design,
typed & OOPL (Java)

proving theorems about
(functional) code, dual to
systematic design

scale it up in Java,
logic in interface

6-month job-like
setting, code in
“the real world”

scale problem
complexity and
size; consolidate

pair programming

pair programmingpair programming,
code review

pair programming,
code review

pair programming,
panel/peer review,
memos on code

TODAY’S WORLD @ NU CCIS: TECHNICAL SKILLS & COMMUNICATION SKILLS

functional
programming for
systematic design

TODAY’S WORLD @ NU CCIS: TECHNICAL SKILLS & COMMUNICATION SKILLS

▸ Why should we care about software
development?

▸ What are doing wrong and what can we
do better?

▸ How can we change our introductory
software development curriculum?

WHY CARE ABOUT SOFTWARE DEVELOPMENT?

SOFTWARE DEVELOPMENT IS A CHALLENGE & AN OPPORTUNITY

Do our colleagues really not care?

‣ research problems for the lone ranger

‣ software as prototypes, at most

‣ few maintain software over years

‣ there is no research here, just teaching

‣ coding is easy anyways

‣ kids get jobs if they can spell “C”

THE MORAL IMPERATIVE

 Thesis

Our graduates will find jobs as long as they can
spell the name of the C programming language.
Every minute we spend on them, we won’t spend
on research and papers and grants.

THE MORAL IMPERATIVE

AntiThesis

Our graduates will find jobs as long as they can
spell the name of the C programming language.
Every minute we spend on them, we won’t spend
on research and papers and grants. 99%

SynThesis

Colleges promise — in our name — that we add
value to our undergraduates for the rest of their
lives. We have a moral obligation to live up to
our premise and a commercial one, too.

DEVELOPING SOFTWARE IS HARD.

Thesis

Programming is easy, we can teach it one or two
courses. The software architects design, and
programmers just code. But architecture is
software engineering, not software development

DEVELOPING SOFTWARE IS HARD.

Thesis

Programming is easy, we can teach it one or two
courses. The software architects design, and
programmers just code. But architecture is
software engineering, not software development

workmanship of certainty vs
workmanship of risk

David Pye, The Nature and Art of
Workmanship, Cambium 2002

Anti

SynThesis

Software development is “workmanship of risk”
because (most of) it is a thinking activity and
articulating thoughts. And that is hard.

SynThesis
Programs must be written for people to read,
and only incidentally for machines to execute.

Abelson and Sussman, Structure
and Interpretation of Computer
Programs, MIT Press, 1984

DEVELOPING SOFTWARE IS HARD.

Thesis

Programming is easy, we can teach it one or two
courses. The software architects design, and
programmers just code. But architecture is
software engineering, not software development

workmanship of certainty vs
workmanship of risk

David Pye, The Nature and Art of
Workmanship, Cambium 2002

Anti

WE MUST LEARN TO APPRECIATE DEVELOPMENT TIME & QUALITY.

develop re-develop

deploy

deployment

What is the cost of turning thoughts into code?

The total cost of development
consists of all the time
developers touch the code.

Thesis

WE MUST LEARN TO APPRECIATE DEVELOPMENT TIME & QUALITY.

▸ Developers are scarce.

▸ Ergo, developer time is scarce
(expensive).

▸ Companies should worry about
how they use their developers
time.

▸ Developers should care where
they spend their (collective) time.

YOUR DEVELOPERS HATE VACATIONS.

DO THEY ALL HAVE RELATIONSHIP
TROUBLE ALL THE TIME?

ALL DEVELOPERS HAVE TEENAGERS AT
HOME. BEEN THERE, DONE THAT.

IN SUMMARY: WHY DO WE CARE

We have a moral
and commercial
obligation.

We actually don’t know
how to teach software
development properly.

There is a research and
a teaching opportunity.

