
cs4
40

0 —
August

19
, 2

02
5

CHAPTER I THE STUDY OF PROGRAMMING LANGUAGES

What is a programming Language?
Why should students study programming languages?
How do people study programming languages?

1 The Pragmatics Question

Software developers create software systems with programming languages
and their tool chains. They edit code in an IDE, which, in turn, provides
feedback as the code evolves. They read code and they rely on properties
of the language to help them with this task; for example, in a type-safe
language, a method that consumes an object of type T is guaranteed to be
created by a corresponding constructor. They add test suites and run them;
the IDE indicates which tests fail. They use failing test cases to start the bug
locating process, using the debugger to set breakpoints so that they can see
where execution goes wrong. They change the code to fix bugs once found.
They measure the performance of systems, and if it is found wanting, they
try replace low-performing pieces with faster ones. During this entire pro-
cess, software developers engages with the chosen programming language
and its tools, and the question is how well the language and its tools serve
their purpose in each of these situations.

Linguists have studied natural languages and their use in various con-
texts for even longer than programming language researchers have studied
their subjects. They recognize this description immediately. They have a

Our use of
“pragmatics” slightly
differs from the use in
linguistics.word for it: pragmatics—short for “use of language in context.” Linguists

appreciate the central role that pragmatics plays in improving people’s un-
derstanding of the fundamental laws of language.

This text book tackles the question of programming-language pragmat-
ics head on. Following the historic development, the emphasis is on how

cs4
40

0 —
August

19
, 2

02
5

2 Section 2

certain elements of languages facilitate the creation of code and reason-
ing about it. With “reasoning” we mean reading, understanding relation-
ships between pieces of code, validating those, and identifying problematic
spots. Each element of a language represents a design decision, that is, a
choice by language creators to pick one of several alternatives. Such design
alternatives come with different costs and benefits, and understanding the
rationale behind the choice is an essential aspect of the study of program-
ming languages.

Our journey through the landscape of programming languages starts
with the bare-bones language from the beginning of time. The path gets
gradually steeper with the addition of classes, modules, and types. Near
the end, this book presents the design rationale behind the essence of Type
Script, a recently designed and already widely used language. Its construc-
tion combines many advanced language elements in an intriguing manner.
At the same time, the language is a case study of how its creators strictly
emphasized one cost-benefit aspect over all others—to the potential detri-
ment of developers because this choice denies support in many important
uses cases.

2 Programming Language

A programming language is an artificial language. Like a natural language, a
programming language has three properties that a programmer must un-
derstand to use it properly: syntax, semantics, and pragmatics.

• Syntax consists of the vocabulary and the grammatical rules. These
rules determine which sequences of characters form a “word” and
which sequences of “words” are well-formed sentences. A syntax spec-
ification may also impose validity constraints on well-formed sen-
tences before one of these is accepted as an actual program.

• Semantics assigns meaning to programs and, implicitly, to its pieces.
This meaning is typically specified via a natural-language document;
a few programming languages come with mathematical specifica-
tions, based on the research of “semanticists.”. A software developer,
however, has to accept whatever the chosen implementation of a lan-
guage does when presented with a program. Language researchers
tend to call the latter “behavior” to differentiate it from the specified
and thus desired semantics of the language.

cs4
40

0 —
August

19
, 2

02
5

Studying Programming Languages: Why 3

• Pragmatics is about the usage of a language in specific work situa-
tions. This wording covers the creation of programs, the reading of
code, the search for bugs, and so on. Unlike syntax and semantics,
pragmatics remains an imprecise term and the idea of pragmatics
has received much less attention from researchers than syntax and
semantics—even though it clearly matters most to the working soft-
ware developer.

3 Studying Programming Languages: Why

When the weather app on your phone tells you in the morning that it is
going to rain today with a 90% probability, you can’t do much about the
rain. Similarly, when the central bank announces an increase in the price of
money—also known as interest rate—your parents can’t change the bank’s
mind just because they need to get a mortgage now. And when a manager
tells a newly hired junior developer that the team’s chosen programming
language is PLX, then this new person can’t just start writing code in some
different language YPL, because it is fashionable right now.

