
Functional Objects
Matthias Felleisen

PLT
Northeastern University

The Myth

• “Objects” represent physical objects.

• Objects encapsulate state.

• Computation means imperative state change
through methods or messages.

• OO analysis is natural ... and it naturally leads to
OO programing.

• In short, OO is imperative programming
done right on a large scale.

My Take

• Object-oriented computation is about the
exchange of messages between objects. The
purpose is to create objects and to send
objects back and forth via messages.

• Class-based programming is about the
creation of class hierarchies that specify the
nature and behavior of objects during a
computation.

Snyder’s Take

• Designers define new classes of objects.

• Objects have operations defined on them.

• Invocations operate on multiple types of
objects.

• Class definitions share common components
using inheritance.

The Thesis

Functional Programming
is Good(tm)

for Object-Oriented People.

• State

• Classes

• Sending Messages

The Nature of the Talk

• Look (again) at some essential elements of OOP/Ls.

• Link them to FP/Ls; refresh your memory.

• Each part has a gem, more proposal than product.

• Perspective: programmer, language designer

• A small talk, squeaking about some basic little
things; just good enough for breakfast Kaffee.

Part I: State

Quiz: So, who said this?

Though [it] came from many
motivations, two were central.
... [T]he small scale one was to
find a more flexible version
of assignment, and then to
try to eliminate it altogether.
 (1993)

Favor immutability.
 (2001)

Use value objects when possible.
 (2001)

The Problem

• UFO

• an anti-UFO battery

• a bunch of shots

OO Analysis
World of UFOs

UFO

AUP

Shot Shot Shot
* * *

fire hit

Events
(Clock,
Mouse,
Keys)

move

OO Design

UFO World AUP

Shot

UFO

Shot Shot
* * * *

Events

class UFO {
 int x;
 int y;
 UFO(int x, int y, ...) {
 this.x = x;
 }
 ...
 UFO move() {
 new UFO(ran(deltaX),
 y + deltaY);
 }
}

OO Programming

class UFO {
 int x;
 int y;
 UFO(int x, int y, ...) {
 this.x = x;
 }
 ...
 void move() {
 x = x + ran(deltaX);
 y = y + deltaY;
 }
}

Imperative Functional

Oh no, the old movable Point is back

• This is just the stupid movable point.

• Every OO model talk contains it.

• It won’t scale.

• Anyways, where does the new UFO go?

• And how can a clock callback use it?

The Callback Problem (1)

class UFOWorld extends World {
 UFO u;
 AUP a; . . .
 void onClockTick() {
 u.move();
 . . .
 }
 void onKeyClick(Key k) {
 a.move(k);
 . . .
 } . . .
}

The Callback Problem (1)

class UFOWorld extends World {
 UFO u;
 AUP a; . . .
 void onClockTick() {
 u.move();
 . . .
 }
 void onKeyClick(Key k) {
 a.move(k);
 . . .
 } . . .
}

The Callback Problem (2)

class UFOWorld extends World {
 UFO u;
 AUP a; . . .
 void onClockTick() {
 u = u.move();
 . . .
 }
 void onKeyClick(Key k) {
 a = a.move(k);
 . . .
 } . . .
}

Not A Solution

The Callback Problem (3)

class UFOWorld extends World {
 UFO u;
 AUP a; . . .
 World onClockTick() {
 return new UFOWorld(u.move(), . . .);
 . . .
 }
 World onKeyClick(Key k) {
 return new UFOWorld(. . ., a.move(k));
 . . .
 } . . .
}

The Callback Solution

class World {
 World theWorld;
 . . .
 abstract World onClockTick() ;
 abstract World onKeyClick(Key k);
 . . .
 eventHandler(. . .) {
 theWorld =
 . . . theWorld.onClickTick() . . .
 . . . theWorld.onKeyClick(k) . . .
 }
}

... and even this
one assignment

can disappear if
you create a
“world loop”.

Events and Pieces of the World

Piece of
the World
 W1

Event
Labels
 EL1

Event
Handler
 H1

Piece of
the World
 Wi

Event
Labels
 ELi

Event
Handler
 Hi

Piece of
the World
 Wn

Event
Labels
 ELn

Event
Handler
 Hn

* * *

* * *

disjoint sets of events, worlds

an event e in Ej
Hj(f)

an event e in E1
H1(e)

concurrency is okay

State: It doesn’t have to be imperative

• reduce imperativeness, it’s good for you
(see ML and Scheme)

• explicates channels of communication

• enables more abstraction, which means less cost

• renders concurrency manageable

• conduct research on this programming style
(feasibility, clarity, time and space efficiency)

in 17 ECOOPs and 18 OOSPLAs, only
three papers on declarative methods and
class hierarchies appeared

Quiz: So, one more time, who said this?

