
CHAPTER II SYNTAX AND PARSING

What is a (n executable) model of syntax?

1 Concrete Syntax is Mostly Irrelevant

Different programming languages use different kinds of syntax. Many
present syntax as sequences of any characters, with words delineated via
some white space, and sentences separated via semicolons or special forms
of white space. Language creators write down rules that explain the orga-
nization of sequences of characters into words, the grouping of words into
sentences, and the recognition of sentences as complete programs.

Borrowing terminology from linguistics, these rules are called gram-
mars. The word Parsing denotes the process of recognizing sequences of
characters as words, groups of words as sentences, and certain sentences
as complete program. A parser implements the parsing process.

Lisp stands out. The members of the Lisp family of languages use
parentheses, braces, and brackets (and arbitrary white space) to separate
words and to organize words into groups. Indeed, due to nesting, it is
the programmer who takes on some of the task of organizing code to help
the parser. People refer to this kind of notation as a concrete syntax tree,
because the nesting of parenthesize sentences suggests what computer sci-
entists call trees. In Lisp languages, notations for instructions as well as
data employ parenthetical notation since the late 1950s; the latter is called
an S-expression.

The designers of contemporary data description notations, such as XML
and JSON, have adapted Lisp’s S-expression notation, while making a few
concessions to people who like conventional syntax. They employ brack-

XML’s pairs of
parentheses have the
shape !letters" ...

!/letters".ets, braces, and named parentheses to organize data. Developers tend to
speak of semi-structured data.

14 Section 2

Due to the large variety of syntax, studying grammars and parsing tech-
niques has essentially become its own research area. On the positive side,
grammars for describing grammars date back to the 1960s, and their ex-
pressive power and limitations is well understood. Furthermore, by the
1970s, programming language researchers could offer programs that turn
grammars into parsers, so-called parser generators. On the negative side, us-
ing these tools isn’t straightforward. Worse, while a generated parser typi-
cally is good at determining whether some sequence of characters satisfies
the rules of a grammar, it typically fails to provide an accurate diagnosis
when the characters fail the rules.

Hence, if a course on programming language pragmatics were to pay
close attention to grammars and parsing, students might never get to see

This is also a reason
why courses for

beginners should
avoid text and

parsing.
any topics related to semantics or pragmatics. To avoid this problem, we
compromise. Concretely, this book uses semi-structured data as concrete
syntax for its sample programs; to make this precise, it uses S-expressions.
As the history of Lisp and data notations validates, programmers can easily
use such a notation to write down programs. At the same time, it enables
us to explain the concepts of grammar and parsing in a concise manner and
to include a discussion of the pragmatics of parsing.

2 Grammars for Describing Grammars

As the preceding chapter mentions, BNF (or one of its modern variants) is
the most commonly used tool to describe the concrete syntax of a program-
ming language. Instead of describing BNF formally, we present just enough
examples so that readers can easily comprehend the syntax descriptions in
the remaining chapters.

The primary element of a BNF grammar is a production, which have this
shape:

Program ::= a

The ::= symbol separates the name that is being defined from its definition.
Our convention is to use capitalized words for defined entities and lower
case words plus other sequences of keyboard characters for pieces of code.
People pronounce such a definition as “Program is a”.

A typical grammar describes elements of a language’s syntax as not just
one possible shape but several possible shapes:

Program ::= a | b | c

Grammars for Describing Grammars 15

The BNF symbol | is pronounced as “or” and, when a production has this
shape, the ::= is pronounced as “one of.”

For the syntax description of most languages, it is necessary to use sev-
eral productions. Additionally, grammatical rules often need to specify that
developers may repeat some element several times:

Program ::= Statement
˚
Expression

Statement ::= print(Expression);

Expression ::= 43

This collection of three production rules informs a programmer of three
definitions:

1. A Program is a possibly empty sequence of Statements followed by one
Expression.

2. A Statement consists of a four pieces: the word print, the character (, an
Expression, and the characters) and ;.

3. An Expression is just the text 43.

Given a bunch of productions, a programmer can follow their implied
instructions to write code. For example, the following is a Program according
to the above rules:

43

It consists of no Statement and the required Expression. Here is another one:
Our definitions leave
it implicit that white
space is ignored.

print(43); print(43); 43

This program consists of two Statements, followed by the one required Ex-
pression.

