CHAPTER III SEMANTICS AND EXECUTION

What does a machine for executing code look like?

1 Meaning Matters

The BNF of the Bare Bones language tricks you into thinking that you know
the behavior of programs, statements, blocks, and expressions. You might
think that (x = 1) sets the variable x to 1 and that (x = (x + y)) adds x to y and
makes x stand for this sum. But, thus far, all we know is how to create Pro-
grams, Statements, and so on. We follow the rules of the BNF, and a parser
for this BNF will confirm that these sentences are well-formed. The point
is that syntax may seem to imply semantics, though without an accompa-
nying specification, we can’t know for sure.

As mentioned in the first chapter, semanticists study how to assign
meaning to programs. In general, their concern is to specify the seman-
tics of any sentence that is well-formed according to some BNF production.
So, for example, a semanticist might say that

e a literal constant is a value;
* an expression yields a value; and
* astatement updates a relationship between variables and values.

These English sentences suggest three insights about describing the seman-
tics of a programming language: (1) we must choose a set of values; (2) we
must state what operations on these values yield; and (3) we must have a
mechanism for tracking which variables stand for which values.

Let’s relate this abstract explanation to the real world of computers,
starting from this”mechanism” just mentioned. A computer engineer calls
this “mechanism” the machine’s memory, also known as store. One way to
imagine store is as a collection of “boxes,” each of which has a label—the

34 Section 2

name of a variable—and contains a number. A variable reference in an
expression is a request to retrieve the number from the correspondingly la-
beled box. If an expression consists of an operation, say addition, and two
variables, the two corresponding numbers are sent to a co-processor that
corresponds to the named operation. Now consider that this expression is
on the right-hand side of an assignment statement. Once this co-processor
delivers the result of this expression, the computer places this number into
the box labeled with the name of the left-hand side of the assignment.

While this concrete description isn’t wrong, it is overly simplistic and,
yet, it is also inspirational. It explains why semanticists consider abstract
machines a useful tool for specifying the semantics of a language. People
can easily imagine the execution of primitive statements and expressions
in the context of this concrete mechanism. It is easy to illustrate and visu-
alize a program execution. However, some of the English is imprecise—
how does a co-processor add two inexact numbers—and it isn’t clear how
it scales to common features of existing languages. Abstract machines—
a mathematical idea that directly corresponds to executable code—solves
some of these problems. This chapter introduces the basic idea of abstract
machine; the next one expands on it so that the rest of the book can explain
many of the features of contemporary languages.

2 Abstract Machines: In General

A semantic specification based on abstract machines starts from a grammar
that defines the set of programs and a set of values, which are the meanings
of programs run on the machine. For the description of the set of values,
it might suffice to pick a set that people in computing accept, say the set of
inexact numbers within certain limits, or it might require a small, separate
BNF grammar.

Given the grammar and the chosen values, an abstract-machine defi-
nition consists of two parts: (1) a set of machine states and (2) a function
from states to states, often called a transition function. The specification of
machine states identifies (1a) initial states, (1b) intermediate states, and (1¢)
final states. Every state always includes the instructions that the program
represents, usually as ASTs, and additional “bookkeeping” data.

Running a program on an abstract machine thus requires a function
from programs to initial states. This function is typically called load. Once
an initial state exists, the machine repeatedly applies the transition function
to interpret the program’s instructions, one instruction at a time. When the

Abstract Machines: In General 35

transition function yields a final state, the machine stops, and an unload
function maps this final state to a value.

Figure 7 presents a diagram that expresses this explanation graphically.
The program is loaded, yielding an initial state. Then the transformation
function is applied to the initial state, yielding an intermediate state. It is
again applied to this state and so on, until the result belongs to the set of fi-
nal states. By applying the unload function to this final state, we determine
the value of the program—that is, its meaning.

P .
Final

States

Figure 7: Executing programs on an abstract machine

Although of these concepts—sets, functions—are mathematics, the key
is that it is executable mathematics, meaning it directly corresponds to code.
Here is a sketch:

NN

// determines the meaning of
Result runMachine (Program p) {
State currentState = load(p);

P

while (! (isFinal(currentState))) do {
currentState = transition(currentState);
Value result = unload(currentState);
return result;
State load(Program p) { ... }
State transition(State s) { ... }

Result unload(State s) { ... }

Let’s ignore exception
handlers for now.

