
28 YEARS OF
TYPES FOR UNTYPED

LANGUAGES
Matthias Felleisen, PLT & NUPRL

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

functional &
object-oriented

performant (?)

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

functional &
object-oriented

Suzuki
Borning & Ingalls

1981/82

performant (?)

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

functional &
object-oriented

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

performant (?)

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

functional &
object-oriented

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

performant (?)

Brachia &
Griswold ‘93

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

Henglein ‘94

functional &
object-oriented

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

performant (?)

Brachia &
Griswold ‘93

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

Aiken &
Wimmers
1991/94

Henglein ‘94

functional &
object-oriented

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

performant (?)

Brachia &
Griswold ‘93

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

Aiken &
Wimmers
1991/94

Henglein ‘94

functional &
object-oriented

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

Gray & Flatt ‘05

performant (?)

Brachia &
Griswold ‘93

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

Aiken &
Wimmers
1991/94

Henglein ‘94

functional &
object-oriented

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

Gray & Flatt ‘05

Matthews
& Findler ‘05 performant (?)

Brachia &
Griswold ‘93

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

Aiken &
Wimmers
1991/94

Henglein ‘94

functional &
object-orientedSiek & Taha ‘06

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

Gray & Flatt ‘05

Matthews
& Findler ‘05 performant (?)

Brachia &
Griswold ‘93

A Personal Walk through Type Land

type inference,
à la Hindley & Milner

type inference,
à la Heintze & Jaffar

I am an untyped
academic (1987)

modularity
& contracts

explicit static types
for untyped languages

incremental
 & idiomatic

I still am an untyped
 academic (2016).

Aiken &
Wimmers
1991/94

Henglein ‘94

functional &
object-orientedSiek & Taha ‘06

Thatte ‘92

Suzuki
Borning & Ingalls

1981/82

Gray & Flatt ‘05

Matthews
& Findler ‘05 performant (?)

contracts

Brachia &
Griswold ‘93

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

Cormac Flanagan

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

Cormac Flanagan
Philippe Meunier

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

Cormac Flanagan
Philippe Meunier

Sam Tobin-Hochstadt

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

Cormac Flanagan
Philippe Meunier

Sam Tobin-Hochstadt

Asumu Takikawa

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

Cormac Flanagan
Philippe Meunier

Sam Tobin-Hochstadt

Asumu Takikawa

Ben Greenman

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

Cormac Flanagan
Philippe Meunier

Sam Tobin-Hochstadt

Asumu Takikawa

Ben Greenman

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

A Personal Walk through Type Land

HL soft typing,
sound and at scale

soft typing,
with accessible

type errors

soft typing,
with modules
via contracts

interlanguage
refactoring

I still am an untyped
 academic (2016).

functional &
object-oriented

Mike Fagan

Andrew Wright

Cormac Flanagan
Philippe Meunier

Sam Tobin-Hochstadt

Asumu Takikawa

Ben Greenman

incremental
 & idiomatic

Typed Racket

I am an untyped
academic (1987)

Robert “Corky” Cartwright
User-Defined Data Types as an
Aid to Verifying LISP Programs
ICALP 1976, pp. 228–256.

Robert “Corky” Cartwright
User-Defined Data Types as an
Aid to Verifying LISP Programs
ICALP 1976, pp. 228–256.

Write functional LISP, instead of imperative Algol:
▸ write functional programs
▸ describe them with user-defined types
▸ use these types to prove theorems
Functional programs are theories of first-order logic.

Robert “Corky” Cartwright
User-Defined Data Types as an
Aid to Verifying LISP Programs
ICALP 1976, pp. 228–256.

Write functional LISP, instead of imperative Algol:
▸ write functional programs
▸ describe them with user-defined types
▸ use these types to prove theorems
Functional programs are theories of first-order logic.

When I arrived at Rice in 1987:

 “let’s add types to Scheme.”

;; Representing Russian dolls and computing their depth

;; RussianDoll = ‘doll u (cons RussianDoll ‘())

;; RussianDoll -> Natural

(define (depth r)

 (cond

 [(symbol? r) 0]

 [else (+ 1 (depth (first r)))]))

(depth ‘doll) ;; —> 0

(depth ‘(((doll))) ;; —> 3

What does ‘’adding types to Scheme’’ mean? Why is it hard?

;; Representing propositions and checking tautology

;; Proposition = Boolean u [Boolean -> Proposition]

;; Proposition -> Boolean

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

What does ‘’adding types to Scheme’’ mean? Why is it hard?

type proposition = InL of bool | InR of (bool -> proposition)

let rec is_tautology p =

 match p with

 | InL b -> b

 | InR p -> is_tautology(p true) && is_tautology(p false)

is_tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or (InL x) (InL y))))

type proposition = InL of bool | InR of (bool -> proposition)

let rec is_tautology p =

 match p with

 | InL b -> b

 | InR p -> is_tautology(p true) && is_tautology(p false)

is_tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or (InL x) (InL y))))

My idea: add a universal type to the program and add
injections and projections where needed. That’s a practical
version of Scott’s view that untyped languages are unityped.

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

Mike Fagan

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

s = (t → int)
t = (v → char)
v = double

s = ((double→char)→int)
t = (double→char)
v = double

Mike Fagan

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

s = (t → int)
t = (v → char)
v = double

s = ((double→char)→int)
t = (double→char)
v = double

unification
~

Gaussian
elimination

think of all
missing type

declarations as
variables, derive

system of
equations

Mike Fagan

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

s = (t → int)
t = (v → char)
v = double

s = ((double→char)→int)
t = (double→char)
v = double

Mike Fagan

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

s = (t → int)
t = (v → char)
v = double

s = ((double→char)→int)
t = (double→char)
v = double

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

Mike Fagan

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

s = (t → int)
t = (v → char)
v = double

s = ((double→char)→int)
t = (double→char)
v = double

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

s = { dom : t, rng : int } u { num : 0 } u γ
t = { dom : v, rng : char, num : 0 } u δ
v = double u ε

Mike Fagan

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

s = (t → int)
t = (v → char)
v = double

s = ((double→char)→int)
t = (double→char)
v = double

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

s = { dom : t, rng : int } u { num : 0 } u γ
t = { dom : v, rng : char, num : 0 } u δ
v = double u ε

unification
~

Gaussian
elimination

s = … γ = ∅
t = … δ = ∅
v = double ε = ∅

Mike Fagan

Fagan uses a record type algebra à la Remy [POPL ’88] instead
of the ->, +, * algebra and then run Hindley Milner.

s = (t → int)
t = (v → char)
v = double

s = ((double→char)→int)
t = (double→char)
v = double

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

s = { dom : t, rng : int } u { num : 0 } u γ
t = { dom : v, rng : char, num : 0 } u δ
v = double u ε

unification
~

Gaussian
elimination

s = … γ = ∅
t = … δ = ∅
v = double ε = ∅

if they are not ∅
we found a type

error

Mike Fagan

;; Representing Russian dolls and computing their depth

;; RussianDoll = ‘doll u (cons RussianDoll ‘())

;; RussianDoll -> Natural

(define (depth r)

 (cond

 [(symbol? r) 0]

 [else (+ 1 (depth (first r)))]))

(depth ‘doll) ;; —> 0

(depth ‘(((doll))) ;; —> 3

Fagan’s “soft typer” works on all of our “hard” examples

[[μ (rd)(U ‘doll (cons RussianDoll ‘()))]

 —>

 Natural]

Fagan’s “soft typer” works on all of our “hard” examples

;; Representing propositions and checking tautology

;; Proposition = Boolean u [Boolean -> Proposition]

;; Proposition -> Boolean

(define (tautology? p)

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

[[μ (p)(U Boolean (—> Boolean p))]

 —>

 Boolean]

Fagans’ soft typer cannot
▸ present types in an accessible manner
▸ deal with more than small toy programs
▸ cope with anything but the core functional language

Fagans’ soft typer cannot
▸ present types in an accessible manner
▸ deal with more than small toy programs
▸ cope with anything but the core functional language

Can we deal with
▸ 1,000 lines of code
▸ full Scheme (assignment, continuations)
▸ explain types
▸ report errors in an “actionable” manner

???