Finally, a language creator may wish to require that there is at least one
particular piece in a sequence, say, at least one Statement in a Program. The
BNF convention is to use a plus superscript as follows:

Program ::= Statement
`

Expression

And that is all there is to describing grammars with BNF as far as this book
is concerned.

16 Section 3

3 The Parsing Process and the Parser Function

While the first role of a BNF is to inform the future developer about the
shape of well-formed code, its second role is to tell a language implementer
how to parse any given text according to some production. For example,
given the text

44

it is impossible to parse it according to the production for Expression. Simi-
larly,

print(44);

does not belong to the syntax specified by Statement, even though a lot of the
characters of this text fit the pattern of the production. By contrast,

print(43);

is a legal Statement.
In general, parsing some text essentially answers a yes-no question rel-

ative to some production:

• yes, the given text belongs to all the collection of all texts that the
production describes;

• no, the given text does not belong to the collection of texts that the
production describes.

The task of a language implementer is to create a program that, given some
inputs, answers this question.

At first glance, this suggests that a parser for some production has the
following signature:

parseExpression : PlainText -> Boolean

// does the given text belong the collection of texts

// described by the Expression production

In words, the parse for the Expression production from the preceding sec-
tion consumes some text and produces true if the given text belongs to the
syntax of the production; otherwise, it returns false to indicate that the text
somehow does not fit the description.

For this particular production, it is trivial to define this function:

parseExpression(text) =

true if the text consists of ‘‘4’’ followed by ‘‘3’’

false otherwise

The Pragmatics Question 17

But, a developer would be rather unhappy if, after entering 44 into the IDE,
the parser would display “false” in response. Creating the kind of parser
that developers appreciate takes a lot more effort, and this brings us to the
first question of language pragmatics.

4 The Pragmatics Question

When developers enter text into an IDE’s editor, they want informative
feedback. They don’t want to know whether a text fails to belong to the
expected production; they want to know which part causes the failure. In
other words, they want a red squiggle under 44 when they enter

print(43); print(44); print(43); 43

into the IDE, because they consider this a program according to the BNF
production in section 2.

This practical concern suggests that, at a minimum, parseExpression should
return a (data representation of a) reason why some text fails to live up to
the expectations of a particular productionn. Using Java’s Optional type, a
language implementer might propose the following alternative to the orig-
inal signature of parseExpression

parseExpression : PlainText -> Optional<A>

// where A is either

// - some data that represents a parsing failure, or

// - none, if parsing succeeds

Implementing this interface would satisfy the developer who creates the er-
roneous text from above. After this text is entered into the IDE, the environ-
ment would consult the parser function, which would return a some data.
In turn, the IDE would interpret the data by marking up the unexpected
and faulty piece of text that the programmer expects to be a program.

A language implementer, however, should still have doubts about the
usefulness of such a parser. If the parsing succeeds, the result is uninfor-
mative.Specifically, it does not share with the caller of a parser for, say, the
Program production, a number of interesting insights from the parsing pro-
cess:

• which parts of the text belong to the Expression;

• which parts of the text belong to the Statement; and

• which parts of the text belong to the Program.

18 Section 4

After all, the complete implementation of the language must process this
text again to, say, determine its meaning. Clearly, knowing the answers to
the above questions is useful in this bigger working context, too.

In short, a language implementer wants an informative result from a
parser in either case:

parseExpression : PlainText -> B or C

// where B is informative data in the error case

// and C is informative data in the success case

The question is what kind of data to pick for B and C, though before we
consider this questions, let’s reflect on two concerns that come up as part
of all pragmatic questions.

4.1 Pragmatics Pairs Workers With Working Situations

When we consider the pragmatics of a language feature—a syntactic ele-
ment or a tool that processes language elements—we study a pairing: a
human being in a specific work situation. The case of a parser function
presents two such pairings:

• the user of the programming language entering text into the IDE and
wishing to get fast feedback as to whether this text is well-formed
according to the intended grammar production;

• the implementer of the programming language perceiving the parser
as just one piece of the complete implementation or, in the case of this
book, an executable model for syntax and semantics.