And set-based
mathematics for
theoretical purposes.

36 Section 3

This pseudo-code employs a 1970s style procedural style, easily mimicked
in every contemporary mainstream language. The runMachine function is
the entry point. It composes three tasks via sequencing and a while loop:
load the program; run a loop until the content of currentState belongs to the
subset of final states; then unload the result from this final state.

Stop! Articulate this pseudo-code in your favorite programming lan-
guage, using its preferred style.

What this “story” and the figure fail to account for is the possibility of
a misbehaving program. Think of an expression in a program that divides
an integer by zero. A few language descriptions, for example C and C++,
do not specify the semantics of this situation, leaving it up to the imple-
mentation to pick a behavior. Many others, say Java and Python, describe
this situation as an error situation and demand that implementations dis-
continue execution and signal an exception.

With abstract machines, it is straightforward to express this semantics.
First, let’s enrich the set of final states with designated and recognizable
“error states” that bring the machine to a halt. Second, the unload function
translates such error states into results that are distinct from any value. And
that’s why the result type of runMachine is Result, not Value. The Result type
represents the disjoint sum of Values and Exceptions:

type Result = Value | Exception

In short, the author of the abstract machine must not only pick a set of
values but also a set of exceptions to assign meanings to programs.

3 The CS Abstract Machine: The Sample Language

In a sense, section 1 of this chapters precisely explains how programs in
the sample BNF of Chapter II are executed. The goal of this section is to
articulate this English description as an abstract machine, using a rigorous
formalism that directly corresponds to code.

To keep things simple, let’s assume that the addition expressions always
have the shape (x + y) for some variable names x and y:

Program = (Statement* Expression)
Statement = (Variable = Expression)
Expression ::= 1 | 2 | 3 | Variable | (Variable + Variable)

The set of Variables consists of all non-empty sequence of
alphanumeric characters, starting with an alphabetical letter.

The CS Abstract Machine: The Sample Language 37

Let’s call this the Sample language from now on. What we need next are a
description of the set of values and states; an examination of whether there
are exceptional cases; and a transition function.

3.1 The States

The Sample BNF chapter allows programmers to write down exactly three
literal constants: 1.0, 2.0, and 3.0. Furthermore, the programs may per-
form exactly one operation on these values: addition. All other statements
merely move such values from one variable to another. Hence, it makes
sense to say that the set of Values consists of just the inexact numbers found
in computer hardware and that + denotes their addition operation.

Following the introductory section of this chapter, a state obviously
consists of two parts: the program’s remaining instructions and the store.
Semanticists call these parts registers, even if this usage isn’t quite in con-
formance to how computer engineers apply it. Specifically, we say that the
C register contains the remaining instructions and thus controls the exe-
cution of the machine; the S register represents the current settings of the
store. The name of the machine reflects this combination: CS machine.

A store, as informally described, is a collection of “boxes” or “cells”
with labels on them. If we were to use mathematics here, we could say it
is a function from variable names to the set of Values, with a finite domain.
By contrast, a programmer would represent such a collect as some form of
table, which many programming languages offer as primitive objects with
relevant operations.

One task remains: identifying the three partitions of the set of states and
defining the load and unload functions. Clearly, an initial CS state consists of
just a program p combined with an empty store, representing that no in-
struction has been executed. A mathematically inclined person may write
this as a Cartesian pair:

p, []

A final CS state is reached when all instructions of a program have been
evaluated, meaning all assignment statements and all expressions:

n, s

where n is the number that results from evaluating the final expression in a
Sample program. Intermediate states are those that combine programs with
instructions and any store. Here are the function definitions:

See IEEE 754 for this
standard. This text
will not address the
numerous
complications that
inexact numbers
impose on
programimers.

38 Section 3

load : Program ——-> State unload : State —--> Result
load(p) =p, [] unload(n,s) = n

If you’d rather think of setting variables and referring to them, you may
want to skip ahead to the last subsection.

3.2 Exceptional Cases: Another Case of Pragmatics

Although the sample BNF supports only one operation on values, a pro-
grammer can still write faulty programs. Take a close look at these two
programs, which are almost identical:

produces a number produces what?
dubbed “good” dubbed “bad”
((a = 1.0) ((a =1.0)

b = 2.0) b = 2.0)

temporary = (a + b)) temporary = (a + b))

temporary = 3.0) temporary = 3.0)
c + temporary)) c + temporary))

((
((
(c = (a + temporary)) (¢ = (a +))
((
((

Stop! Explain the difference.