▸ modify type algebra (add in set!, call/cc)

▸ improve implementation of type algebra

▸ report type errors at source level

▸ use types for optimization

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

Andrew Wright

▸ modify type algebra (add in set!, call/cc)

▸ improve implementation of type algebra

▸ report type errors at source level

▸ use types for optimization

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

Andrew Wright

▸ modify type algebra (add in set!, call/cc)

▸ improve implementation of type algebra

▸ report type errors at source level

▸ use types for optimization

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

Andrew Wright

▸ modify type algebra (add in set!, call/cc)

▸ improve implementation of type algebra

▸ report type errors at source level

▸ use types for optimization

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

s = … γ = ∅
t = … δ = ∅
v = double ε = ∅

Andrew Wright

▸ modify type algebra (add in set!, call/cc)

▸ improve implementation of type algebra

▸ report type errors at source level

▸ use types for optimization

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

s = … γ = ∅
t = … δ = ∅
v = double ε = ∅

Andrew Wright

▸ modify type algebra (add in set!, call/cc)

▸ improve implementation of type algebra

▸ report type errors at source level

▸ use types for optimization

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 }
v ⊆ double

s = … γ = ∅
t = … δ = ∅
v = double ε = ∅

chez program.ss -o3

Andrew Wright

My first sabbatical (1993-94)

Write many 1,000 line programs
in SML and Soft Scheme (Foxnet,
“extensible den. semantics”)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaTeX (now a
benchmark) with Soft Scheme
(3,500 lines of real-world code)

My first sabbatical (1993-94)

Write many 1,000 line programs
in SML and Soft Scheme (Foxnet,
“extensible den. semantics”)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaTeX (now a
benchmark) with Soft Scheme
(3,500 lines of real-world code)

RESULT: It works.

My first sabbatical (1993-94)

Write many 1,000 line programs
in SML and Soft Scheme (Foxnet,
“extensible den. semantics”)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaTeX (now a
benchmark) with Soft Scheme
(3,500 lines of real-world code)

RESULT: It works.

Type errors in SML/
NJ were torture.

My first sabbatical (1993-94)

Write many 1,000 line programs
in SML and Soft Scheme (Foxnet,
“extensible den. semantics”)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaTeX (now a
benchmark) with Soft Scheme
(3,500 lines of real-world code)

RESULT: It works.
Soft Scheme’s were
violations of the
Geneva convention.

Type errors in SML/
NJ were torture.

My first sabbatical (1993-94)

Write many 1,000 line programs
in SML and Soft Scheme (Foxnet,
“extensible den. semantics”)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaTeX (now a
benchmark) with Soft Scheme
(3,500 lines of real-world code)

RESULT: It works.
Soft Scheme’s were
violations of the
Geneva convention.

Soft Scheme supports my
module’s but is not modular.

Type errors in SML/
NJ were torture.

My first sabbatical (1993-94)

Write many 1,000 line programs
in SML and Soft Scheme (Foxnet,
“extensible den. semantics”)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaTeX (now a
benchmark) with Soft Scheme
(3,500 lines of real-world code)

RESULT: It works.
Soft Scheme’s were
violations of the
Geneva convention.

Soft Scheme supports my
module’s but is not modular. Undergraduates cannot use

Soft Scheme in PL course.

Type errors in SML/
NJ were torture.

Errors matter.

Errors matter. Developers matter.

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar’s SBA

Cormac Flanagan

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar’s SBA

double ⊆ dom(t)
t ⊆ rng(v)
dom(v) ⊆ double

Cormac Flanagan

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar’s SBA

double ⊆ dom(t)
t ⊆ rng(v)
dom(v) ⊆ double

transitive
closure through

constructors

s = …
t = …
v = (-> double (-> double …))

the solution is a
least-fix point in

a lattice

Cormac Flanagan

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar’s SBA

double ⊆ dom(t)
t ⊆ rng(v)
dom(v) ⊆ double

transitive
closure through

constructors

s = …
t = …
v = (-> double (-> double …))

the solution is a
least-fix point in

a lattice

Cormac Flanagan

[Listof X] ⊆ dom(first @1)

[Pairof Y Z] ⊆ dom(first @2)

compare with
specifications for

primitive
operations

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar’s SBA

double ⊆ dom(t)
t ⊆ rng(v)
dom(v) ⊆ double

transitive
closure through

constructors

s = …
t = …
v = (-> double (-> double …))

the solution is a
least-fix point in

a lattice

because (first ‘()) raises an exn

Cormac Flanagan

[Listof X] ⊆ dom(first @1)

[Pairof Y Z] ⊆ dom(first @2)

compare with
specifications for

primitive
operations

• HM performs in near-
linear time in practice

• HM is easy to
understand in principle

• HM “smears” origin
information across
solution due to bi-
directional flow

• SBA performs in linear
time up to 2,500 loc

• SBA is also easy to
explain to
programmers

• SBA pushes information
only along actual edges
in the flow graph

• HM performs in near-
linear time in practice

• HM is easy to
understand in principle

• HM “smears” origin
information across
solution due to bi-
directional flow

• SBA performs in linear
time up to 2,500 loc

• SBA is also easy to
explain to
programmers

• SBA pushes information
only along actual edges
in the flow graph

And we can
visualize those!

potential conflictspotential conflicts

look at types

void may flow here

look at types

the source of void

the source of void

the flow of void to first

Flanagan can deal with
▸ 2,000 lines of code
▸ full Scheme (assignment, continuations)
▸ explain types
▸ report errors in an “actionable” manner

Flanagan can deal with
▸ 2,000 lines of code
▸ full Scheme (assignment, continuations)
▸ explain types
▸ report errors in an “actionable” manner

Can we deal with
▸ get juniors and seniors to use it (future devs)
▸ improve precision (e.g., arity of functions)
▸ “modules” (independently developed pieces)?

???

EVEN WITH JUNIORS AND
SENIORS

The good news

;; Natural Symbol -> S-expression

(define (wrap depth stuff)

 (cond

 [(zero? depth) stuff]

 [else (list (wrap (- depth 1) stuff)]]))

(wrap 3 ‘pizza) ;; —> ‘(((pizza)))

(wrap 2 ‘doll) ;; -> ‘((doll))

The not so good news

;; Natural Symbol -> S-expression

(define (wrap depth stuff)

 (cond

 [(zero? depth) stuff]

 [else (list (wrap (- depth 1) stuff)]]))

(wrap 3 ‘pizza) ;; —> ‘(((pizza)))

(wrap 2 ‘doll) ;; -> ‘((doll))

The not so good news

~ (list depth stuff) = arg

;; Natural Symbol -> S-expression

(define (wrap depth stuff)

 (cond

 [(zero? depth) stuff]

 [else (list (wrap (- depth 1) stuff)]]))

(wrap 3 ‘pizza) ;; —> ‘(((pizza)))

(wrap 2 ‘doll) ;; -> ‘((doll))

The not so good news

~ (list depth stuff) = arg

~ (first arg)

~ (second arg)

;; Natural Symbol -> S-expression

(define (wrap depth stuff)

 (cond

 [(zero? depth) stuff]

 [else (list (wrap (- depth 1) stuff)]]))

(wrap 3 ‘pizza) ;; —> ‘(((pizza)))

(wrap 2 ‘doll) ;; -> ‘((doll))

The not so good news

~ (list depth stuff) = arg

~ (first arg)

~ (second arg)

O(n^8)

The bad news

;; Natural -> Table
(define (dispatch-table n)
 (let ([v (build-vector n (lambda (i) (lambda (x) ...)))])
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

The bad news

;; Natural -> Table
(define (dispatch-table n)
 (let ([v (build-vector n (lambda (i) (lambda (x) ...)))])
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

(U False Window)

The bad news

;; Natural -> Table
(define (dispatch-table n)
 (let ([v (build-vector n (lambda (i) (lambda (x) ...)))])
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

(U False Window)

;; Natural -> Table
(define (dispatch-table n)
 (define v (make-vector n))
 (for ((i v)) (vector-set! v i …))
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

The bad news

;; Natural -> Table
(define (dispatch-table n)
 (let ([v (build-vector n (lambda (i) (lambda (x) ...)))])
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

(U False Window)

;; Natural -> Table
(define (dispatch-table n)
 (define v (make-vector n))
 (for ((i v)) (vector-set! v i …))
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

(U False
 …
 20 more lines
 …
 Window)

The bad news

;; Natural -> Table
(define (dispatch-table n)
 (let ([v (build-vector n (lambda (i) (lambda (x) ...)))])
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

(U False Window)

;; Natural -> Table
(define (dispatch-table n)
 (define v (make-vector n))
 (for ((i v)) (vector-set! v i …))
 ;; --- client code
 …)
…
… (extract (dispatch-table k) m)…

(U False
 …
 20 more lines
 …
 Window)

Small syntactic
changes without

semantic meaning
imply large changes
to inferred types

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

It’s not only n^8, it’s also whole-
program only.