Every consideration of pragmatic questions should spell out which pair-
ing is under consideration, because the implication of making a design
decision—picking one of several alternatives, such as the three signatures
for parser functions—differs from pairing to pairing.

4.2 Costs and benefits

The costs and benefits of a design decision represent its most important
implication. Here is a table for the specific case of a parser function:

Result Type User Implementer
Boolean uninformative straightforward
Optional!A" informative middling complexity
B or C informative complex; useful for

the overall implementation

Parsing: In General 19

It concisely summarizes how each person in a specific working situation
benefits from a particular design alternative and indicates how much work
it imposes on each person. For example, a user working with the first kind
of parser must manually compare grammar productions and plain text to
figure out why parsing fails. Similarly, the implementer has some benefit
from implementing the most complex solution.

Summarizing the benefits and costs of the design alternatives in this
manner is a helpful tool for making decisions concerning language prag-
matics. While the third alternative offers advantages to both people in the
case of parsing, such clear-cut cases are rare when it comes to program-
ming language pragmatics. It is therefore critical that decision makers keep
in mind the pairings that determine pragmatic concerns: the human being
and the many working situations that those find themselves in.

5 Parsing: In General

Let us now turn to the challenge of designing a data representation that is
useful to both successful parsing processes and unsuccessful ones.

We start with an example, namely, the basic assignment statement. It
exists in almost all conventional programming languages. Over the past
few decades, programming language designers have come up with a fair
number of textual variants for this seemingly straightforward statement:

Algol, Fortran, Scheme, R,
Pascal C Racket OCaml
x := 1 x = 1 (set! x 1) x !- 1

Like in clothing fashion, every decade has had its distinct preferences.

This very variety of
textual notations for
assignment
statements is just one
of many indicators
that concrete syntax is
a matter of taste, not
pragmatics.

The key to identifying a data representation is to recognize that all basic
assignment statements share a common structure. Here is an informal, but
structured description of this common structure:

an assignment statement consist of two parts:

- a left-hand side,

- which is a plain-text variable name

- a right-hand side,

- which is a number in the presented examples

but, in general, is an expression.

A programmer might draw this informal description as a graphical sketch
on a white board; see figure 1.

20 Section 5

Assignment Statement

text of variable name Expression

left-hand side right-hand side

Figure 1: A tree presentation of the data representation for assignments

What this figure suggests is that an assignment statement can be under-
stood as a node in a tree. The node has two branches: one for the left-hand
side and one for the right-hand side. While the left branch points to a leaf,
namely, the name of the variable, the right one ends in a sub-tree, because
the right-hand side of an assignment statement is an expression and be-
cause the representation of an expression is likely to be a tree all by itself.

To make this last idea concrete, consider the concrete syntax for an ad-
dition expression. In Lisp, it is (+ x 1), and in most other languages it uses
the notation familiar from grade school, x + 1. But just like assignment state-
ments, all of these addition expressions share a common structure:

an addition expression consist of two parts:

- an operator on the left,

- which is another expression

- an operator on the right,

- which is another expression

Stop! Draw the tree that corresponds to this informal description. Then
draw the tree for the following two assignment statements:

• (set! x (+ x 1)), which is what a Scheme programmer writes to increase x
by one;

• x = x + 1, which is what a Fortran, C, or Java programmer uses for the
same purpose.

Using this analysis, we can express this idea as a collection of interfaces
and classes in Java. Take a look at the two columns of code in Figure 2. The
left column displays the data representation of an assignment statement.

Parsing: In General 21

While the name of the class signals that an instance represents an assign-
ment statement, its two fields correspond to the two clauses of the informal
description or the two branches of the tree in figure 1. The type specifica-
tion for lhs implicitly informs a reader that variable names are represented
as Strings.

class AssignmentStatement {
String lhs;

Expression rhs;

}

interface IExpression { }

class VariableReference

implements IExpression {
String name;

}

class Addition

implements IExpression {
IExpression left;

IExpression right;

}

Figure 2: A data representation for assignment statements and expressions

The right column is the data representation for simple expressions, vari-
able references and additions to be precise. Since there are many different
kinds of expressions that the rest of the program treats in a uniform manner,
the data representation uses an interface to tie the various variants together.
In our case there are two variants: variable references such as the x in x + 1,
and addition expressions.