The boxed variable reference in bad gives it away. A typo—note the
missing letter—makes it impossible to evaluate the addition expression,
because the store does not have a value for this variable.

Language designers have faced this problem for decades and have come
up with various solutions. One of them would be to pick a random num-
ber for temprary and to continue the execution of the program. Another one
would be to let the machine seg fault. Over time, though, it has become
clear that a language should let the programmer know that the program
refers to an unknown variable. In the context of an abstract-machine cre-
ation, this means shutting down the machine gracefully when it encounters
such a situation, via the transition to an appropriate final state. We there-
fore extend the set of final states with error, s where error contains informa-
tive texts. Let’s modify unload appropriately:

Result = unload : State —--> Result
InexactNumber

U unload (n, s) =n

String unload (error,s) = . some string ..

3.3 The Transition Function

Now we’re in a position to define the transition function. Such a function
always performs two tasks: (1) determining the nature of the next instruc-

The CS Abstract Machine: The Sample Language 39

tion in the given state and (2) creating a new state in response. This new
state is similar to the old one, but with the interpreted instruction pruned.

Due to this characteristics, transition functions are typically expressed
as tables that specify a number of “before” and “after” state cases. Com-
puter engineers use similar tables, though of course with states that specify
bits not code.

executing a sequence of statements evaluating return expressions
Control Store Control Store
execute x =n evaluate y as return expression
before: ((x = n)::stmt* e) s before: ([1y) s
after: (stmt*e) s[x=n] subject to: 'y is defined in s
after: ([1n) s

where n = s[y]

execute x = y (success)

before: ((x = y):stmt* e) s evaluate y as return expression
subject to: 'y is defined in s before: ([1y) s
after: (stmt* e) s[x =n] subject to: 'y is not defined
where n = s[y] after: error s

execute x =y (failure)

before: ((x = y):stmt* e) s evaluate y + z as return expression
subject to: 'y is not defined before: ([1(y+2z) s
after: error s subject to: 'y and z are defined in s
after: ([1k) s
where n = s[y]
execute X =y + z (success) and m = s[z]
before: ((x=(y +z)):stmt*e) s and k = +
subject to: 'y and z are defined in s
after: (stmt* e) s[x =k] evaluate y + z as return expression
where n = s[y] before: ([1(y+2z) s
and m = s[z] subject to: 'y or z is not defined in s
and k= + after: error s

execute x =y + z (failure)

before: ((x = (y + z)):stmt*e) s
subject to: 'y or z is not defined in s
after: error s

Figure 8: The CS transition function for Sample

40 Section 3

Figure 8 presents the transition function for the sample BNF with its
intended semantics; see the first section. Its definition distinguishes nine
cases: five in the left column and four in the right one. Each case states a
before condition on the given state and an after state specification:

* The before condition always specifies a specific program shape and a
general store (s).

Some cases also subject this state pattern to additional conditions; for
example, if the program shape contains a specific variable, the addi-
tional constraint may require this variable to have a value in the store.

¢ The after state specification explains how the next state is formed, if
the given state satisfies the before condition. Concretely, it specifies
the content of the registers:

— The C register typically contains some program code or an error,
in which case the state is final and the machine stops.

- The S register always contains the given store or a revised store.
A revision has the shape s[x=n], denoting a store that is like s, but
x associated with n.

Some cases also come with where clauses. Each such clause defines the
value of a variable. For example, s[x] retrieves the value of x from the
table named s, and (+ m n) denotes an actual addition of two inexact
numbers according to the chosen standard.

The definition function uses one additional notation: a::stmt* is a list of state-
ments where a is the first one and stmt* denotes the remainder.

Note that the abstract machine uses concrete syntax. An implementa-
tion will use ASTs instead so that it doesn’t have to account for ill-formed
programs; see the next section.