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

It’s not only n^8, it’s also whole-
program only.

Components

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

It’s not only n^8, it’s also whole-
program only.

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

It’s not only n^8, it’s also whole-
program only.

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

It’s not only n^8, it’s also whole-
program only.

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

It’s not only n^8, it’s also whole-
program only.

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

Now we can work
with 1 module and
get on-line analysis

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

It costs O(n^2) space (writing,
reading) to store graph constraints.

What’s worse, we can’t just add
another module.

The worse news

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

It costs O(n^2) space (writing,
reading) to store graph constraints.

What’s worse, we can’t just add
another module.

It isn’t really
modular in the
sense of ML’s
structures.

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

Meunier exploits Eiffel-style contracts (generalized to a higher-
order setting) to describe module interfaces, derive constraints

Philippe Meunier

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

contract contract

Use contracts in
lieu of signatures.
Use contracts in
lieu of signatures.

Meunier exploits Eiffel-style contracts (generalized to a higher-
order setting) to describe module interfaces, derive constraints

Philippe Meunier

1,000 lines ~ 1 min

2,000 lines ~ 2 min

3,000 lines ~ 3 min

3,500 lines ~ 20 min

40,000 lines ~ 10 hrs

Components

s ⊆ {dom : t, rng : int}
t ⊆ {dom : v} u {num : 0}
v ⊆ double

u ⊆ {dom : s}
i ⊆ {dom : v} u {num : 0}
w ⊆ double

h ⊆ {dom : t, rng : int}
t ⊆ integer
j ⊆ double

Constraints

explicit sets & set
mismatches

Solution

contract contract

Use contracts in
lieu of signatures.
Use contracts in
lieu of signatures.

Meunier exploits Eiffel-style contracts (generalized to a higher-
order setting) to describe module interfaces, derive constraints

Philippe Meunier

It works in theory.
We never got it to

work well in practice.

Modularity matters.

▸ Our code base has grown
to 500,000 loc.

▸ A language renaissance
has spread Untyped
Languages beyond their
niche uses.

Modularity matters.

▸ Our code base has grown
to 500,000 loc.

▸ A language renaissance
has spread Untyped
Languages beyond their
niche uses.

Signatures matter.

▸ Nobody ought to read an
entire module to
understand its services.

▸ Racket programmers use
contracts as signatures.

;; Representing Russian dolls and computing their depth

;; RussianDoll = ‘doll u (cons RussianDoll ‘())

;; RussianDoll -> Natural

(define (depth r)

 (cond

 [(symbol? r) 0]

 [else (+ 1 (depth (first r)))]))

(depth ‘doll) ;; —> 0

(depth ‘(((doll))) ;; —> 3

Can we add types to this code without the ML-style projections/injections?

;; Representing Russian dolls and computing their depth

TYPE RussianDoll = ‘doll u (cons RussianDoll ‘())

(define (depth r : RussianDoll) : Natural

 (cond

 [(symbol? r) 0]

 [else (+ 1 (depth (first r)))]))

(depth ‘doll) ;; —> 0

(depth ‘(((doll))) ;; —> 3

Can we add types to this code without the ML-style projections/injections?

Can we add types to this code without the ML-style projections/injections?

;; Representing propositions and checking tautology

TYPE Proposition = Boolean u [Boolean -> Proposition]

(define (tautology? p : Proposition) : Boolean

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibitively expensive.

Gray, Findler, Flatt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

ASSUME identifiable “components” (files, packages, classes,
modules) with clear boundaries.

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibitively expensive.

Gray, Findler, Flatt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

ASSUME identifiable “components” (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component
addition of type annotation on a “by need” basis plus the
addition of typed components — incrementality

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibitively expensive.

Gray, Findler, Flatt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

ASSUME identifiable “components” (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component
addition of type annotation on a “by need” basis plus the
addition of typed components — incrementality

WANTED annotations should go on variables and other
names and should not disturb existing code — idiomaticity

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibitively expensive.

Gray, Findler, Flatt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

ASSUME identifiable “components” (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component
addition of type annotation on a “by need” basis plus the
addition of typed components — incrementality

WANTED annotations should go on variables and other
names and should not disturb existing code — idiomaticity

WANTED the type annotations ought to be useful and
meaningful — type soundness

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibitively expensive.

Gray, Findler, Flatt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

ASSUME identifiable “components” (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component
addition of type annotation on a “by need” basis plus the
addition of typed components — incrementality

WANTED annotations should go on variables and other
names and should not disturb existing code — idiomaticity

WANTED the type annotations ought to be useful and
meaningful — type soundness

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibitively expensive.

Gray, Findler, Flatt

}And all of this
works for (almost)
the full language
— coverage

;; Representing Russian dolls and computing their depth

(define-type RussianDoll (U ‘doll [cons RussianDoll ‘()]))

(define (depth {r : RussianDoll}) : Natural

 (cond

 [(symbol? r) 0]

 [else (+ 1 (depth (first r)))]))

(depth ‘doll) ;; —> 0

(depth ‘(((doll))) ;; —> 3

Typed Racket satisfies “idiomaticy”

;; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p : Proposition}) : Boolean

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy”

;; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p : Proposition}) : Boolean

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy”

no projection needed

no injection needed

;; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p : Proposition}) : Boolean

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

;; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p : Proposition}) : Boolean

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

boolean? : Any -> Boolean:
``and if it is true, the given
value belongs to Boolean’’

;; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p : Proposition}) : Boolean

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

boolean? : Any -> Boolean:
``and if it is true, the given
value belongs to Boolean’’

p is not a Boolean,
ergo it must be in

[Boolean -> Proposition]

;; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p : Proposition}) : Boolean

 (cond

 [(boolean? p) p]

 [else (and (tautology? (p true)) (tautology? (p false)))]))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

boolean? : Any -> Boolean:
``and if it is true, the given
value belongs to Boolean’’

p is not a Boolean,
ergo it must be in

[Boolean -> Proposition]

p applied to true
is OK

Γ ⊢ e : τ| (p+,p-)

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

Γ ⊢ e : τ| (p+,p-)

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

IN type environment
(the type of variables in e)

the expression e HAS

type τ

Γ ⊢ e : τ| (p+,p-)

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

IN type environment
(the type of variables in e)

the expression e HAS

type τ

and if e evaluates
to a Truish value,
we KNOW p+

Γ ⊢ e : τ| (p+,p-)

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

IN type environment
(the type of variables in e)

the expression e HAS

type τ

and if e evaluates
to a Truish value,
we KNOW p+

and if e evaluates
to a False value, we

KNOW p-

Γ ⊢ e : τ| (p+,p-)

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

IN type environment
(the type of variables in e)

the expression e HAS

type τ

and if e evaluates
to a Truish value,
we KNOW p+

and if e evaluates
to a False value, we

KNOW p-

The knowledge deals with plain values
and paths into values:
▸ (odd? n) ~> if this yields False, n is even
▸ (prime? (second l)) ~> if this yields

True, we know l has the shape [one,
two, ?] and two is a prime number.