Though [it] came from many
motivations, two were central.
... [T]he small scale one was to
find a more flexible version
of assignment, and then to
try to eliminate it altogether.
 (1993)

Favor immutability.
 (2001)

Use value objects when possible.
 (2001)

OOP: The Experts

Though OOP came from many
motivations, two were central.
... [T]he small scale one was to
find a more flexible version
of assignment, and then to
try to eliminate it altogether.
 Alan Kay,
 History of Sma!talk (1993)

Favor immutability.
 Joshua Bloch,

Effective Java (2001)

Use value objects when possible.
 Kent Beck,

Test Driven Development (2001)

Part II: Classes

OOP: The Experts, Again

Though OOP came from many
motivations, two were central.
The large scale one was to find
a better module scheme for
complex systems involving
hiding of details

Alan Kay, History of Sma!talk (1993)

A class is a module with
its own external interface.

Alan Snyder, Encapsulatio#
and Inheritance (1986)

The One Slide Version

You must override hashCode in
every class that overrides equals.

Joshua Bloch, Effective Java (2001)

The challenge for language designers is to
provide the means by which the designer
of a class can express an interface to inheriting
clients that reveals the minimum information
needed to use the class.

Alan Snyder, Encapsulation and Inheritance (1985)

Comparative Semantics: OOP vs FP

↑

↑

↑

main(...) → s0→ s1 ...

OO programming
and computation

Comparative Semantics: OOP vs FP

main(...) → s0→ s1 ...

FP programming
and computationfun f(x) = ... x ... g(... x ...)

fun g(x,y) = ... h(x) ... y ... f(y) ...

fun h(z,x) = fn x => ... g(z,z) ...

fun main(argv []) =
 ... h(argv[0],argv[1])f(2) ...

(naive version)

Comparative Semantics: OOP vs FP

↑

↑

↑

main(...) → s0→ s1 ...

FP programming
and computation
(realistic version)

←

Side by Side

↑

↑

↑

↑

↑

↑
←

OOP FP

FP: What’s a Module

• namespaces, packages, and so on

• abstract data type (existential type, abstype)

• structure (SML module)

• functors: modules are first-class (link time) values

• applicative vs generative functors

• mutually recursive functors (units)

FP: Encapsulation

• What is information encapsulation? Are modules
(1) opaque, (2) transparent, or (3) translucent?

• How do you reveal information? Type equations.
Structure equations.

• How do you use revealed information? Sharing
constraints.

• When do modules implement interfaces? Can
clients thin the interfaces?

FP Research

Look at POPL or LFP/
ICFP proceedings
and count the papers on
“questions” of
moduleness.

↑

↑

↑
←

OOP: The Client Relationship

↑

↑

• private, public, protected, ...

• static

• implements: as in Java

OOP: The Client Interface

• Gang of Four: Program to the Interface.
Types are interfaces for fields, method signatures,
and variables.

• Good: This practice passes the “rename the
fields” test.

• Not so good: It doesn’t pass the “rename the
method” test.

• Bad: Reality is, you can always get to the class.

OOP: The Client Interface

“A programming language supports
encapsulation to the degree that it
allows minimal external interfaces ...
[if you can get around this] the
original language is still defective.”

Alan Snyder, Encapsulatio#
and Inheritance (1985)

But, let’s leave it at that. -- Me, now

OOP: The Superclass Relationship

• private, public, protected, ...

• static

• final (good something new)

• inner (but only in one OOPL)

↑

↑

↑
The challenge for language designers is to
provide the means by which the designer
of a class can express an interface to inheriting
clients that reveals the minimum information
needed to use the class.

OOP: Modules from Subclasses

class Object {
 ...
 public boolean equals(Object o) { ... }
 public int hashCode() { ... }

class Address {
 public boolean equals(Object o) { ... }

 ...
}

↑

public int hashCode() { ... }

BUG!

Override hashCode in
every class that overrides
equals.

Josh Bloch, Effective Java

OOP: What’s an “Inheritance Module”

State and Guttag ‘95,
Lamping 93, Hauck 93

Solution 1: specialization interfaces

↑

↑

↑ e.g., specify simultaneous override

Override hashCode in every class that overrides equals.

OOP: Specialization Interfaces

class Object {
 ...
 public boolean equals(Object o) { ... }
 public int hashCode() { ... }

class Address {
 public boolean equals(Object o) { ... }

 ...
}

↑

public int hashCode() { ... }

Sadly enough,
nobody has
implemented
this solution
and explored it.