While the left column of the figure contains the cases for executing as-
signment instructions, the right column concerns the evaluation of the final
expression in a program. Let’s take a close look at the first transition on the
left, using good from the preceding subsection. The initial state is a state
where the C register contains all of good and the S register the empty table.
By matching this initial state with the before line of the transition, we get the
following:

The CS Abstract Machine: The Sample Language

abstract state description

41

concrete pieces of state

(x = n) ===

stmt * ====

e ====

(a = 1.0)

((b = 2.0)
(temporary = (a + b))
(c = (a + temporary))

(temporary = 3.0))
(c + temporary)

s === [)

Since the matching succeeds, the transition function returns the after state
of this same part of the table. Now C contains

((b = 2.0)
(temporary = (a + b))
(c = (a + temporary))

(temporary = 3.0)
(c + temporary))

And S is set to the table [a = 1.0].

An application of the transition function to this new state proceeds in
analogous manner. Interpreting (b = 2.0) results in a shorter program in C
and one new entry into the table that is in S.

The interpretation of (temporary = (a + b)) differs from the first two steps.
The first (case of the) transition function does not apply. Instead the fourth
case matches as follows:

abstract state description concrete pieces of state

(x = (v + z)) ==== (temporary = (a + b))

stmt * ==== ((z = (a + temporary))
(temporary = 3.0))

e ==== (c + temporary)

s ==== [a =1.0, b =2.0]

The guidance of the after part of the case tells a reader to look up a and b in
s, to add the two numbers, and to store the result as the value of temporary
in the table. Accordingly, the resulting state consists of

((temporary = 3.0)
(c + temporary))

in register C and [a=1.0, b = 2.0, temporary = 3.0] in S.

Stop! Which case of the transition function is needed to interpret the
state we just constructed? And the state that results from this step?

Once the C register contains a program that consists of just an expres-
sion —an addition expression or a variable reference to be precise—an in-
terpretation of such a state must use the right-hand side of the table in

42 Section 3

figure 8. If you solved the above riddle, you realize that the result is just
such a state and here is how it matches the third case’s before pattern:

abstract state description concrete pieces of state
e ==== (c + temporary)

s —=== [a =1.0, b =2.0, c =4.0,
temporary = 3.0]
According to after, the resulting state is a final state, with 7.0 in the expres-
sion position of the control register. Hence, unload of this state yields 7.0 as
the meaning of this program.
Stop! Run good in your favorite programming language and confirm the
result—if you don’t trust the transition function or our use of it.

Let’s next consider how the transition function would deal with bad. For
the first three assignment statements, the application of transition function
yields the same sequence of states as for good. The fourth intermediate
state matches the last clause on the left, because the concrete variable cor-
responding to z is not defined in the store:

abstract state description concrete pieces of state
(x = (y + 2)) ==== (c = (a + temprary))
z ==== temprary

stmt * ==== ((temporary = 3.0))

e ==== (c + temporary)

s ——== [a=1.0, b = 2.0,

temporary = 3.0]

Hence, the result of the transition function is <error;s>, a final state. Unload-
ing this state informs the programmer that something went wrong during
the interpretation of bad.

In general, the numbered cases in a transition function must be consid-
ered in order. They come with “subject to” conditions in the before part, and
if any of these conditions doesn’t hold, the next case is considered. Other
cases could be considered independently.—This convention won’t surprise
anyone who has written a conditional in a programming language, because
in all mainstream languages, conditional cases are considered in order, too.

3.4 An Implementation of the CS Machine for Sample

An implementation of an abstract machine requires picking a data repre-
sentation of the sets of values and states; a data representation for the store;

The CS Abstract Machine: The Sample Language 43

and function definitions for load, transition, and unload. To run the machine,
it is also necessary to port the code of runMachine from the preceding section
to the chosen programming language.

This section presents the Racket implementation of the CS machine.
Racket structures serve as simple data representations of states:

(struct state [control store])

#; {type State = (U Initial InterM Final)}

#; {type Iniial = [state Program MT]}

#; {type InterM = [state Program Storel}

#; {type Final = [state (U Value Error) Storel}
#; {type Value = InexactReal}

The first line declares the struct type; the remaining ones are type-like com-
ments that explain how the structures are instantiated to represent initial,
intermediate, and final states. In this example, the struct type and the com-
ments directly encode the informal explanations into Racket.