WHAT ARE WE DOING WRONG, WHAT CAN WE DO DIFFERENTLY

WHAT DO OUR STUDENTS KNOW WHEN THEY GRADUATE

NECESSITY

EMBARRASSMENT

WHAT WE TEACH WHEN WE TEACH ‘CODING’

‣ Algol 60/Simula 67

‣ Pascal

‣ C

‣ Scheme

‣ C++

‣ Eiffel

‣ Haskell

‣ Java

‣ Alice/Scratch

‣ Python

10 cool languages in 30 years

Can
 w

e d
o

be
tte

r?

WHAT WE TEACH WHEN WE TEACH ‘CODING’

‣ “hello world”

‣ puzzles

‣ graphics

‣ GUIs

‣ web connections

‣ apps for your phone

‣ parallel processing tricks

‣ hack fests

‣ 3D printing

10 sexy tricks in 30 years

Is this all we offer?

WHAT WE TEACH WHEN WE TEACH ‘CODING’

def main()

 print “hello world”

int main() {

 printf(“hello world”)

}
public static void main(String argv[]) {

 System.out.println(“hello world”)

}

z

PROGRESS IN COMPUTER
SCIENCE

SYNTAX

MORE
SYNTAX

MIMIC MY EXAMPLES

LET’S ADD A PRINT
STATEMENT

OKAY, TIME FOR THE
DEBUGGER

WHAT COULD WE TEACH? DEVELOPMENT ~ SYSTEMATIC DESIGN

▸ Design all the way down.

▸ Empower students to
help themselves.

▸ Inspect and review code.

BUT WHAT IS
DESIGN?

WHAT COULD WE TEACH? DEVELOPMENT ~ SYSTEMATIC DESIGN

multiple 
stages

multiple
representations

multiple
viewpoints

(This slide stolen from Shriram Krishnamurthi)

WHAT COULD WE TEACH? DEVELOPMENT ~ SYSTEMATIC DESIGN

multiple 
stages

multiple
representations

multiple
viewpoints

BREAK DOWN THE CODING
PROCESS

HAVE STUDENTS STUDY THE
VARIOUS PIECES

EXPLICATE SEPARATE PIECES

IN SUMMARY: WHAT CAN WE DO

At every scale of software development, students
must learn to

▸ stage the development process.

▸ understand software via multiple representations

▸ view code from at least two perspectives:
producer and consumer.

CS I

JUDGE THE CODE AND

ITS DEVELOPMENT, N
OT

ITS FUNCTIONALITY.

CS II: if CS I is about “Scheme”,
what roles does CS it serve?

Sw Dev ~ just before
students study Sw Eng

Dist Sys Dev

HOW CAN WE CHANGE OUR SOFTWARE DEVELOPMENT CURRICULUM?

HOW CAN WE TEACH SYSTEMATIC DESIGN ACROSS THE SCALE

▸ We need several courses that inspect students’
code for its communicative qualities.

▸ Every course must enhance both

▸ design skills

▸ communication skills

▸ The courses must be coordinated.

JUDGE THE CODE AND

ITS DEVELOPMENT, N
OT

ITS FUNCTIONALITY.

CS II: if CS I is about “Scheme”,
what roles does CS it serve?

Sw Dev ~ just before
students study Sw Eng

Dist Sys Dev

systematic design,
“student languages”

CS I

LiCSCS II

OOD

Sw Dev

CO OP

systematic design,
typed & OOPL (Java)

thinking about code,
dual to systematic design

scale it up in Java,
logic in interface

6-month job-like
setting, code in
“the real world”

scale problem
complexity and
size; consolidate

pair programming

pair programmingpair programming,
code review

pair programming,
code review

pair programming,
panel/peer review,
memos on code

HOW CAN WE TEACH SYSTEMATIC DESIGN ACROSS THE SCALE

▸ data analysis, data definition, data examples

▸ signature and purpose statement

▸ functional examples

▸ function template

▸ function definition

▸ tests and testing

systematic design,
“student languages”