Γ ⊢ e : τ| (p+,p-)

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

IN type environment
(the type of variables in e)

the expression e HAS

type τ

and if e evaluates
to a Truish value,
we KNOW p+

and if e evaluates
to a False value, we

KNOW p-

The knowledge deals with plain values
and paths into values:
▸ (odd? n) ~> if this yields False, n is even
▸ (prime? (second l)) ~> if this yields

True, we know l has the shape [one,
two, ?] and two is a prime number.

The logic can cope with the usual Boolean
primitives in a programming language: and,
or, not, if (conditionals), etc.

Typed Racket satisfies “incrementality”

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality”

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Racket has always been a
family of languages

Typed Racket satisfies “incrementality”

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Racket modules already specify
their implementation language

Racket has always been a
family of languages

Typed Racket satisfies “incrementality”

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Racket modules already specify
their implementation language

Racket has always been a
family of languages

#lang racket

Typed Racket satisfies “incrementality”

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Racket modules already specify
their implementation language

Racket has always been a
family of languages

#lang racket

Adding
#lang typed/racket

is easy

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

#lang typed/racket#lang typed/racket

Typed Racket satisfies “incrementality” at the module level

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket
communicate with racket

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket
communicate with racket

[Integer -> Integer]
->
Integer

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket
communicate with racket

[Integer -> Integer]
->
Integer

Who’s responsible for which
part of the communication?

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket
communicate with racket

[Integer -> Integer]
->
Integer

Who’s responsible for which
part of the communication?

[Integer -> Integer]
->
Integer

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket
communicate with racket

[Integer -> Integer]
->
Integer

Who’s responsible for which
part of the communication?

[Integer -> Integer]
->
Integer

(f (λ (x) "howdy"))

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket
communicate with racket

[Integer -> Integer]
->
Integer

Who’s responsible for which
part of the communication?

[Integer -> Integer]
->
Integer

(f (λ (x) "howdy"))

Do we need to discover this
“miscommunication”?

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket
communicate with racket

[Integer -> Integer]
->
Integer

Who’s responsible for which
part of the communication?

[Integer -> Integer]
->
Integer

(f (λ (x) "howdy"))

If so, who should we blame for
the miscommunication?

Do we need to discover this
“miscommunication”?

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

[Integer -> Integer]
->
Integer

(f (λ (x) "howdy"))

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

[Integer -> Integer]
->
Integer

(f (λ (x) "howdy"))

If you think it’s acceptable to let
this kind of mistake slip,

welcome to industrial-strength,
modern day C++ reincarnation.

(This can’t possibly happen.)

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

If you think that this kind of
miscommunication deserves the

programmer’s attention, you
want “type sound” interactions.

[Integer -> Integer]
->
Integer

(f (λ (x) "howdy"))

If you think it’s acceptable to let
this kind of mistake slip,

welcome to industrial-strength,
modern day C++ reincarnation.

(This can’t possibly happen.)

Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

If you think that this kind of
miscommunication deserves the

programmer’s attention, you
want “type sound” interactions.

[Integer -> Integer]
->
Integer

(f (λ (x) "howdy"))

If you think it’s acceptable to let
this kind of mistake slip,

welcome to industrial-strength,
modern day C++ reincarnation.

(This can’t possibly happen.)

And if you want soundness, the
run-time check ought to blame
this connection between the

two arrows.

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via
the compilation of types to higher-order contracts

[Integer -> Integer]
->
Integer(f (λ (x) "howdy"))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via
the compilation of types to higher-order contracts

[Integer -> Integer]
->
Integer(f (λ (x) "howdy"))

[integer? -> integer]
->
integer?

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via
the compilation of types to higher-order contracts

[Integer -> Integer]
->
Integer(f (λ (x) "howdy"))

(λ (g)
 (λ (x) ;; known Integer
 (let ([result (g x)])
 (if (integer? result)
 (f result)
 (error "blame, result")))))

[integer? -> integer]
->
integer?

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(over? s) (+ ((area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
 (cond
 [(plain? s) (plain-area s)]
 [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
 [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
 (cond
 [(rect? s) (rect-area s)]
 [(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)
 (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
 (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via
the compilation of types to higher-order contracts

[Integer -> Integer]
->
Integer(f (λ (x) "howdy"))

(λ (g)
 (λ (x) ;; known Integer
 (let ([result (g x)])
 (if (integer? result)
 (f result)
 (error "blame, result")))))

[integer? -> integer]
->
integer?

Findler introduced higher-order contracts [ICFP 2002]

Dimoulas developed elegant, flexible technique for proving
the soundness of mixed systems [ESOP 2012]

Robby Findler

Christos Dimoulas

Theorem

For all mixed programs e ∈ Racket ⊕ Type Racket, one of these statements holds:
▸ eval(e) is a value
▸ eval(e) is a known exception from TR
▸ eval(e) is a contract error blaming a specific boundary between a typed and an untyped module
▸ eval(e) diverges.

#lang racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

Asumu Takikawa

add-search%

#lang racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

Asumu Takikawa
a function from class to class

add-search%

#lang racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

Asumu Takikawa
a function from class to class

add-search%

exported …

#lang racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

Asumu Takikawa
a function from class to class

add-search%

exported …

… and used in a separate module

#lang racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

Asumu Takikawa
a function from class to class

add-search%

exported …

… and used in a separate module

Yes, this is real-world code.

#lang racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

Asumu Takikawa
a function from class to class

add-search%

exported …

… and used in a separate module

Yes, this is real-world code.

Yes, you can do this is Python, too.

#lang typed/racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

add-search%

#lang typed/racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

What kind of types do classes have?

add-search%

#lang typed/racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

What kind of types do classes have?

add-search%

What contracts do these types compile to?

#lang typed/racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

add-search%

Towards Practical Gradual Typing˚

Asumu Takikawa1, Daniel Feltey1, Earl Dean2, Matthew Flatt3,
Robert Bruce Findler4, Sam Tobin-Hochstadt2, and Matthias
Felleisen1

1 Northeastern University

Boston, Massachusetts

asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu

2 Indiana University

Bloomington, Indiana

samth@cs.indiana.edu, edean@cs.indiana.edu

3 University of Utah

Salt Lake City, Utah

mflatt@cs.utah.edu

4 Northwestern University

Evanston, Illinois

robby@eecs.northwestern.edu

Abstract
Over the past 20 years, programmers have embraced dynamically-typed programming languages.
By now, they have also come to realize that programs in these languages lack reliable type in-
formation for software engineering purposes. Gradual typing addresses this problem; it empowers
programmers to annotate an existing system with sound type information on a piecemeal basis.
This paper presents an implementation of a gradual type system for a full-featured class-based
language as well as a novel performance evaluation framework for gradual typing.

1998 ACM Subject Classification D.3 Programming Languages

Keywords and phrases Gradual typing, object-oriented programming, performance evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Gradual Typing for Classes

Gradual type systems allow programmers to add type information to software systems in
dynamically typed languages on an incremental basis [39, 48]. The ethos of gradual typing
takes for granted that programmers choose dynamic languages for creating software, but also
that for many software engineering tasks, having reliable type information is an advantage.
The landscape of gradual typing includes many theoretical designs [26, 29, 39, 40, 46, 53],
some research implementations [3, 20, 49, 52, 55], and, recently, the first industrial systems
(Typescript [51], Hack,1 Flow2).