MT in the store field of the structures denotes the empty table. Like
most languages, Racket supports a number of table-like data types. Since
the details do not matter, a comment and two signatures suffice:

#; {type Store = [TableOf Symbol Value]}

#; { Store Symbol Value —-> Store }
(define (extend table x v) ...)

#; { Store Symbol -> Value }
(define (lookup table x) ...)

Lastly, we add a structure type for reporting errors concerning refer-
ences to undefined variables:

(struct err [message codel])
#; {type Error = .. some informative data ..}

These data representations basically dictate how to define the load and
unload functions:

(define (load p) (state p mt-table))

(define (unload s)
(match s
[(state (prog ’ () n) s) n]
[(state (err msg xtra) s) msg]l))

The definition of transition is more interesting than these. Due to the already-
mentioned algebraic match construct, Racket still makes it easy to translate
the cases from figure 8 case by case.

44 Section 3

#; { State —> State }
(define (transition s)

(match s
[(state (prog (cons (ass x (num n)) stmtx) e) s)
(state (prog stmt* e) (extend s x n))]
[(and (state (prog (cons (ass x (ref y)) stmt*) e) s)

(? is-y-defined?))
(define n (lookup s y))
(state (prog stmtx e) (extend s x n))]
[(state (prog (cons (ass x (ref y)) stmtx) e) s)
(state (err "undefined variable" y) s)]

[; ; BEFORE
(and (state (prog (cons (ass x (add y z)) stmtx) e) s)
(? are-y-and-z-defined?))
;+ AFTER

(define n (lookup s y))
(define k (lookup s z)
(state (prog stmt* e) (extend s x (+ n k)))]
[(state (prog (cons (ass x (add y z)) stmtx) e) s)
(state (err "one of the variables is undefined" s) s)]

;; evaluate the return expression:

[(and (state (prog ’ () (ref y)) s)
(? is-y-defined?))
(define n (lookup s y))

(state (prog ' () n) s)]
[(state (prog ' () (ref y)) s)
(state (err "undefined variable" y) s)]
[(and (state (prog ' () (add (ref y) (ref z))) s)

(? are-y—-and-z-defined?))
(define k (+ (lookup s y) (lookup s z)))
(state (prog " () k) s)]
[(state (prog ' () (add y z)) s)
(state (err "one of the variables is undefined" s) s)]
2))

Figure 9: A Racket implementation of the CS machine

Figure 9 shows the complete definition of transition. Following the ab-
stract description, the function consumes a state and produces one. It uses
match to determine which before condition of which case of figure 8 applies.
It is the responsibility of the specifier of this table to ensure uniqueness of
such conditions or to clarify in which order the before conditions are to be
checked. Racket’s match conditional tries the cases in order, and they are
arranged in the same order as the original table.

Let’s take a look at one case, specifically the boxed case in figure 9,
which implements the case in figure 8 labeled “execute x = y + z (success)”.

The CS Abstract Machine: The Sample Language 45

The before condition of this case is narrower than the one labeled “failure,”
so it must be checked first.

The match pattern, labeled BEFORE, consists of two parts, combined with
and:

* The first one says that the given state structure must have a shape that
looks pretty much like the one in the mathematical specification.

* The second one, (? are-y-and-z-defined?), applies the aptly named predi-
cate to the given state, ensuring that y and z are defined in the store.

The code labeled AFTER constructs the result state in three steps. The first
two retrieve the values of y and z, respectively, from the store s in the given
state. These retrievals succeed, because the BEFORE condition checked that
the variables have values in s. Finally, the function instantiates state with
(1) a program that no longer contains the interpreted assignment statement
and (2) a new store that associates the sum of the two retrieved values with
the left-hand side of the interpreted assignment statement. In sum, the code
for this case is a direct translation of the mathematical into Racket code.

Stop! How would you code up the transition function in your favorite
programming language?

Every implementation effort potentially suffers from bugs. In the par-
ticular case of a transition function, a programmer can easily make a mistake
with the translation of the before conditions so that some instance of state
does not match any of them. Worse, the specification effort of writing down
a transition function in the table notation of figure 8 may suffer from in-
consistencies in these conditions, rendering a precise translation into code
buggy.

To catch such problems, an implementation must come with a catch-all
clause, which is what the dots (...) at the end of figure 9 indicate:

[_ (eprintf "stuck state (should never happen)")
(state (err "stuck state (should never happen)" ’s) s)]

The _patterns informs readers of Racket code that all given states are matched.
The clause then prints an error message and returns an error state so that
runMachine no longer calls transition.