CS I

HOW CAN WE TEACH SYSTEMATIC DESIGN AT THE PROGRAM LEVEL

multiple 
stages

▸ data analysis, data definition, data examples

▸ signature and purpose statement

▸ functional examples

▸ function template

▸ function definition

▸ tests and testing

systematic design,
“student languages”

CS I

HOW CAN WE TEACH SYSTEMATIC DESIGN ACROSS THE SCALE

multiple
representations

;; Number -> Number

EXAMPLES
given wanted

5 26

6 37

7 50

(define (f x) (+ (sqr x) 1))

(define (f x) (.. x ..))

multiple 
stages

CS I

LiCSCS II

pair programming

pair programmingpair programming,
code review

HOW CAN WE TEACH SYSTEMATIC DESIGN AT THE COMPONENT LEVEL

“Pilot”

“Co-pilot” reader

writer

multiple
viewpoints

What are all these ()s
and ;s doing here?

CS I

LiCSCS IIsystematic design,
typed & OOPL (Java)

thinking about code,
dual to systematic design

HOW CAN WE TEACH SYSTEMATIC DESIGN AT THE COMPONENT LEVEL

(defun f (x) (+ (sqr x) 1))

(defthm F (implies (natp x) (> (f x) x))

class Mathy {

 int f(int x) {

 return x*x+1;

 }

}
multiple

representations
across courses

CS I

LiCS thinking about code,
dual to systematic design

HOW CAN WE TEACH SYSTEMATIC DESIGN AT THE COMPONENT LEVEL

(defun f (l)

 (cond

 ((endp l) 0)

 (t (+ (f (cdr l)) 1)))

(defthm F (implies (listp l) (natp (f l))

IH(l) <=>

 (implies (listp l) (natp (f l))

by cases on the structure of l:

 — l is ‘(): 0

 — l is (cons A k) .. IH(k) ..

multiple
representations

(defun f (l)

 (cond

 ((endp l) 0)

 (t (+ (f (cdr l)) 1)))

(defthm F (implies (listp l) (natp (f l))

IH(l) <=>

 (implies (listp l) (natp (f l))

by cases on the structure of l:

 — l is ‘(): 0

 — l is (cons A k) .. IH(k) ..

CS I

LiCSCS IIsystematic design,
typed & OOPL (Java)

thinking about code,
dual to systematic design

HOW CAN WE TEACH SYSTEMATIC DESIGN AT THE COMPONENT LEVEL

Type checking
enforces signatures
before damage is
done.

Object-oriented
design turns
functional design on
its side (but that’s it).

multiple 
different kind of

stages in
downstream

courses

First test, then formulate theorems.

Induction is the dual of structural recursion.

CS I

LiCS thinking about code,
dual to systematic design

HOW CAN WE TEACH SYSTEMATIC DESIGN AT THE COMPONENT LEVEL

First test, then formulate theorems.

Induction is the dual of structural recursion.

(defun f (l)

 (cond

 ((endp l) 0)

 (t (+ (f (cdr l)) 1)))

(defthm F (implies (listp l) (natp (f l))

IH(l) <=>

 (implies (listp l) (natp (f l))

by cases on the structure of l:

 — l is ‘(): 0

 — l is (cons A k) .. IH(k) ..

CS I

LiCSCS II

OOD

scale it up in Java,
logic in interface

HOW CAN WE TEACH SYSTEMATIC DESIGN FOR SMALL SYSTEMS

join multiple
representations

Bring distinct representations together in one unit of code

CS I

LiCSCS II

OOD

scale it up in Java,
logic in interface

HOW CAN WE TEACH SYSTEMATIC DESIGN FOR SMALL SYSTEMS

interface ISpecies {

 @pre this.oneIsHungry()

 @post !@result.isPresent() || @result.get() = s +1

 Optional<Integer> feed1(int s)

}

join multiple
representations

systematic design,
“student languages”

CS I

LiCSCS II

OOD

CO OP

systematic design,
typed & OOPL (Java)

thinking about code,
dual to systematic design

scale it up in Java,
logic in interface

6-month job-like
setting, code in
“the real world”

pair programming

pair programmingpair programming,
code review

pair programming,
code review

HOW CAN WE TEACH SYSTEMATIC DESIGN FOR SMALL SYSTEMS

My first co-op: “Day 4 and I am already
demoing code. I LOVE MY LIFE.”