Stop! Reformulate the data representation from figure 2 in your favorite
programming language. Then use your data representation to represent
(set! x (+ x 1)) and x = x +1.

Choosing such a tree-oriented data representation clearly answers half
the question at the end of section 4. If a parser returns a tree-shaped value
when parsing succeeds, the nodes in the tree identify the BNF production
that the parse recognized. The pieces of each node represent the parts of
the plain text that correspond to one of the alternatives on the right-hand
side of the BNF production. Because these tree-shaped data structures are
generalizations of many concrete-syntax shapes for the same kind of syn-
tactic element, language researchers call them abstract syntax trees or just
ASTs for short.

The remaining question is what a parsing function should return when
parsing fails. Since the pragmatics question about parsing identified the

22 Section 5

IDE and the user of the IDE as the recipient of the relevant information, the
data representation must enable the IDE to mark up the pieces of text that
do not match the given BNF.

Let’s make this concrete with the example from section 3:
print(44);

This text almost matches the Statement production. Specifically, it matches
the prefix characters—print(—and the suffix characrers—);. It is 44 that
causes the parser implementation to fail when it tries to match it with the
Expression production.

A bit of reflection suggests that the IDE needs to know

• which part of the text the parser recognizes, and

• which part causes the parser to fail.

Figure 3 displays one reasonably straightforward solution. On the left, it
shows the original grammar from section 2. On the right side, the figure
lists a mostly direct translation of this grammar into an AST representation.
Each production is turned into a class, with fields to represent the pieces.
For the statement class, this means a String array field for the potentially
empty sequence of Statements and a IExp field for the final Expression. The
Statement class contains one field: to represent the Expression that that parser
expects to find.

Figure 3 also suggests what happens if the parser does not find an Ex-
pression according to the BNF. The interface IExp is implemented twice: once
by the Expression class and once by an Error class. So, when the parser for
the Statement production is confronted with print(44);, it defers to the parse
for the Expression production, which returns an instance of Error instead of
the Expression class. In other words, the parser’s output remains a tree, but
this tree representation contains nodes that indicate that an error happened.
When given an abstract syntax tree with an error node or even several such
error nodes, it can use the structure of the tree together with the data in the
Error node to mark up text that can’t be parsed.

Stop! Reformulate the data representation from figure 3 in your favorite
programming language. Then use your data representation to represent
print(44);.

5.1 A Parser Returns an Abstract Syntax Tree

Let’s draw the general lesson from these examples. First, parsing plain text
produces an abstract syntax tree. Second, in order to report failures in an

Parsing: In General 23

Program ::= Statement
˚

Expression

Statement ::= print(Expression);

Expression ::= 43

class Program {
Statement s[];

IExp r;

}

class Statement {
IExp e;

}

interface IExp { }

class Expression

implements IExp {
// there is one: 43

}

class Error

implements IExp {
String badText;

// data for the IDE

}

Figure 3: A data representation for the grammar from section 2

informative manner, the AST representation is enriched with error nodes.
The signature for every parser function is essentially

parse : PlainText -> AST

To distinguish the success case from the failure case, we introduce the con-
vention that AST is a tree that might contain an error node and that AST-
denotes a tree without any error nodes.

5.2 Parse, Don’t Validate

While parsing is a programming-language concept, software developers
have recognized its general usefulness. That is, a software system that con-
sumes plain text requiring validation—say from a file, a network connec-
tion, or otherwise—should parse the text into a tree format. In the success-
ful case, processing this tree is advantageous and safe compared to pro-
cessing plain text. And, if the parsing fails, the software system can log the
failure with an error message that explains the problem with the text.

24 Section 6

6 Parsing: An Example

It is time to put all the pieces together and look at a complete example. As
the introduction to this chapter says, this book simplifies the parsing task to
avoid getting bogged down in questions of concrete syntax. To start with,
the parser presented here analyzes semi-structured data for grammars that
identify a subset of semi-structured data. While XML and JSON are mod-
ern versions of this idea, the idea itself is decades older and the original
version—S-expressions—deserves the honor.