Despite these numerous e�orts, no existing project deals with the full power of object-
oriented programming in untyped languages, e.g., JavaScript, Python, Racket, Ruby, or

˚ Due to a conflict of interest, we could not submit an o�cial artifact for consideration to the ECOOP
Artifact Evaluation Committee. However, we have prepared an uno�cial artifact that is available at
the following URL: http://www.ccs.neu.edu/home/asumu/artifacts/ecoop-2015.tar.bz2

1 See hacklang.org and Verlaguet, Commercial Users of Functional Programming, Boston, MA 2013.
2 See flowtype.org

© A. Takikawa, D. Feltey, E. Dean, M. Flatt, R.B. Findler, S. Tobin-Hochstadt, and M. Felleisen;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1023

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Gradual Typing for First-Class Classes ⇤

Asumu Takikawa T. Stephen Strickland Christos Dimoulas
Sam Tobin-Hochstadt Matthias Felleisen

PLT, Northeastern University
{asumu, sstrickl, chrdimo, samth, matthias}@ccs.neu.edu

Abstract
Dynamic type-checking and object-oriented programming
often go hand-in-hand; scripting languages such as Python,
Ruby, and JavaScript all embrace object-oriented (OO) pro-
gramming. When scripts written in such languages grow and
evolve into large programs, the lack of a static type disci-
pline reduces maintainability. A programmer may thus wish
to migrate parts of such scripts to a sister language with a
static type system. Unfortunately, existing type systems nei-
ther support the flexible OO composition mechanisms found
in scripting languages nor accommodate sound interopera-
tion with untyped code.

In this paper, we present the design of a gradual typing
system that supports sound interaction between statically-
and dynamically-typed units of class-based code. The type
system uses row polymorphism for classes and thus supports
mixin-based OO composition. To protect migration of mix-
ins from typed to untyped components, the system employs a
novel form of contracts that partially seal classes. The design
comes with a theorem that guarantees the soundness of the
type system even in the presence of untyped components.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects

General Terms Languages, Design

Keywords gradual typing, first-class classes, contracts,
sealing, design by contract, row polymorphism, blame theo-
rem (proof technique)

⇤ Supported in part by two NSF grants, the DARPA CRASH program, and
a grant from the Mozilla Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’12 Oct. 19, Tucson.
Copyright c� 2012 ACM [to be supplied]. . . $10.00

1. Untyped Object-Oriented Style
The popularity of untyped programming languages such as
Python, Ruby, or JavaScript has stimulated work on com-
bining static and dynamic type-checking. The idea is now
popularly called gradual typing [27]. At this point, gradual
typing is available for functional programming languages
such as Racket [33, 34], for object-oriented languages such
as Ruby [12] or Thorn [38], and for Visual Basic [23] on the
.NET platform. Proposals for gradual typing also exist for
JavaScript [19] and Perl [31]. Formal models have validated
soundness for gradual type systems, allowing seamless in-
teroperation between sister languages [22, 27, 32].

(define drracket-frame%
(size-pref-mixin
(searchable-text-mixin
(searchable-mixin
(status-line-mixin
(text-mixin
(editor-mixin
(standard-menus-mixin
frame%))))))))

Figure 1. Abbreviated code with a chain of mixins

Unfortunately, no existing gradual type system supports
the full range of object-oriented styles found in scripting
languages. These untyped languages tend to support flexible
mechanisms for class composition, such as mixins or traits,
that allow the programmer to abstract over inheritance. Fur-
thermore, some untyped languages support a generalization
of mixins and traits where classes are first-class values and
thus can inherit from other classes at runtime. For example,
the implementation of the DrRacket IDE [8] makes exten-
sive use of layered combinations of mixins to implement text
editing features, as seen in the abbreviated example given in
figure 1—the full code uses 17 mixins.

In such languages, class composition requires the pro-
grammer to reason about the specialization interfaces [20]
of superclasses. A faithful type system must enable the pro-
grammer to express this reasoning via types. Meanwhile, a
gradually typed language should support the exchange of

#lang typed/racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

add-search%

Towards Practical Gradual Typing˚

Asumu Takikawa1, Daniel Feltey1, Earl Dean2, Matthew Flatt3,
Robert Bruce Findler4, Sam Tobin-Hochstadt2, and Matthias
Felleisen1

1 Northeastern University

Boston, Massachusetts

asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu

2 Indiana University

Bloomington, Indiana

samth@cs.indiana.edu, edean@cs.indiana.edu

3 University of Utah

Salt Lake City, Utah

mflatt@cs.utah.edu

4 Northwestern University

Evanston, Illinois

robby@eecs.northwestern.edu

Abstract
Over the past 20 years, programmers have embraced dynamically-typed programming languages.
By now, they have also come to realize that programs in these languages lack reliable type in-
formation for software engineering purposes. Gradual typing addresses this problem; it empowers
programmers to annotate an existing system with sound type information on a piecemeal basis.
This paper presents an implementation of a gradual type system for a full-featured class-based
language as well as a novel performance evaluation framework for gradual typing.

1998 ACM Subject Classification D.3 Programming Languages

Keywords and phrases Gradual typing, object-oriented programming, performance evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Gradual Typing for Classes

Gradual type systems allow programmers to add type information to software systems in
dynamically typed languages on an incremental basis [39, 48]. The ethos of gradual typing
takes for granted that programmers choose dynamic languages for creating software, but also
that for many software engineering tasks, having reliable type information is an advantage.
The landscape of gradual typing includes many theoretical designs [26, 29, 39, 40, 46, 53],
some research implementations [3, 20, 49, 52, 55], and, recently, the first industrial systems
(Typescript [51], Hack,1 Flow2).

Despite these numerous e�orts, no existing project deals with the full power of object-
oriented programming in untyped languages, e.g., JavaScript, Python, Racket, Ruby, or

˚ Due to a conflict of interest, we could not submit an o�cial artifact for consideration to the ECOOP
Artifact Evaluation Committee. However, we have prepared an uno�cial artifact that is available at
the following URL: http://www.ccs.neu.edu/home/asumu/artifacts/ecoop-2015.tar.bz2

1 See hacklang.org and Verlaguet, Commercial Users of Functional Programming, Boston, MA 2013.
2 See flowtype.org

© A. Takikawa, D. Feltey, E. Dean, M. Flatt, R.B. Findler, S. Tobin-Hochstadt, and M. Felleisen;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1023

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Gradual Typing for First-Class Classes ⇤

Asumu Takikawa T. Stephen Strickland Christos Dimoulas
Sam Tobin-Hochstadt Matthias Felleisen

PLT, Northeastern University
{asumu, sstrickl, chrdimo, samth, matthias}@ccs.neu.edu

Abstract
Dynamic type-checking and object-oriented programming
often go hand-in-hand; scripting languages such as Python,
Ruby, and JavaScript all embrace object-oriented (OO) pro-
gramming. When scripts written in such languages grow and
evolve into large programs, the lack of a static type disci-
pline reduces maintainability. A programmer may thus wish
to migrate parts of such scripts to a sister language with a
static type system. Unfortunately, existing type systems nei-
ther support the flexible OO composition mechanisms found
in scripting languages nor accommodate sound interopera-
tion with untyped code.

In this paper, we present the design of a gradual typing
system that supports sound interaction between statically-
and dynamically-typed units of class-based code. The type
system uses row polymorphism for classes and thus supports
mixin-based OO composition. To protect migration of mix-
ins from typed to untyped components, the system employs a
novel form of contracts that partially seal classes. The design
comes with a theorem that guarantees the soundness of the
type system even in the presence of untyped components.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects

General Terms Languages, Design

Keywords gradual typing, first-class classes, contracts,
sealing, design by contract, row polymorphism, blame theo-
rem (proof technique)

⇤ Supported in part by two NSF grants, the DARPA CRASH program, and
a grant from the Mozilla Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’12 Oct. 19, Tucson.
Copyright c� 2012 ACM [to be supplied]. . . $10.00

1. Untyped Object-Oriented Style
The popularity of untyped programming languages such as
Python, Ruby, or JavaScript has stimulated work on com-
bining static and dynamic type-checking. The idea is now
popularly called gradual typing [27]. At this point, gradual
typing is available for functional programming languages
such as Racket [33, 34], for object-oriented languages such
as Ruby [12] or Thorn [38], and for Visual Basic [23] on the
.NET platform. Proposals for gradual typing also exist for
JavaScript [19] and Perl [31]. Formal models have validated
soundness for gradual type systems, allowing seamless in-
teroperation between sister languages [22, 27, 32].