A programming language researcher refers to states that match this pat-
tern as stuck states. When running a machine ends up in a stuck state, the
message must inform the user that the machine crashed—or, in the termi-
nology of old computer scientists—that it seg-faulted. One major research
thrust in the field is the search for proof methods that eliminate the possi-
bility of stuck states.

K is short for
“continuation,” the
mathematical term for
“ASTs still to be
interpreted.” But,
since C is taken,
semanticists use the
letter “K” instead.

46 Section 4

4 The CSK Abstract Machines: A Second Example

Several different abstract machines can express the same semantics for one
and the same syntax. By choosing one over the other, a language creator
emphasizes a particular perspective. For example, the CS machine mirrors
our hardware interpretation of Sample. A language creator who presents
this machine may hope to allude to the programmers” sense of machine
execution. Or, the language creator may expect that proving a universal
property—-i.e., one that holds for all programs—is best done with the chosen
abstract machine.

On occasion, programming language researchers study a particular lan-
guage and find that the chosen abstract machine isn’t a good choice for their
objectives. In this case, they may formulate an alternative abstract machine
(or even an interpreter or a denotational-mathematical one). If they do,
they are obliged to show that the two semantics define identical functions
from Programs to Values; otherwise they don’t know whether the results of
their investigations hold for the original combination of syntax and abstract
machine.

This section presents the CSK machine, an alternative for the Sample
language. While the CS machine elegantly interprets one assignment state-
ment after another, its definition intimately relies on the simple nature of
programs. This tight relationship between simple program syntax and ma-
chine instructions makes it difficult—not impossible—to adapt this ma-
chine to even the syntax of the Bare Bones language.

4.1 The States

As its name suggests, the CSK machine comes with three registers. The C
register still contains ASTs that controls the machine’s execution, and the S
register continues to represent the association of variables and values. But,
the C register of this new machine contains the expression to be evaluated,
not the sequence of (mostly) un-interpreted assignment statements. Those
are instead placed in the additional K register.

Let’s capture these ideas as a struct type definition for the states of the
CSK machine, combined with comments on how to use its instances:

(struct state [control store kontinuation])

#; {type State = (U Initial InterM Final)}

#; {type Iniial = [state t MT Program]}

#; {type InterM [state (U Expression t) Store Program]}

#; {type Final = [state (U Value Error) Store (Expression)]}

The CSK Abstract Machines: A Second Example 47

search for expression, place value evaluating expressions
Ctrl. Sto. Kontinuation Ctrl. Sto. Kontinuation
search ends with return expression evaluate a variable (success)
before: T s ([1e) before: 'y s k
after: e s ([Te) subject to: 'y is defined in s
after: n s k
where n = s[y]
search ends with right-hand side of assignment
before: T s ((x = ex)::stmt* e) evaluate a variable (failure)
after: ex s ((x = ex)::stmt* e) before: 'y s k
subject to: 'y is not defined
after: error [T T[]
value for right-hand side of assignment
before: n s ((x = ex)::stmt* e)
after: s[x=n] (stmt*e) evaluate an addition (success)
before: (y + z) s k

subject to: 'y and z are defined in s
after: (+slyls[z]) s k

evaluate an addition (failure)

before: (y + z) s k
subject to: y or z is not defined
after: error [1 T[]

Figure 10: The CSK transition function for Sample

The set of values remains the set of inexact numbers; Error is also the same
as for the CS machine.

The novelty in these definitions is the { symbol, and we definitely need
an interpretation for this symbol to make sense of these states. Since C con-
tains the next expression to be evaluated, and since it isn’t always obvious
which expression it is, the CSK machine instead knows two modes:

* When f is in C, the CSK machine searches for the next expression that
it must evaluate in the AST of the K register.

* When C contains an expression, it evaluates the expression, and when
the value is found, it uses the program AST in K to place the value into
the store.

48 Section 4

Stop! Define the load and unload function for these data definitions.

4.2 The Transition Function

Figure 10 displays the definition of the CSK transition in the same format
as the one for the CS machine. The cases in the left column explain how
the CSK machine searches for the next expression to evaluate. The right
column defines the four cases of how the machine determines the value of
an expressions—if possible—and how it uses this value.