For our purposes, an S-expression is a fully-parenthesized term whose
leaves are numbers and symbols. The word “leaves” should remind you
that a piece of semi-structured data forms a tree. Here is an informal yet
rigorous definition:

S-expression is one of:

-- Number

-- Symbol

-- (S-expression ... S-expression)

A symbol is a non-empty sequence of keyboard characters

that is not also a number.

Stop! Re-formulate this definition with a BNF.
Since most programming languages come with a core of expressions

and statements, our first model language—dubbed Sample—includes just
those elements. To keep things simple, the following grammar also severely
restricts the shapes of expressions and statements:

Program ::= (Statement
˚
Expression)

Statement ::= (Variable = Expression)

Expression ::= 1.0

| 2.0

| 3.0

| Variable

| (Expression + Expression)

The set of Variables consists of all non-empty sequences of

alphanumeric characters, starting with an alphabetical

letter of maximal length 100.

Like the grammar in the preceding sections, the set of well-formed Programs
consist of a potentially empty sequence of statements followed by one ex-
pression. There is only one kind of statement, namely, assignment state-
ments that resemble those found in C, Java, and similar languages. Finally,
the set of expressions comes with an infix-style shape for addition, variable

Parsing: An Example 25

occurrences, plus the numbers 1.0, 2.0, 3.0. Although it would be possible
to define a BNF grammar that specifies variable names, we choose to use
English instead for simplicity and to illustrate common practice.

The phrase “proper
program design”
refers to an
understanding of
programming as
presented in How to
Design Programs.

Even simple BNF grammars call for the creations of examples as does
proper program design:

;; concrete

((x = 1.0)

(y = 2.0)

(z = (x + (x + y)))

(z + 3.0))

Clearly, concrete is an S-expression. The question is whether it satisfies the
Program grammar. As before, we can verify this fact manually:

• concrete consists of four S-expressions between parentheses. Hence,
we must check that the first three belong to the set of Statements and
the last one to the set of Expressions.

• (x = 1.0) is a Statement, because x belongs to the set of Variables and 1 is
obviously an expression.

• Verifying that (y = 2.0) and (z = (x + (x + y))) belong to the production for
Statements proceeds in a similar manner.

Stop! Don’t just accept this sentence. Just do it!

• Finally, (z + 3.0) is an Expression:

it consists of (followed by a Variable followed by +, followed by 3.0,
and wrapped up by).

Of course, the goal is to design a parser function for the grammar.
At this point, we need to choose a programming language in which to

articulate an AST data representation and a parser for the BNF of Sample.
Our favorite programming language for this purpose is Racket, and you
may understand why after reading the next couple of pages.

Stop! Settle on your favorite programming language, and choose your
favorite semi-structured form of data, e.g., XML or JSON instead of S-
expressions. Work through the same exercise using your choices.

Figure 4 consists of two columns, which jointly specify our entire AST
data representation. The left-hand column contains four groups of structure-
type definitions:

• The first three groups correspond to the three productions of the BNF
grammar of Sample.

26 Section 6

(struct prog

[statements

end])

(struct ass [lhs rhs])

(struct expr ())

(struct num expr (n))

(struct ref expr (name))

(struct add expr (left right))

(struct err (msg))

#; {type Prog =

(U Err

(prog

List<Stmt>

Expr))}
#; {type Stmt =

(U Err

(ass Symbol Expr))}
#; {type Expr =

(U Err

(num N)

(ref Symbol)

(add Expr Expr))}
#; {type Err =

(err String)}

Figure 4: A Racket AST data representation for Sample

• Since the Expression production describes three kinds of alternatives—
numerals, variables, additions—the third group consists of a struc-
ture type that plays the role of an interface—expr—and three imple-
menting variants—num, var, and add.

• The fourth and extra group contains a single structure-type: err. It
exists to inject error nodes into the AST.