(define drracket-frame%
(size-pref-mixin
(searchable-text-mixin
(searchable-mixin
(status-line-mixin
(text-mixin
(editor-mixin
(standard-menus-mixin
frame%))))))))

Figure 1. Abbreviated code with a chain of mixins

Unfortunately, no existing gradual type system supports
the full range of object-oriented styles found in scripting
languages. These untyped languages tend to support flexible
mechanisms for class composition, such as mixins or traits,
that allow the programmer to abstract over inheritance. Fur-
thermore, some untyped languages support a generalization
of mixins and traits where classes are first-class values and
thus can inherit from other classes at runtime. For example,
the implementation of the DrRacket IDE [8] makes exten-
sive use of layered combinations of mixins to implement text
editing features, as seen in the abbreviated example given in
figure 1—the full code uses 17 mixins.

In such languages, class composition requires the pro-
grammer to reason about the specialization interfaces [20]
of superclasses. A faithful type system must enable the pro-
grammer to express this reasoning via types. Meanwhile, a
gradually typed language should support the exchange of

Innovations needed:
▸ class types, with row polymorphism
▸ sealing contracts for enforce polymorphism
▸ innovative soundness proof

#lang typed/racket

;; a mixing that adds search capabilities

(define (add-search %)

 (class %

 (inherit text)

 (field [state #f])

 (define/public (search str)

 ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket

… (add-search analysis-presentation%)…

add-search%

Towards Practical Gradual Typing˚

Asumu Takikawa1, Daniel Feltey1, Earl Dean2, Matthew Flatt3,
Robert Bruce Findler4, Sam Tobin-Hochstadt2, and Matthias
Felleisen1

1 Northeastern University

Boston, Massachusetts

asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu

2 Indiana University

Bloomington, Indiana

samth@cs.indiana.edu, edean@cs.indiana.edu

3 University of Utah

Salt Lake City, Utah

mflatt@cs.utah.edu

4 Northwestern University

Evanston, Illinois

robby@eecs.northwestern.edu

Abstract
Over the past 20 years, programmers have embraced dynamically-typed programming languages.
By now, they have also come to realize that programs in these languages lack reliable type in-
formation for software engineering purposes. Gradual typing addresses this problem; it empowers
programmers to annotate an existing system with sound type information on a piecemeal basis.
This paper presents an implementation of a gradual type system for a full-featured class-based
language as well as a novel performance evaluation framework for gradual typing.

1998 ACM Subject Classification D.3 Programming Languages

Keywords and phrases Gradual typing, object-oriented programming, performance evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Gradual Typing for Classes

Gradual type systems allow programmers to add type information to software systems in
dynamically typed languages on an incremental basis [39, 48]. The ethos of gradual typing
takes for granted that programmers choose dynamic languages for creating software, but also
that for many software engineering tasks, having reliable type information is an advantage.
The landscape of gradual typing includes many theoretical designs [26, 29, 39, 40, 46, 53],
some research implementations [3, 20, 49, 52, 55], and, recently, the first industrial systems
(Typescript [51], Hack,1 Flow2).

Despite these numerous e�orts, no existing project deals with the full power of object-
oriented programming in untyped languages, e.g., JavaScript, Python, Racket, Ruby, or

˚ Due to a conflict of interest, we could not submit an o�cial artifact for consideration to the ECOOP
Artifact Evaluation Committee. However, we have prepared an uno�cial artifact that is available at
the following URL: http://www.ccs.neu.edu/home/asumu/artifacts/ecoop-2015.tar.bz2

1 See hacklang.org and Verlaguet, Commercial Users of Functional Programming, Boston, MA 2013.
2 See flowtype.org

© A. Takikawa, D. Feltey, E. Dean, M. Flatt, R.B. Findler, S. Tobin-Hochstadt, and M. Felleisen;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1023

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Gradual Typing for First-Class Classes ⇤

Asumu Takikawa T. Stephen Strickland Christos Dimoulas
Sam Tobin-Hochstadt Matthias Felleisen

PLT, Northeastern University
{asumu, sstrickl, chrdimo, samth, matthias}@ccs.neu.edu

Abstract
Dynamic type-checking and object-oriented programming
often go hand-in-hand; scripting languages such as Python,
Ruby, and JavaScript all embrace object-oriented (OO) pro-
gramming. When scripts written in such languages grow and
evolve into large programs, the lack of a static type disci-
pline reduces maintainability. A programmer may thus wish
to migrate parts of such scripts to a sister language with a
static type system. Unfortunately, existing type systems nei-
ther support the flexible OO composition mechanisms found
in scripting languages nor accommodate sound interopera-
tion with untyped code.

In this paper, we present the design of a gradual typing
system that supports sound interaction between statically-
and dynamically-typed units of class-based code. The type
system uses row polymorphism for classes and thus supports
mixin-based OO composition. To protect migration of mix-
ins from typed to untyped components, the system employs a
novel form of contracts that partially seal classes. The design
comes with a theorem that guarantees the soundness of the
type system even in the presence of untyped components.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects

General Terms Languages, Design

Keywords gradual typing, first-class classes, contracts,
sealing, design by contract, row polymorphism, blame theo-
rem (proof technique)

⇤ Supported in part by two NSF grants, the DARPA CRASH program, and
a grant from the Mozilla Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’12 Oct. 19, Tucson.
Copyright c� 2012 ACM [to be supplied]. . . $10.00

1. Untyped Object-Oriented Style
The popularity of untyped programming languages such as
Python, Ruby, or JavaScript has stimulated work on com-
bining static and dynamic type-checking. The idea is now
popularly called gradual typing [27]. At this point, gradual
typing is available for functional programming languages
such as Racket [33, 34], for object-oriented languages such
as Ruby [12] or Thorn [38], and for Visual Basic [23] on the
.NET platform. Proposals for gradual typing also exist for
JavaScript [19] and Perl [31]. Formal models have validated
soundness for gradual type systems, allowing seamless in-
teroperation between sister languages [22, 27, 32].

(define drracket-frame%
(size-pref-mixin
(searchable-text-mixin
(searchable-mixin
(status-line-mixin
(text-mixin
(editor-mixin
(standard-menus-mixin
frame%))))))))

Figure 1. Abbreviated code with a chain of mixins

Unfortunately, no existing gradual type system supports
the full range of object-oriented styles found in scripting
languages. These untyped languages tend to support flexible
mechanisms for class composition, such as mixins or traits,
that allow the programmer to abstract over inheritance. Fur-
thermore, some untyped languages support a generalization
of mixins and traits where classes are first-class values and
thus can inherit from other classes at runtime. For example,
the implementation of the DrRacket IDE [8] makes exten-
sive use of layered combinations of mixins to implement text
editing features, as seen in the abbreviated example given in
figure 1—the full code uses 17 mixins.

In such languages, class composition requires the pro-
grammer to reason about the specialization interfaces [20]
of superclasses. A faithful type system must enable the pro-
grammer to express this reasoning via types. Meanwhile, a
gradually typed language should support the exchange of

Innovations needed:
▸ class types, with row polymorphism
▸ sealing contracts for enforce polymorphism
▸ innovative soundness proof

Translating theory into practice:
▸ design for usability
▸ implementation engineering
▸ performance evaluation

Design matters.

▸ Typed Racket is incremental.
▸ Typed Racket is idiomatic.
▸ Typed Racket is sound.
▸ Typed Racket covers it all.

▸ Does it work?
▸ Does it really work?
▸ Truthfully?
▸ No cheating?

Design matters. Evaluation matters even more.

▸ Typed Racket is incremental.
▸ Typed Racket is idiomatic.
▸ Typed Racket is sound.
▸ Typed Racket covers it all.

▸ Does it work?
▸ Does it really work?
▸ Truthfully?
▸ No cheating?

Design needs feedback loop.

the Idea

Design and
Theory Implementation Typed

Racket Evaluation

Design needs feedback loop.

the Idea

Design and
Theory Implementation Typed

Racket Evaluation

Two kinds of evaluation:
▸ formative
▸ summative

Design needs feedback loop.

the Idea

Design and
Theory Implementation Typed

Racket Evaluation

Two kinds of evaluation:
▸ formative
▸ summative

Three aspects to design evaluation:
▸ effort of adding annotations
▸ usability with (future) dev
▸ performance of mixed systems

Design needs feedback loop.

the Idea

Design and
Theory Implementation Typed

Racket Evaluation

Two kinds of evaluation:
▸ formative
▸ summative

Three aspects to design evaluation:
▸ effort of adding annotations
▸ usability with (future) dev
▸ performance of mixed systems

Two kinds of feedback:
▸ idea level (back to drawing

board)
▸ realization level (previously

Design needs feedback loop.