Consider the second case in the left column. Its before constraint on the
C register signals “search.” The K register is supposed to contain a program
that consists of a non-empty sequence of assignment statements followed
by an expression e. Since the assignment statement’s right-hand side, ex, is
an expression whose value is needed, the next expression is found. Hence
the case’s after specification places ex into the C register and leaves the other
two registers alone.

Once the C register contains an expression, the evaluation starts. Con-
sider the third case in the right-hand column. Its before condition demands
that the C register contains an addition expression; it imposes no constraints
on the content of S and K. The side condition, however, ties together the ex-
pression with the store. It requires that the store associates values with
both variables in the addition expression. Assuming that the two condi-
tions hold, the after specification constructs a state with the sum of the two
numbers in C, with the other two registers unchanged.

To understand how an assignment statement is executed, we need to
inspect the third case in the left column. Its before line says that C contains a
number (n) and a program in K with a non-empty sequence of assignments.
The number is the result of evaluating the right-hand side of this assign-
ment, and that immediately explains the after specification. The number n
becomes the new value of the left-hand side of the assignment statement,
x, and the assignment itself disappears.

Stop! Explain the remaining cases in a similar manner.

Exercise 2. Add cases for ifd and while0 (see figure 6) to the transition
function of figure 10. The implied semantics are as follows:

* An if0 statement determines the value of its sub-expression. If this
value is 0.0, the “then” branch is executed next; otherwise the machine
picks the “else” branch.

* A while0 proceeds in a similar manner. As long as the evaluation of its
sub-expression yields 0.0, the machine executes the sub-statement. If

The CSK Abstract Machines: A Second Example 49

the sub-expression evaluates to some other number, the while0 state-
ment is removed from the K register.

Don’t peek ahead. The solution is presented in the next section.

Exercise 3. Your task is to implement the CSK abstract machine in your
favorite programming language.

Define csk0, a program that consumes an S-expression from standard
input, parses it according to the BNF of section 2, determines its meaning
via the CSK machine, and prints the meaning to standard output. Keep in
place the restriction we have imposed here, namely, that addition expres-
sions must use only two variables as operators.

The output should be a number only when the parser succeeds and the
machine runs to completion without discovering variables without an as-
sociation in the store. If parsing the given S-expression fails, the error mes-
sage should say “parser error.” If running the machine fails, the program
should signal a “run-time error.”

Challenge Can the csk0 run forever?

Hint You may wish to re-read section 4.

4.3 But Machines Don’t Search For the Next Instruction!

At this point, you might think that these CSK “machines” are anything but
machines. You know that real computer hardware does not search for the
next instruction to execute. Real hardware comes with an program counter
(aka instruction counter aka instruction pointer aka many other names)
that points to the next instruction to be executed. As one instruction gets
done, the pointer is advanced appropriately.

While the CS machine acts in a way that resembles hardware, recog-
nizing the relationship between the CSK machine and a computer is much
more difficult. Here is an attempt. First, its K register does contain a se-
quence of instructions. Second, S still points to a store that is like a hard-
ware memory. Finally, the CSK machine’s C register mostly drives arith-
metic instructions like an ALU on a CPU, meaning they compute sums; in
other cases, it demands the retrieval and storing of numbers in memory.

A CSK machine differs from hardware in that it carefully explains how
the program counter is moved forward. One way to imagine is to think of
this as a “slow motion” execution of instructions.

We have two reasons to formulate abstract machines. First, it is straight-
forward to implement these machines in almost any programming lan-
guage. While differentiating the cases of the transition function may take

50 Section 5

more code in one language than another, it remains an achievable task. Sec-
ond, the transition function doesn’t make big leaps (like, say, an interpreter)
but performs small steps, one small instruction at a time. Sure, they aren’t
quite hardware steps, but you can simulate each of them in your head. And
as you will see, these abstract machines thus provide an adaptable formal-
ism for basically any kind of language feature.

4.4 A Little Bit of Theory

The addition of the CSK machine to our repertoire raises the kind of ques-
tion that theoreticians in the field of programming languages often have to
consider:

do the CS machine and the CSK machine define the same semantics?

And you may wonder what it even means for two semantics to be the same.