Since Racket does not impose type constraints on code, instances of err can
be injected into an AST at any place. Also, note how stmt and expr come
with source-location fields, which the IDE needs to highlight problematic
code elements.

The right-hand column consists of comments that explain the relation-
ship among the structure types as if Racket had a type system. It tells a
reader of the code that, for example, an instance of prog always containsThe notation leans on

Typed Racket.
an instance of Sta* in the first field and an instance of Expr in the second.
Furthermore, the quasi-type Prog is a union that contains Err and all legal
instances of prog, meaning a parser function for the Program production may
return (err ”...”).

Stop! Work out an S-expression that is not a member of the set that the
Program production describes.

Stop again! Explain the remaining type-like comments on the right-
hand side of figure 4.

Here is the AST for the concrete example of a Program:

Parsing: An Example 27

define ast

(prog

(list

(ass ’x (num 1.0))

(ass ’y (num 2.0))

(ass ’z (add (ref ’x) (add (ref ’x) (ref ’y)))))

(add (ref ’z) (num 3.0)))

It is an instance of prog, which contains a list of ass instances in the first field
and an instance of expr—specifically an instance of add, which is a sub-type
of expr—as the last one.

Racket greatly facilitates writing a parser that determines whether an
S-expression satisfies the grammar rules of the BNF grammar of Sample.
Figure 5 displays the entire program. The main function composes two
computations: read, which reads an S-expression from the standard input
or console, and program-"ast, which attempts to parse this S-expression as a
member of the Program production.

Following proper program design ideas, the remaining functions in fig-
ure 5 correspond to the three productions in the BNF of Sample in a one-
to-one fashion. The three functions are named in a fashion that clarifies
their role in the parsing process. Each function consists of n + 1 conditional
clauses, where n is the number of alternatives on the right-hand side of
the production. The extra clause corresponds to a mismatch of the given
S-expression and the parsed production.

Let’s take a close look at the program-"ast function:

• The function uses Racket’s algebraic match form to check whether the
given S-expression is a list. Concretely, (list s ... e) matches txt if the
latter is a list and contains at least one element, e. All other elements
are collected in a potentially empty list called s.

• If txt matches, the function instantiates prog; if txt fails to live up to
Sample’s BNF, it does do in nodes below prog.

• Otherwise the conditional’s catch-all clause returns an instance of err
to indicate that the S-expression cannot possibly belong to the Program
production.

This last clause kicks in even if the set of S-expressions were extended
with additional forms of data.

Stop! Try to explain the remaining two functions before reading on.

28 Section 6

#; { -> Prog}
;; parses the S-expression given on STDIN

(define (main)

(program->ast (read)))

#; {S-expression -> Prog}
(define (program->ast txt)

(match txt

[(list s ... e)

(prog (map statement->ast s) (expression->ast e))]

[_ (err (˜a "program expected, given " txt))]))

#; {S-expression -> Stmt}
(define (statement->ast txt)

(match txt

[(list lhs ’= rhs)

(ass lhs (expression->ast rhs))]

[_ (err (˜a "statement expected, given " txt))]))

#; {S-expression -> Expr}
(define (expression->ast txt)

(match txt

[1.0 (num txt)]

[2.0 (num txt)]

[3.0 (num txt)]

[(? symbol?) txt] ;; needs additional checking

[(list left ’+ right)

(add (expression->ast left) (expression->ast right))]

[_ (err (˜a "expression expected, given " txt))]))

Figure 5: A Racket parser for the BNF grammar of Sample

Of the remaining two functions, statement-"ast is straightforward; expression-
"ast deserves an explanation. The match of expression-"ast consists of five plus
one clauses:

• The first five clauses correspond one-to-one to the right-hand side of
the Expression production.

• The first three clauses are literal matches for 1.0, 2.0, and 3.0.

• The fourth clause (mostly) takes care of the parsing of Variables.

Stop! As is, this clause would record the symbol +-*/ as member of
Variable, but it obviously isn’t according to sample’s BNF. How would
you fix the program to enforce the constraints on Variable occurrences

Project Syntax: Bare Bones 29

properly? Make sure your own implementation of this Sample parser
does a better job than our program.