But, in all of these situations, you can act consistently with the new
information. As they say, there is no bad weather, there’s only bad clothing.
So, if the app says it’s going to rain and you have to go somewhere on foot,
you will grab a rain coat or an umbrella. And if your parents are really
into buying a home with a mortgage, they will pay attention to what the
central bankers discuss prior to an interest-rate meeting in public, and they
may accelerate their home purchase. Put differently, learning and following
basic rules of thumb helps people navigate life situations, small and large.

As a newly hired junior software developer you can’t change the lan-
guage that the team has already chosen for its on-going project. Indeed, it
may take several years before you can influence the choice of language for
a “green field” project. But, if you enter professional life equipped with a
solid understanding of the principles of syntax, semantics, and pragmatics,
you will have a head start. To understand why, we need to consider how
people study programming languages.

4 Studying Programming Languages: How

Programming language researchers use models to study programming lan-
guages. In this, they follow standard scientific procedure. Roughly speak-
ing, a model reduces an object of study to those elements that a researcher

cs4
40

0 —
August

19
, 2

02
5

4 Section 4

wishes to understand in depth—without eliminating elements that would
invalidate any results for the actual object. Put differently, the goal is to
answer questions about the object via the model so that these answers are
of some value in the actual world.

One great example is physics. In many cases, a physicist can think about
moving objects as if they were simple points, even though the object may
experience friction due to its extent. Similarly, a system biologist may act
as if DNA were just a sequence of “letters” (A, C, G, and T), but these let-
ters are nucleotide bases with chemical and physical properties. Models
are also of use in social sciences. Classical economists assume that human
beings act rationally as participant in economic activities, and they do so
with some success for macro-level predictions.

Over time, researchers have developed three kinds of programming-
language models:

• informal descriptions, using natural languages;

• mathematical functions and relations; and

• executable programs.

All of these share the key property of models, namely, that they do not
cover the entire language to be studied. They tend to restrict the syntax
to essential features, and they tend to formulate a semantics that covers a
wide range of cases, not all of them.

Each of these approaches has advantages and disadvantages. While a
natural language description of a programming language can be used for
an entire language, it necessarily comes with gaps. By their very nature,
natural languages tend to allow ambiguous formulations. A mathematical
model is usually extremely exact, but it tends to describe a small, even mi-
nuscule fraction of any given real language. To a working developer, an
executable model of any aspect of a programming language has the advan-
tage that it runs and that it is amenable to quick explorations for specific
cases. If the source code is available, a programmer can even explore al-
ternatives to the chosen language design. At the same time, writing a pro-
gram to understand a fragment of a programming language means that an
understanding of one language—at least partially—depends on an under-
standing of another one. For this reason, this text uses executable mod-

Implementing
executable models is

also a good way to
reinforce good

programming habits.
els while borrowing elements from the mathematical side—this allows for
making precise models without tying them too closely to the chosen imple-
mentation language.

cs4
40

0 —
August

19
, 2

02
5

Studying Programming Languages: How 5

Given this background, let’s take a close but quick look at each of the
properties of a programming language—that is, how people about and
what people get out of studying syntax, semantics, and pragmatics.

4.1 Syntax

People are told not to judge a book by its cover, but beginning programmers—
and experienced ones—routinely do. The “cover” of a programming lan-
guage is the program text that developers enter into an IDE, read, and com-
prehend. Different language creators make different assumptions about
which “letters” make up the vocabulary of the words of programs. And,
these assumptions have a direct impact on developers. Some opt to allow
only sequences of alpha-numerical characters as the “letters” of the vocabu-
lary; others accept that developers wish to use fahrenheit-!celsius as the name
of a temperature conversion function.