OOP: What’s an “Inheritance Module”

Solution 2: mixins

↑

↑

↑

↑

Mixins are class (fragments) w/
o a superclass --- they describe
their superclass via an
interface.

MixedJava (Flatt, Krish., Felleisen ‘98)
Jiazzi (Hsieh and Flatt ‘01)
Jam (Anaconad and Zucca ‘01)
Java 1.5 (Sun ‘04
and a few more

Not A Solution

Inheritance Modules: Mixins

• Mixins specify what they expect from their
superclass. That’s important.

• But it does not specify what a superclass expects
from its subclass.

• The relationship is inverted.

OOP: What’s an “Inheritance Module”

Solution 3: classes as values and functions

↑

↑

↑

;; pre-addr% :: object<%>
(define pre-addr%
 (extend-object
 (λ (this that) ...) (λ () ...)))

;; addr% :: address<%>
(define addr%
 (class pre-addr% ...))

;; object% :: object<%>
(define object% (class ...))

;; (object% object% -> bool)
;; (-> int)
;; -> object%
(define (extend-object f g)
 (class object%
 (super-new)
 (define/override (equals o)
 (f this o))
 (define/override (hashCode)
 (g))))

OOP: Classes and Functions
PLT Scheme, Flatt et al (1998-2004)

OOP: What’s an “Inheritance Module”

Solution 3: classes as values and functions

↑

↑

↑

;; (object% object% -> bool) (-> int) -> object%
(define (extend-object f g)
 (class object%
 (super-new)
 (define/override (equals o)
 (f this o))
 (define/override (hashCode)
 (g))))
(define pre-addr%
 (extend-object
 (λ (this that) ...) (λ () ...)))

PLT Scheme, Flatt et al (1998-2004)

Not QuiteRight

Inheritance Modules: First-class Classes

• First-class classes solve the problem, if we also
have functions.

• But, if there are many constraints, we need an
enormous number of functions to account for all
possible combinations.

• Plus first-class classes come at a significant cost.

• So, they are not a feasible solution either.

Inheritance Modules: An FP Approach

class Object
 implements IHashable ... {
 ...
 boolean f(Object that) ...
 int g() ...

}

interface IHashable {
 boolean equals(Object o)
 int hashCode()
}

export f as equals,
 g as hashCode;

In short, separate naming
from exporting as in, for
example, PLT Scheme
modules.

Inheritance Modules: An FP Approach

class Address like Object {

}

interface IHashable {
 boolean equals(Object o)
 int hashCode()
}

 boolean f(Object that) ...
 int g() ...
 ...
 boolean h(Object that)
 ... As is, Address does not

satisfy the IHashable
interface!

Inheritance Modules: An FP Approach

class Address like Object
 implements IHashable ... {

}

export h as equals,
 g as hashCode;

interface IHashable {
 boolean equals(Object o)
 int hashCode()
}

 boolean f(Object that) ...
 int g() ...
 ...
 boolean h(Object that)
 ...

• implementation
inheritance, yes

• implicit subtyping, no
overriding, no

• instead: explicit export

Inheritance as Modules

• Inherit, don’t subtype; inherit, don’t override;
specify implements separately and explicitly

• Good: satisfies the “rename variables” test

• Better: satisfies the “rename methods” test, too.

• Best: more work on ML-style modules applies.

And it’s all just some basic
functional-modular ideas.

End Note: On Classes and Modules

• Clements Szyperski, Import is Not Inheritance - Why
We Need Both: Modules and Classes

• Yes: Remy and Leroy, OCAML. Many ICFP papers.

• Yes: Findler and Flatt, Modular Object-Oriented
Programming ICFP 1998

Good: Schaerli, Ducasse, Nierstrazs, Wuys, ECOOP 2004

Part III: Sending Messages

We already know that ...

• GoF, Design Patterns, 1994

• Thomas Kühne, A functional pattern system for
object-oriented design, Darmstadt 1998

• Joshua Bloch, Effective Java, 2001

Peter Norvig found that 16 of the 23
patterns in Design Patterns were
"invisible or simpler" in Lisp.

“A functional pattern system is valuable
... for object-oriented design.” [p261]

The majority of method and class advice
points to functional programming.

Implementing Unions, An Example

• GoF: Composite lets clients treat individual
objects and compositions of objects uniformly.