A co-op employer often expects students
to pick up yet another language.

CS I

LiCSCS II

OOD

Sw Dev

CO OP

scale problem
complexity and
size; consolidate

pair programming,
panel/peer review,
memos on code

TODAY’S WORLD @ NU CCIS: TECHNICAL SKILLS & COMMUNICATION SKILLS

SO WHAT’S THIS ALL ABOUT?

A FINAL COURSE ON SOFTWARE DEVELOPMENT
(NOT SOFTWARE ENGINEERING)

C

LiC

O

Sw

CO

scale problem
complexity and
size; consolidate

pair programming,
panel/peer review,
memos on code

TODAY’S WORLD @ NU CCIS: TECHNICAL SKILLS & COMMUNICATION SKILLS

} freshman year

} sophomore year

} ``middler” year

SPECIALIZATIONS: AI, BIG DATA, SYSTEMS, PL,

COOP 2

COOP 3

SPECIALIZATIONS & CAP STONES } junior & senior years

The Situation

SOFTWARE DEVELOPMENT, THE COURSE

Learn to produce software for,
judge it by,

‣ its design organization,

‣ its clarity in ideas, and

‣ its testability.

Do not judge it by
its functionality.

The Goal

SOFTWARE DEVELOPMENT, THE COURSE

‣ Your favorite programming language

‣ Living up to interfaces

‣ Development includes maintenance

‣ From interfaces to protocols

‣ Incremental refinement, step 2

‣ Incremental refinement, step 3

‣ Changing an API

‣ Selecting for testability

‣ GUIs

‣ Refactoring

‣ Designing your own protocol

‣ Integration time

‣ Remote proxying

‣ Strategy [optional]

13 weekly assignments on sw dev ideas

10 weeks dedicated to public code walks

The Outline

USE BOARD GAME BUT MAKE SURE
TO DISCOUNT THE RESULTS OF ANY

COMPETITION.
IT’S ABOUT SW DEV NOT AI DEV.

Sw Dev
scale problem
complexity and
size; consolidate

pair programming,
panel/peer review,
memos on code

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

streaming JSON parsers

deal with TCP sockets

testing harnesses & “test
fests” across languages

libraries & JSON parsing

echo servers on
STDIN & STDOUT

a taste of
distributed
systems

change pairs

switch pairs
to a different
code base

conduct formal code walks
to find design flaws, bugs

describe problems
in formal memos

present code to
panel and class

planning @ scale and across time

Sw Dev
scale problem
complexity and
size; consolidate

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

streaming JSON parsers

deal with TCP sockets

testing harnesses & “test
fests” across languages

libraries & JSON parsing

echo servers on
STDIN & STDOUT

a taste of
distributed
systems

planning @ scale and across time

How do you test in world of many
different programming languages?

▸ Functional units of code.

▸ Design test languages in a data
exchange language.

SOFTWARE DEVELOPMENT, THE COURSE

▸ test fests, running
everyone’s tests
against everyone’s
code.

Sw Dev
scale problem
complexity and
size; consolidate

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

streaming JSON parsers

deal with TCP sockets

testing harnesses & “test
fests” across languages

libraries & JSON parsing

echo servers on
STDIN & STDOUT

a taste of
distributed
systems

planning @ scale and across time

How can we increase complexity
and size in a staged manner?

▸ Functional protocols.

▸ Design distributed programs from
sequential ones.

Sw Dev
scale problem
complexity and
size; consolidate

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

streaming JSON parsers

deal with TCP sockets

testing harnesses & “test
fests” across languages

libraries & JSON parsing

echo servers on
STDIN & STDOUT

a taste of
distributed
systems

planning @ scale and across time

Can students figure out the
architecture of such systems?