Similarly, language creators also make assumptions about how devel-
opers wish to compose words into sentences. It starts with simple expres-
sions, that is, the grammatical rules that govern how individual words are
composed into expressions. Some creators think that the infix notation of
algebra, which only emerged over the past couple of centuries, elegantly
generalizes to programming, where developers define new operators all
the time. Thus, they allow developers to write

x -> f ++ k

and, implicitly, assume that all future readers of such expressions can easily
decipher the order in which the two operations are evaluated. Others prefer
to have developers spell out this order of operator precedence so that the
same expression may look like this:

(++ (-> x f) k)

After all, all students in elementary schools know that parentheses clarify
operator precedence. People also intensely disagree whether ; is a state-
ment terminator or separator; others want TAB characters to signify some-
thing about programs; and the parentheses lovers don’t care because paren-
theses and a bit of white space make it all obvious.

A student of programming languages must ignore the specific differ-
ences of syntax and focus on the commonalities. This focus is a step from

This approach is the
definition of
abstraction.concrete examples to general ideas, insights that should be useful across

languages. Concerning syntax, language researchers figured out two such
general insights by the 1960s:

cs4
40

0 —
August

19
, 2

02
5

6 Section 4

1. The first one is a sufficiently general technique for describing vocabu-
laries and grammars. In essence, this technique—called Backus-Naur
Form (short BNF)—is a standard grammar for defining grammars.
A logical-mathematical way of expressing this idea is that a gram-
mar consists of a collection of n equations in n variables. Unlike the
equations we know from high school and college courses, solutions
to these grammar equations are sets of terms.

2. The second concerns the description of syntax with respect to ques-
tions concerning semantics. Whether a language uses prefix, infix, or
postfix notation for an addition expression is simply irrelevant. What
matters is that (1) the description brings across that it is about addi-
tion, (2) how many operands there are, and (3) how to refer to the
operands. This idea is referee to as abstract syntax.

Chapter II expands on these insights and provides concrete examples. Crit-
ically, it explains how these two insights are the basis of a straightforward
implementation of syntax checking—an executable model of syntax.

4.2 Semantics

English speakers are familiar with the phrase “it’s just semantics,” typi-
cally used to dismiss an argument because the differences are trivial, but
people who know that “semantics” is a fancy word for “meaning” must
be stumped by this usage. Of course, it’s all about “meaning” and soft-
ware developers are perfectly aware of this fact. They know that it matters
whether

an array reference enforces the container’s boundaries.

If it doesn’t, an array reference can cause a program to segfault when it
uses a negative index or an index that exceeds the length of the array. Al-
ternatively, the lookup succeeds and retrieves random bits that masquer-
ade as an array element—and the code may appear to terminate normally
and output proper results. This kind of semantics has posed major security
problems for decades. By contrast, a boundary-enforcing array reference
signals a run-time exception for such use cases, preventing catastrophic
misinterpretations. In short, semantics very much matters.

Inspired by the success of investigations into syntax, programming lan-
guage researchers struggled for quite some time to come up with a simple
mathematical framework for describing the meaning of programs. Here
are the most well-known, in historical order:

cs4
40

0 —
August

19
, 2

02
5

Studying Programming Languages: How 7

• An interpreter is a recursive function from syntax to values in some
chosen programming language.

• An abstract machine consists of two pieces: (1) a (large) set of states
and (2) a transition function that maps one state to another.

Instead of the sequence of all bits in a hardware machine—where
each feasible sequence of 0s and 1s describes a possible state—an ab-
stract machine uses pieces of the modeled language. Some states are
marked as initial, others as final.

The function’s cases correspond to high-level instructions, hence its
name. For final machine states, this function is undefined.

Given a program, it is loaded into the machine, which puts it into an
initial state. Then the transition function is applied until the machine
is in a final state. This final state is unloaded to yield an “answer.”

• A denotational semantics consists of a domain—a set of mathematical el-
ements that satisfies some properties—-plus a function from syntax to
the domain. This meaning function tends to resemble an interpreter.

• An operational semantics combines ideas from the meaning function of
denotational semantics with those of the world of abstract machines.