Typed
Racket

Design needs feedback loop.

Typed
Racket

Effort of adding type annotations:
▸ FP style calls for 3-5% changes
▸ OOP style needs 10-15% changes
▸ mostly annotations, some changes to code to get around the type checker

Design needs feedback loop.

Typed
Racket

Effort of adding type annotations:
▸ FP style calls for 3-5% changes
▸ OOP style needs 10-15% changes
▸ mostly annotations, some changes to code to get around the type checker

Usability of Typed Racket:
▸ TR devs are easily proficient
▸ seniors in a PL course
▸ real-world users

Design needs feedback loop.

Typed
Racket Performance!

Effort of adding type annotations:
▸ FP style calls for 3-5% changes
▸ OOP style needs 10-15% changes
▸ mostly annotations, some changes to code to get around the type checker

Usability of Typed Racket:
▸ TR devs are easily proficient
▸ seniors in a PL course
▸ real-world users

WHICH
MODULE WILL A
PROGRAMMER
EQUIP WITH

A B C

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

Ben Greenman

WHICH
MODULE WILL A
PROGRAMMER
EQUIP WITH

A B C

A B C A B C A B C

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

Ben Greenman

WHICH
MODULE WILL A
PROGRAMMER
EQUIP WITH

A B C

A B C A B C A B C

A B C A B C

A B C A B C A B C A B C

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

Ben Greenman

WHICH
MODULE WILL A
PROGRAMMER
EQUIP WITH

A B C

A B C A B C A B C

A B C A B C

A B C A B C A B C A B C

A B C

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

Ben Greenman

WHICH
MODULE WILL A
PROGRAMMER
EQUIP WITH

A B C

A B C A B C A B C

A B C A B C

A B C A B C A B C A B C

A B C
WE DON’T KNOW.
ALL 2^N OF THESE
CONFIGURATIONS

ARE FEASIBLE.

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

Ben Greenman

POPL 2016 and Journal of Functional Programming [in preparation]

▸ ~20 modular programs with ~100,000 configurations.

▸ 90% of those impose a penalty of 3x or more.

▸ many configurations impose a 10x penalty

▸ some configurations cost as much as 100x of the baseline

Typed Racket’s contract impose a high run-time cost on mixed system performance.

POPL 2016 and Journal of Functional Programming [in preparation]

▸ ~20 modular programs with ~100,000 configurations.

▸ 90% of those impose a penalty of 3x or more.

▸ many configurations impose a 10x penalty

▸ some configurations cost as much as 100x of the baseline

Typed Racket’s contract impose a high run-time cost on mixed system performance.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen
Northeastern University, Boston, MA

Abstract
Programmers have come to embrace dynamically-typed languages
for prototyping and delivering large and complex systems. When it
comes to maintaining and evolving these systems, the lack of ex-
plicit static typing becomes a bottleneck. In response, researchers
have explored the idea of gradually-typed programming languages
which allow the incremental addition of type annotations to soft-
ware written in one of these untyped languages. Some of these
new, hybrid languages insert run-time checks at the boundary be-
tween typed and untyped code to establish type soundness for the
overall system. With sound gradual typing, programmers can rely
on the language implementation to provide meaningful error mes-
sages when type invariants are violated. While most research on
sound gradual typing remains theoretical, the few emerging imple-
mentations suffer from performance overheads due to these checks.
None of the publications on this topic comes with a comprehensive
performance evaluation. Worse, a few report disastrous numbers.

In response, this paper proposes a method for evaluating the per-
formance of gradually-typed programming languages. The method
hinges on exploring the space of partial conversions from untyped
to typed. For each benchmark, the performance of the different ver-
sions is reported in a synthetic metric that associates runtime over-
head to conversion effort. The paper reports on the results of ap-
plying the method to Typed Racket, a mature implementation of
sound gradual typing, using a suite of real-world programs of var-
ious sizes and complexities. Based on these results the paper con-
cludes that, given the current state of implementation technologies,
sound gradual typing faces significant challenges. Conversely, it
raises the question of how implementations could reduce the over-
heads associated with soundness and how tools could be used to
steer programmers clear from pathological cases.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—Performance measures

Keywords Gradual typing, performance evaluation

1. Gradual Typing and Performance
Over the past couple of decades dynamically-typed languages have
become a staple of the software engineering world. Programmers
use these languages to build all kinds of software systems. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright © ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

many cases, the systems start as innocent prototypes. Soon enough,
though, they grow into complex, multi-module programs, at which
point the engineers realize that they are facing a maintenance night-
mare, mostly due to the lack of reliable type information.

Gradual typing [21, 26] proposes a language-based solution to
this pressing software engineering problem. The idea is to extend
the language so that programmers can incrementally equip pro-
grams with types. In contrast to optional typing, gradual typing
provide programmers with soundness guarantees.

Realizing type soundness in this world requires run-time checks
that watch out for potential impedance mismatches between the
typed and untyped portions of the programs. The granularity of
these checks determine the peformance overhead of gradual typing.
To reduce the frequency of checks, macro-level gradual typing
forces programmers to annotate entire modules with types and
relies on behavioral contracts [12] between typed and untyped
modules to enforce soundness. In contrast, micro-level gradual
typing instead assigns an implicit type Dyn [1] to all unannotated
parts of a program; type annotations can then be added to any
declaration. The implementation must insert casts at the appropriate
points in the code. Different language designs use slightly different
semantics with different associated costs and limitations.

Both approaches to gradual typing come with two implicit
claims. First, the type systems accommodate common untyped
programming idioms. This allows programmers to add types with
minimal changes to existing code. Second, the cost of soundness is
tolerable, meaning programs remain performant even as program-
mers add type annotations. Ideally, types should improve perfor-
mance as they provide invariants that an optimizing compiler can
leverage. While almost every publication on gradual typing vali-
dates some version of the first claim, no projects tackle the second
claim systematically. Most publications come with qualified re-
marks about the performance of partially typed programs. Some
plainly admit that such mixed programs may suffer performance
degradations of up to two orders of magnitude [18, 25, 28].

This paper presents a single result: a method for systematically
evaluating the performance of a gradual type system. It is illustrated
with an application to Typed Racket, a mature implementation of
macro-level gradual typing. We find that Typed Racket’s cost of
soundness is not tolerable. If applying our method to other gradual
type system implementations yields similar results, then sound
gradual typing is dead.

The insight behind the method is that to understand the perfor-
mance of a gradual type system, it is necessary to simulate how a
maintenance programmer chooses to add types to an existing soft-
ware system. For practical reasons, such as limited developer re-
sources or access to source code, it may be possible to add types to
only a part of the system. Our method must therefore simulate all
possibilities. Thus, applying our method to Typed Racket requires
annotating all n modules with types. The resulting collection of
2 ¨ n modules is then used to create 2n configurations. The col-
lection of these configurations forms a complete lattice with the

Premature Death?

▸ Practical evaluations are critical for the design feedback loop.
▸ They focus our mind and our research efforts.

Premature Death? Research is when it can fail.

▸ Practical evaluations are critical for the design feedback loop.
▸ They focus our mind and our research efforts.

Lessons Learned

the goal the nature of the question

level of granularity

type inference vs
explicit static type

Lessons Learned

the role of evaluation

the goal the nature of the question

level of granularity

type inference vs
explicit static type

Lessons Learned

the role of evaluation

do developers care?

the goal the nature of the question

level of granularity

type inference vs
explicit static type

Lessons Learned

the role of evaluation

do developers care?

what’s in it for you?

the goal the nature of the question

level of granularity

type inference vs
explicit static type

Lessons Learned

the role of evaluation

do developers care?

what’s in it for you?

and then,
then we go into details

the goal

Lessons Learned

Why do we add types to
untyped languages?

the goal

Lessons Learned

Why do we add types to
untyped languages?