• The last clause is a catch-all clause, which is—as always—used to
report errors, that is, cases when the given S-expression should be
a member of Expression but isn’t.

And this is all there is to creating a parser—as far as this book is concerned.

6.1 Why Parsing Semi-structured Data Matters

The example makes all look too easy and, because of this, perhaps a bit
irrelevant. But, appearances are deceiving. Time and again, people have
re-discovered forms of semi-structured data for a number of different pur-
poses: storing intermediate results, conveying data from one networked
computer to another, and writing programs in little language.

Such little languages often serve as an extension mechanism for large
software systems. Among other things, they play a role for configuring
software system during start-up or for loading additional functionality while
the systems run. To this end, the systems contain a component that can
execute programs in these little languages, either directly or via abstract
machines.

In short, don’t write off this exercise as a trivial little program. It might
just come in handy one day.

7 Project Syntax: Bare Bones

Figure 6 presents the BNF grammar of the first project language. It ex-
tends Sample so that the syntax resembles the core of most contemporary
programming languages, minus the parentheses. While a Program is still a
sequence of Statements followed by an Expression, the set of Statements contains
two new variants:

• (if0 Expression Block Block), which looks like the simple conditional, com-
bining a conditional expression with two blocks of Statements; and

• (while0 Expression Block), which is representative of the looping con-
structs found in ordinary languages.

The symbols =, if0, and while0 are special. They serve as markers that dif-
ferentiate sentences from each other. In acknowledgment of this role, such
symbols are called keywords.

30 Section 7

Program ::= (Statement
˚

Expression)

Statement ::= (Variable = Expression)

| (if0 Expression Block Block)

| (while0 Expression Block)

Block ::= Statement

| (block Statement
`
)

Expression ::= GoodNumber

| Variable

| (Variable + Variable)

| (Variable / Variable)

| (Variable == Variable)

The set of Variables consists of all symbols, minus keywords.

The set of GoodNumbers comprises all inexact numbers

(doubles) between -1000.0 and +1000.0, inclusive.

Figure 6: The concrete syntax of the Bare Bones language

The grammar in figure 6 introduces one innovation: Blocks. Both the
if0 alternative and the while0 alternative of the Statement production refer to
Block, thus allowing programmers to use either one Statement or a non-empty
sequence of Statements.

Finally, the set of Expressions comes with a few additions compared to
those of Sample: many more numerical literals, a division expression, and
a comparison expression. Note, however, that it also restricts the shape of
Expressions in comparison to Sample. Thus, the Bare Bones language no longer
contains the concrete example from section 6.

Stop! Determine where a parser for Bare Bones would flag the concrete
syntax of concrete to inform the programmer of a grammar violation.

A Bare Bones programmer can easily work around this restriction with
assignments to temporary variables. Here is the result:

;; concrete-bare-bones

((x = 1.0)

(y = 2.0)

(temporary = (x + y))

(z = (x + temporary))

(temporary = 3.0)

(z + temporary))

Here the use of a single additional variable, temporary, eliminates the two

Project Syntax: Bare Bones 31

syntactic problems. The nested Expression and the nested literal constant
are “lifted” into the surrounding sequence of Statements and given a name:
temporary.

Exercise 1. Your task is to design an AST data representation for Bare
Bones and to implement a parser for this language in your favorite pro-
gramming language. The parser maps an S-expression to an instance of
AST, an abstract syntax tree that may contain error nodes.

7.1 Model

The Bare Bones language represents our first, simple model. It looks and
feels a bit like the kind of languages you should have encountered so far,
except for the many parentheses, which simplify the parsing process. It
differs from these languages in two visible ways: (1) it lacks nested expres-
sions, and (2) numbers are its only form of data.

Since the goal of this book is to examine questions of pragmatics, we
must judge these differences in those terms. From the perspective of prag-
matics, the first difference is superficial. We have already seen a trick that
overcomes the lack of nested expressions on the basis of simple local trans-
formations to a program. As a matter of fact, this restriction is merely im-
posed to simplify your project.

The second difference is highly significant; in this day and age, we
know that a language should support different forms of data and indeed
an extensible collection of data types. Chapter VI addresses this obviously
pragmatic issue in depth.