None can easily express all possible behaviors.
Of these approaches, the interpreter—by definition—and the abstract

machine approach lend themselves most easily to implementation. Imple-
menting an interpreter or abstract machine yields a first impression of how
much work it will be build a performant implementation. Most impor-
tantly, with an implementation, people can check whether programs be-
have in the expected manner; they can explore corner cases of behavior;
and they can begin to answer questions about how software developers
can use language elements in various work situations.

4.3 The Covers of Books, or It’s Just Semantics

Given some understanding of the notions of syntax and semantics, we can
now explain in with a single word why the former is less meaningful than
the latter. Consider the words Ignore the use of the

ugly capital letter.

US English German
billion Billion

cs4
40

0 —
August

19
, 2

02
5

8 Section 4

At first glance, the two words from two different natural languages seem to
correspond to each other. So if someone were to offer you a billion pennies,
you would probably not worry about which language the person uses to
make this promise. This is syntax.

It turns out, however, that the semantics of these words differs radically:

US English German
billion Billion
1,000,000,000 1,000,000,000,000

Imagine this. The semantics of the two words differ by a factor of 1,000,
which at the level of pennies, makes a serious difference.

Which language should the promise use now?
When someone tells
you next time “it’s

just semantics,” ask
for a Billion dollars. This difference is what we refer to when we say “don’t judge the lan-

guage by its syntax.” While the way you read and write the words of a
program clearly affects your abilities as a programmer, an easy-to-grasp
semantics of the syntax matters even more than the plain words. And how
the combination relates to the productivity of developers in certain work
situations is “pragmatics,” the final topic of this first chapter.

4.4 Pragmatics

Models of syntax and semantics enable researchers to explore question of
pragmatics. Executable models help most, because researchers can interact
with them and explore ideas rapidly. Well-organized executable models
also lend themselves to language experimentation.

Such a language experiment can help answer questions about language
pragmatics. Consider the already-mentioned case of an array lookup. Em-
ploying the widely used syntax of a[i] a researcher can ponder what the
impact of the two distinct meanings is in various work situations. Recall
the two possible meanings, formulated in terms of a machine controlled by
program expressions and a memory:

• a[i] checks whether i is between 0 and the upper boundary of a. If so, it
retrieves the corresponding element; otherwise it stops the executing
machine or interpreter and signals a problem.

• a[i] retrieves the ith element or, if i is outside the boundary, makes up
an element that meets the type of a. The machine continues to execute
the next instruction.

cs4
40

0 —
August

19
, 2

02
5

Studying Programming Languages: How 9

A researcher can now ask two different, but related sets of questions.
The first set concerns the costs and benefits to the person who uses the
language. The second one is of interest to the implementer of the language,
that is, the person who builds a robust and performant implementation
from the executable model.

Let’s take a look at some work situations that developers encounter:

• During the editing of code, what matters is whether the sequence of
characters entered into the IDE form a well-formed and valid sen-
tence. Since the syntax is the same for both meanings, editing code
isn’t affected by the choice of meaning.

• The developer runs the program and notices that it doesn’t run as
fast as expected. It turns out that the most frequently executed code
consists of a nest of loops with many array references in the body of
the innermost loop. In this case, it is quite possible that a boundary-
checking implementation of array references causes the bottleneck.
That is, a developer might prefer the non-checking variant here.

• When the program is tested, a quality assurance engineer notices
an unusual output. Although the program does not crash, its an-
swers just seem off. Now the engineer may question whether a non-
checking array reference is going wrong and whether by going wrong
it injects some random element that causes the program to give a bad
answer—at least on some occasions. This developer would clearly
prefer the bounds-checking variant of array references.

Alternatively, the developer should inspect all array references and
manually wrap them with boundary checks. That is, a developer can
take on the work of implementing the checked variant based on the
unchecked one, if needed.

In sum, from the perspective of a language user, there might not be a clear
answer as to which meaning of some syntax is preferable.

From the perspective of a language implementer, the questions are re-
lated those of a user but differ a bit for this specific case. Let’s assume the
implementer wishes to write a compiler, that is, a translation of source code
to assembly. An array lookup with two different meanings is subject to the
following considerations:

• A translation of a non-checking array reference is straightforward.
Assuming a is represented as a memory address and i denotes an off-

cs4
40

0 —
August

19
, 2

02
5

10 Section 4

set, the compiler should issue an instruction to load the bits at mem-
ory location a + i.