• Kühne: Raise Nil to a first-class value

• Bloch: Replace Union with Class Hierarchies

Let’s Follow This Advice: Classes

abstract class AList

 class Cons extends Alist {
 AList rest;
 ... }

 class Empty extends Alist

Use a class hierarchy and “null” objects
to represent the union type
 list = cons + nil

Let’s Follow This Advice: Methods

abstract class AList {
 int length() { return howMany(0); }
 abstract int howMany(int a);
 ... }

 class Cons extends Alist {
 AList rest;
 int howMany(int a) {
 return rest.howMany(a+1);
 }
 ... }

class Empty extends Alist {
 int howMany(int a) {
 return 0;
 }
 ... }

Object-oriented programming is about
sending messages to objects (invoking methods).

Let’s Follow This Advice: Test

class Test {
 boolean main(int n) {
 AList last = new Empty();
 ...
 // create list with n Cons’es
 return last.howMany() == n;
 }
}

Compile, link, run: what happens?

Let’s Follow This Advice: Guess again

• Test.main(10) works just fine

• Test.main(100000)
[:Web/Presentations/Ecoop] matthias% java Test
Exception in thread “main” java.lang.StackOverflowError

C#, C++ [*], CLOS, Eiffel, and so
on, ... don’t run the programs
when we follow the guidelines of
OO programming.

Loops to the Rescue

abstract class AList {
 int howMany0() {
 int i = 0;
 for(AList l = this; !(a instanceof Empty); l = ((Cons)l).rest)
 i = i + 1;
 return i;
 } ...
}

We must use non-OO means to produce working code.

Object-Oriented Programming
in languages that don’t require
tail-call optimizations makes
no sense.

Scheme’s Methods Can Do It

How Come Schemers have it Right?

• Scheme’s method invocation is a procedure call.

• Scheme implementations must optimize tail-calls.

• Because Gerry and Guy were omniscient ...

How Come Schemers have it Right?

Nah,

Guy in email to me, cc’ed Gerry on April 2, 2004:

“We decided to construct a toy implementation of an actor
language so that we could play with it ...

Then came a crucial discovery. Once we got the interpreter
working correctly and had played with it for a while, writing
small actors programs, we were astonished to discover that
that the program fragments in _apply_ that implemented
function application and actor invocation were identical!”

How Come Schemers have it Right?

Nah,

Schemers have it right because
they followed the pure OO
example.

Part IV: More

OOP, FP, Multiparadigm Programming

• Budd, Leda (multiparadigm)

• Remy and Leroy: OCAML

• Odersky: Pizza, GJ, Scala

• MPOOL: [caution]

More for OOP from FP

• A Class System from Macros:
Matthew Flatt, PLT Scheme

• A Contract System for
Objects from FP
Robert Findler, PLT Scheme

• Teaching OO Programming --
with Functions First PLT for
eight years now

OOP from Scheme Macros

• PLT Scheme’s classes and mixin system is more
expressive than Java’s.

• It’s all implemented with macros, specifically, 2257
lines of (functional) macro code.

• Because this OO implementation is that small,
Flatt can experiment easily with different variants
of classes.

More for OOP from FP

• A Class System from Macros:
Matthew Flatt, PLT Scheme

• A Contract System for
Objects from FP
Robert Findler, PLT Scheme

• Teaching OO Programming --
with Functions First PLT for
eight years now

OO Contracts from Scheme

• DrScheme is a large code base with 100’s of small
components that exchange higher-order functions.

• Software contracts are essential to keep these
components sane.

• Findler & Felleisen ICFP 2002 shows how to cope
with infinite behavior in a software contract context.

• Findler now carries over this work to OOP because
objects also have infinite behavior.

More for OOP from FP

• A Class System from Macros:
Matthew Flatt, PLT Scheme

• A Contract System for
Objects from FP
Robert Findler, PLT Scheme

• Teaching OO Programming --
with Functions First PLT for
eight years now

Teaching Good OOP Requires FP

• TeachScheme!’s design recipe approach organizes
functional programs around the structure of data
and collections of functions.

• It naturally leads to OO programming in the
follow-up course.

• Experience shows time and again

• 1 year of Java (or C++) is

• inferior to 1 semester of TeachScheme!
followed by 1 semester of Java

Part V: Conclusion

FP and OOP

• FP has benefited from OOP for a long time.

• OOP could benefit from FP.

• Go back to your roots and let’s work together.

The End

Thanks to
 Matthew Flatt

Robby Findler
Shriram Krishnamurthi

Dan Friedman

Doing encapsulation right
is a commitment not just
to abstraction of state, but
to eliminate state oriented
metaphors from
programming.

Alan Kay, Early History of
Sma!tal&