▸ Interfaces for Foobarmistan.

▸ Week-by-week training:

▸ they design an interface.

▸ then we use mine.

NO, NOT WITH
SUFFICIENT DETAIL.

Sw Dev
pair programming,
panel/peer review,
memos on code

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

change pairs

switch pairs
to a different
code base

conduct formal code walks
to find design flaws, bugs

describe problems
in formal memos

present code to
panel and class How can students practice

“software dev as articulation of
thoughts”

▸ Students must practice continuously.

▸ Students must present to a panel.
The goal is to help the panel discover
errors in the devs’ thinking.

Sw Dev
pair programming,
panel/peer review,
memos on code

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

change pairs

switch pairs
to a different
code base

conduct formal code walks
to find design flaws, bugs

describe problems
in formal memos

present code to
panel and class Does focused error discovery

affect the students’ psyche?

▸ Ego-less programming. Weinberger,
Psychology of Programming, 1974.

▸ Practice with melt-downs.

Sw Dev
pair programming,
panel/peer review,
memos on code

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

change pairs

switch pairs
to a different
code base

conduct formal code walks
to find design flaws, bugs

describe problems
in formal memos

present code to
panel and class How do we check whether and

what panelists learn?

▸ Secretaries write memos.

▸ Grades come in four flavors: ok+, ok,
ok-, zero.

▸ Students vote what the grades mean.

Sw Dev
pair programming,
panel/peer review,
memos on code

SOFTWARE DEVELOPMENT, THE COURSE

the students choose their favorite teenage-heartbreak language

change pairs

switch pairs
to a different
code base

conduct formal code walks
to find design flaws, bugs

describe problems
in formal memos

present code to
panel and class Does working with partners

always work well?

▸ Allow divorces.

▸ Force changes.

▸ Let students vote on “choice of
partner” or “choice of code base.”

TAKE AWAY

TAKE AWAY

develop re-developdeployment

DEVELOPMENT COST IS HIGH FOR DEVELOPERS AND EMPLOYERS

… AND EVENTUALLY THIS
WILL POSE A PROBLEM
FOR THEM AND FOR US.

TAKE AWAY

▸ Teach systematic design explicitly.

▸ Teach it in several courses.

▸ Teach it at increasingly large scales.

▸ Teach it in different languages & contexts.

▸ Teach it until it becomes second nature.

multiple 
stages

multiple
representations

multiple
viewpoin

STUDENTS NEED TECHNICAL DESIGN SKILLS,

TAKE AWAY

▸ Teach programming as communication of thoughts.

▸ Teach it in several courses.

▸ Teach it in different contexts.

▸ Teach it in for pairs and in class.

▸ Teach it until it becomes second nature. multiple 
stages

multiple
representations

multiple
viewpoin

STUDENTS NEED TECHNICAL COMMUNICATION SKILLS,

TAKE AWAY

Your students and their
employers will appreciate
these skills in time.

systematic design,
“student languages”

CS I

LiCSCS II

OOD

Sw Dev

CO OP

systematic design,
typed & OOPL (Java)

thinking about code,
dual to systematic design

scale it up in Java,
logic in interface

6-month job-like
setting, code in
“the real world”

scale problem
complexity and
size; consolidate

pair programming

pair programmingpair programming,
code review

pair programming,
code review

pair programming,
panel/peer review,
memos on code

HOW?

THIS IS MY
SOLUTION. I AM
INTERESTED IN

YOURS.

THE END

▸ Matthew Flatt, for teaching me the
value of rapid feedback in design

▸ Shriram Krishnamurthi and
Kathi Fisler, for many exchanges
on design and planning

▸ Robby Findler, for co-creating “Hell”
and pointing me in the right direction

▸ .. and many others for discussions
and push-back and telling me how
wrong I was and often am

QUESTIONS?