• Without any further information, the compilation for the alternative
meaning differs sharply. The compiler cannot represent an array as
just an address; it must store the size of the array somewhere. This
number must be retrieved and compared to i, assuming the latter is
even a non-negative integer. If the comparison succeeds, the retriev-
able of the bits can proceed in a manner similar to the first case; other-
wise the sequence of assembly instructions must jump to a place that
reports the error.

• The phrase “without any further information” is suggestive. What
if the compiler could “think” about the program and determine up
front that some particular array reference will always succeed? That
is, the generated code does not need to perform the bound checking.

Next the author of the compiler must consider (1) how difficult it is to
implement this “thinking,” (2) how safe this thinking is, and (3) how
much it slows down the translation process.

Together these two sets of questions yield a cost-benefit analysis. For
many decades, the decision almost always came down to what was easiest
to implement. That is, until people discovered that unchecked array ref-
erences are a major source of safety and security flaws. In turn, the work
shifted from the many software developers using the language to the few
compiler writers.

We ignore the case
when two forms of

syntax have the same
meaning, because we

consider this one
mostly a question of

taste.

Questions of pragmatics aren’t always as clear-cut as the one for array
references. Design alternatives may require different source syntax and dif-
ferent meaning. People encounter many different work situations, not just
editing code, observing performance, and locating bugs. For example, a
student in a beginning programming course is in a work situation, a situa-
tion that differs from those just mentioned. Try to imagine some others.

This rest of book focuses on those question of pragmatics that concern
the working developer. The expectation is that the series of examples help
(future) developers create an informal framework for approach program-
ming languages and evaluating features of programming languages. Be-
fore we can get started though, we need to take a close look at the basic
notions of syntax and semantics.

cs4
40

0 —
August

19
, 2

02
5

CHAPTER II SYNTAX AND PARSING

What is a (n executable) model of syntax?

1 Concrete Syntax is Mostly Irrelevant

Different programming languages use different kinds of syntax. Many
present syntax as sequences of any characters, with words delineated via
some white space, and sentences separated via semicolons or special forms
of white space. Language creators write down rules that explain the orga-
nization of sequences of characters into words, the grouping of words into
sentences, and the recognition of sentences as complete programs.

Borrowing terminology from linguistics, these rules are called gram-
mars. The word Parsing denotes the process of recognizing sequences of
characters as words, groups of words as sentences, and certain sentences
as complete program. A parser implements the parsing process.

Lisp stands out. The members of the Lisp family of languages use
parentheses, braces, and brackets (and arbitrary white space) to separate
words and to organize words into groups. Indeed, due to nesting, it is
the programmer who takes on some of the task of organizing code to help
the parser. People refer to this kind of notation as a concrete syntax tree,
because the nesting of parenthesize sentences suggests what computer sci-
entists call trees. In Lisp languages, notations for instructions as well as
data employ parenthetical notation since the late 1950s; the latter is called
an S-expression.

The designers of contemporary data description notations, such as XML
and JSON, have adapted Lisp’s S-expression notation, while making a few
concessions to people who like conventional syntax. They employ brack-

XML’s pairs of
parentheses have the
shape !letters" ...

!/letters".ets, braces, and named parentheses to organize data. Developers tend to
speak of semi-structured data.

cs4
40

0 —
August

19
, 2

02
5

12 Section 2

Due to the large variety of syntax, studying grammars and parsing tech-
niques has essentially become its own research area. On the positive side,
grammars for describing grammars date back to the 1960s, and their ex-
pressive power and limitations is well understood. Furthermore, by the
1970s, programming language researchers could offer programs that turn
grammars into parsers, so-called parser generators. On the negative side, us-
ing these tools isn’t straightforward. Worse, while a generated parser typi-
cally is good at determining whether some sequence of characters satisfies
the rules of a grammar, it typically fails to provide an accurate diagnosis
when the characters fail the rules.