Is it about bug finding?

Is it about IDE mechanics?

Is it about execution speed?

the goal

Lessons Learned

It is about communicating yourself
and others developers in the future.

Why do we add types to
untyped languages?

Is it about bug finding?

Is it about IDE mechanics?

Is it about execution speed?

the goal

Lessons Learned

It is about communicating yourself
and others developers in the future.

Why do we add types to
untyped languages?

Is it about bug finding?

Is it about IDE mechanics?

Is it about execution speed?

Challenge ~ how to gather
evidence for that?

the nature of the question

Lessons Learned

What are we
investigating?

the nature of the question

Lessons Learned

What are we
investigating?

Is it about λ calculus?

Is it about new languages?

Is it about industrial
languages and needs?

the nature of the question

Lessons Learned

What are we
investigating?

Is it about λ calculus?

Is it about new languages?

Is it about industrial
languages and needs?

We use Racket for two reasons:
▸ it is useful to, and representative

of, industrial untyped languages
▸ but it is academic and we change

it if we must

the nature of the question

Lessons Learned

What are we
investigating?

Is it about λ calculus?

Is it about new languages?

Is it about industrial
languages and needs?Should we aim for

soundness?

We use Racket for two reasons:
▸ it is useful to, and representative

of, industrial untyped languages
▸ but it is academic and we change

it if we must

the nature of the question

Lessons Learned

What are we
investigating?

Is it about λ calculus?

Is it about new languages?

Is it about industrial
languages and needs?Should we aim for

soundness?

We use Racket for two reasons:
▸ it is useful to, and representative

of, industrial untyped languages
▸ but it is academic and we change

it if we must

Absolutely! If academics don’t,
nobody will as the numerous
designs of hybrid languages in

industry show (exception: C#).

the nature of the question

Lessons Learned

What are we
investigating?

Is it about λ calculus?

Is it about new languages?

Is it about industrial
languages and needs?Should we aim for

soundness?

We use Racket for two reasons:
▸ it is useful to, and representative

of, industrial untyped languages
▸ but it is academic and we change

it if we must

Absolutely! If academics don’t,
nobody will as the numerous
designs of hybrid languages in

industry show (exception: C#).

Challenge ~ can we make it
work? What does a compromise

look like?

What do programmers
want when they add types?

level of granularity

Lessons Learned

What do programmers
want when they add types?

level of granularity

Lessons Learned

Expressions?

Functions?Classes?

Modules?

What do programmers
want when they add types?

level of granularity

Lessons Learned

Expressions?

Functions?Classes?

Modules?
Typed Racket bets on modules, for two reasons:
▸ typically small enough for conversion
▸ large enough to keep cost of contracts low

What do programmers
want when they add types?

level of granularity

Lessons Learned

Expressions?

Functions?Classes?

Modules?
Typed Racket bets on modules, for two reasons:
▸ typically small enough for conversion
▸ large enough to keep cost of contracts low

I was wrong.

What do programmers
want when they add types?

level of granularity

Lessons Learned

Expressions?

Functions?Classes?

Modules?
Typed Racket bets on modules, for two reasons:
▸ typically small enough for conversion
▸ large enough to keep cost of contracts low

I was wrong.

the “Eli experience” with TypeScript

What do programmers
want when they add types?

level of granularity

Lessons Learned

Expressions?

Functions?Classes?

Modules?
Typed Racket bets on modules, for two reasons:
▸ typically small enough for conversion
▸ large enough to keep cost of contracts low

I was wrong.

the “Eli experience” with TypeScript

the performance evaluation is
disastrous (until proven otherwise)

type inference vs
explicit static type

Lessons Learned

Does type inference work
for Untyped Languages?

type inference vs
explicit static type

Lessons Learned

Does type inference work
for Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

type inference vs
explicit static type

Lessons Learned

Probably not:
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work
for Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

type inference vs
explicit static type

Lessons Learned

Probably not:
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work
for Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

But 1: “run time” inference (see work by
Shriram Krishnamurthi and Jeff Foster)

type inference vs
explicit static type

Lessons Learned

Probably not:
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work
for Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

But 2: IDE tools that assist “conversion”

But 1: “run time” inference (see work by
Shriram Krishnamurthi and Jeff Foster)

type inference vs
explicit static type

Lessons Learned

Probably not:
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work
for Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

But 2: IDE tools that assist “conversion”

But 1: “run time” inference (see work by
Shriram Krishnamurthi and Jeff Foster)

But 3: the syntax system necessitates more than plain local inference

Lessons Learned

the role of evaluation

How important is the
evaluation process for this field?

Lessons Learned

the role of evaluation

Expressiveness

UsabilityEffectiveness

PerformanceHow important is the
evaluation process for this field?

Lessons Learned

the role of evaluation

Expressiveness

UsabilityEffectiveness

PerformanceHow important is the
evaluation process for this field?

Our “business” is design, evaluation is imperative:
▸ calculi help with soundness
▸ existing body of code is critical
▸ but we are academic so preserve flexibility

Lessons Learned

the role of evaluation

Expressiveness

UsabilityEffectiveness

PerformanceHow important is the
evaluation process for this field?

Our “business” is design, evaluation is imperative:
▸ calculi help with soundness
▸ existing body of code is critical
▸ but we are academic so preserve flexibility

Challenge ~ how can academic
teams create and maintain a PL?

Lessons Learned

do developers care?

Even academics care in PL
ought to care whether the

“developer on the street” will
eventually care.

Lessons Learned

do developers care?

Even academics care in PL
ought to care whether the

“developer on the street” will
eventually care.

Obviously developers care. People built
big systems in Untyped, people discover

problems with this approach, and
industry is mimicking the incremental/

gradual approach to typing.

Lessons Learned

do developers care?

Even academics care in PL
ought to care whether the

“developer on the street” will
eventually care.

PL has failed to gather data
that support soundness

and sound design.

Obviously developers care. People built
big systems in Untyped, people discover

problems with this approach, and
industry is mimicking the incremental/

gradual approach to typing.

Lessons Learned

do developers care?

Even academics care in PL
ought to care whether the

“developer on the street” will
eventually care.

PL has failed to gather data
that support soundness

and sound design.

PL fails to make the
argument (even) at

the “theoretical”
level of courses.

Obviously developers care. People built
big systems in Untyped, people discover

problems with this approach, and
industry is mimicking the incremental/

gradual approach to typing.

Lessons Learned

do developers care?

Even academics care in PL
ought to care whether the

“developer on the street” will
eventually care.

PL has failed to gather data
that support soundness

and sound design.

PL fails to make the
argument (even) at

the “theoretical”
level of courses.

Obviously developers care. People built
big systems in Untyped, people discover

problems with this approach, and
industry is mimicking the incremental/

gradual approach to typing.

Challenge ~ how can academic
PL improve its teaching?

Lessons Learned

what’s in it for you?

Lessons Learned

what’s in it for you?

The area provides a rich field of
challenging problems, ranging from the

incredibly theoretical to the highly practical.

Lessons Learned

what’s in it for you?

The area provides a rich field of
challenging problems, ranging from the

incredibly theoretical to the highly practical.

Practical grounding matters.

Lessons Learned

what’s in it for you?

The area provides a rich field of
challenging problems, ranging from the

incredibly theoretical to the highly practical.

Practical grounding matters.

Take a the long-term view (Wright,
Flanagan, Krishnamurthi, Tobin-Hochstadt).

The End

Soft Typists
Robert “Corky” Cartwright, Mike Fagan, Andrew Wright

The MrSpidey Crew
Cormac Flanagan, Shriram Krishnamurthi, Matthew Flatt

Contractors
Robby Findler, Christos Dimoulas Philippe Meunier, Stevie Strickland

Typed Racketeers
Sam Tobin-Hochstadt, Vincent, St-Amour, Asumu Takikawa

Evaluators
Ben Greenman, Max New, Jan Vitek