Hence, if a course on programming language pragmatics were to pay
close attention to grammars and parsing, students might never get to see

This is also a reason
why courses for

beginners should
avoid text and

parsing.
any topics related to semantics or pragmatics. To avoid this problem, we
compromise. Concretely, this book uses semi-structured data as concrete
syntax for its sample programs; to make this precise, it uses S-expressions.
As the history of Lisp and data notations validates, programmers can easily
use such a notation to write down programs. At the same time, it enables
us to explain the concepts of grammar and parsing in a concise manner and
to include a discussion of the pragmatics of parsing.

2 Grammars for Describing Grammars

As the preceding chapter mentions, BNF (or one of its modern variants) is
the most commonly used tool to describe the concrete syntax of a program-
ming language. Instead of describing BNF formally, we present just enough
examples so that readers can easily comprehend the syntax descriptions in
the remaining chapters.

The primary element of a BNF grammar is a production, which have this
shape:

Program ::= a

The ::= symbol separates the name that is being defined from its definition.
Our convention is to use capitalized words for defined entities and lower
case words plus other sequences of keyboard characters for pieces of code.
People pronounce such a definition as “Program is a”.

A typical grammar describes elements of a language’s syntax as not just
one possible shape but several possible shapes:

Program ::= a | b | c

c
s
4
4
0
0

-
-
-

A
u
g
u
s
t

1
9
,

2
0
2
5

Grammars for Describing Grammars 13

The BNF symbol | is pronounced as “or” and, when a production has this
shape, the ::= is pronounced as “one of.”

For the syntax description of most languages, it is necessary to use sev-
eral productions. Additionally, grammatical rules often need to specify that
developers may repeat some element several times:

Program ::= Statement
˚
Expression

Statement ::= print(Expression);

Expression ::= 43

This collection of three production rules informs a programmer of three
definitions:

1. A Program is a possibly empty sequence of Statements followed by one
Expression.

2. A Statement consists of a four pieces: the word print, the character (, an
Expression, and the characters) and ;.

3. An Expression is just the text 43.

Given a bunch of productions, a programmer can follow their implied
instructions to write code. For example, the following is a Program according
to the above rules:

43

It consists of no Statement and the required Expression. Here is another one:
Our definitions leave
it implicit that white
space is ignored.

print(43); print(43); 43

This program consists of two Statements, followed by the one required Ex-
pression.

Finally, a language creator may wish to require that there is at least one
particular piece in a sequence, say, at least one Statement in a Program. The
BNF convention is to use a plus superscript as follows:

Program ::= Statement
`

Expression

And that is all there is to describing grammars with BNF as far as this book
is concerned.

cs4
40

0 —
August

19
, 2

02
5

14 Section 3

3 The Parsing Process and the Parser Function

While the first role of a BNF is to inform the future developer about the
shape of well-formed code, its second role is to tell a language implementer
how to parse any given text according to some production. For example,
given the text

44

it is impossible to parse it according to the production for Expression. Simi-
larly,

print(44);

does not belong to the syntax specified by Statement, even though a lot of the
characters of this text fit the pattern of the production. By contrast,

print(43);

is a legal Statement.
In general, parsing some text essentially answers a yes-no question rel-

ative to some production:

• yes, the given text belongs to all the collection of all texts that the
production describes;

• no, the given text does not belong to the collection of texts that the
production describes.

The task of a language implementer is to create a program that, given some
inputs, answers this question.

At first glance, this suggests that a parser for some production has the
following signature:

parseExpression : PlainText -> Boolean

// does the given text belong the collection of texts

// described by the Expression production

In words, the parse for the Expression production from the preceding sec-
tion consumes some text and produces true if the given text belongs to the
syntax of the production; otherwise, it returns false to indicate that the text
somehow does not fit the description.

For this particular production, it is trivial to define this function:

parseExpression(text) =

true if the text consists of ‘‘4’’ followed by ‘‘3’’

false otherwise