So suppose you write a program P in the restricted BNF. You use your
parser to make sure it is well-formed. If so, you get the AST of P and you
proceed to apply runMachinecg function to this tree. When the final is un-
loaded, the result is either a number or an error. What if we proceeded in
this manner but used the runMachinecgg function instead?

Stop! Did you notice the subscripts? Do you know what they mean?

What you should expect is that the second process should produce the
same outcome as the first one. Indeed, you should get the same outcome
no matter which P you start from.

Since we can understand the runMachine functions as mathematical func-
tions, we can turn this informal claim into a mathematical theorem about
them as follows:

For all programs P in Sample, runMachinecg(P) = runMachinecgg (P)

A language theoretician would use mathematical methods (relations, in-
duction) to prove this statement formally.

In this book, we are not concerned with such theoretical arguments.
Our focus is to explain the meaning of language features via abstract ma-
chines and their pragmatics through rigorous analyses.

5 Project Machine: Bare Bones

Let’s equip the Bare Bones BNF of section 7 with a semantics. Programs in
this BNF consist of sequences of Statements, followed by an Expression. This

Project Machine: Bare Bones 51

production is exactly the same as for Sample’s BNF—if we ignore what State-
ments and Expressions are.

According to the second production of the Bare Bones BNF, a Statement is
either an assignment statement, a conditional, or a loop. In other words,
the Bare Bones syntax adds two kinds of Statements to Sample.

Finally, a Bare Bones expression is either a literal numeric constant, a
reference to a variable, or an addition expression that contains two variable
references. While the Sample BNF comes with just three literal numeric
constants (1, 2, and 3), the good news is that we know what these constants
mean—the numbers that they denote.

In sum, Bare Bones syntax extends the syntax of the Sample BNF in one
essential place: the production for Statement. Hence the abstract machine
for this extended syntax should merely extend the set of transitions of the
CSK machine for Sample. Concretely, the extended machine should need
transitions for using the value of expressions in ifd and while0 plus search
transitions for finding expressions in such statements.

search for expression, place value

evaluating expressions

Ctrl. Sto. Kontinuation

Ctrl. Sto. Kontinuation

pick then branch from if0

decide whether to run while loop (positive)

before: n 3 ((if0 tst thn els)::stmt* e)
subject to: nis 0

after: s (thn::stmt* e)

pick else branch from if0

before: n s ((while0 tst body)::stmt* e)
subject to: nis 0
after: f s (body::0 e)

where o = (while0 tst body)::stmt*

decide whether to run while loop (negative)

before: n s ((if0 tst thn els)::stmt* e)
subject to: nisnot0

after: s

(els::stmt* e)

search for expression in if

before: n s ((while0 tst body)::stmt* e)
subject to: nisnot0

after: s (stmt* e)

search for expression in while

before: 1 s ((if0 tst thn els)::stmt* e)
after: tst s ((if0 tst thn els)::stmt* e)

before: s ((while0 tst body)::stmt* e)
after: tst s ((while0 tst body)::stmt* e)

Figure 11: The CSK transition function for Bare Bones

Figure 11 adds six cases to the transition function of the CSK machine
from figure 10. All other functions of the CSK machine can be re-used as

52 Section 5

is—as long as the transition function is revised.

The left column of the figure presents the cases that deal with if0 state-
ments. First, when the expression evaluates to 0.0, the machine picks the thn
sub-statement to execute next. Since it doesn’t know which expression is to
be evaluated next, it initiates a search. Second, when the expression evalu-
ates to a number other than 0.0, the machine picks the els sub-statement and
searches for an expression in it. Note how the remainder of the instructions
(stmt*) remain the same.

The right column of figure 11 is about the cases that process while0 state-
ments. First, when the expression evaluates to 0.0, the machine executes
the body sub-statement of the loop followed by the loop. Second, otherwise
the machine discards the loop statement. The machine initiates a search for
next expression to be evaluated in both cases.

A second look at the last cases in both columns confirms how searching
for an expression terminates when the machine encounters a if0 or while0
statement as the first one in K. In both cases, the machine picks the sub-
expression of the statements, because its value is needed to make a decision
about what to execute next.

Exercise 4. Your task is to implement the complete CSK abstract ma-
chine for Bare Bones in your favorite programming language.

If you completed exercise 3, this task represents just a request to add
six cases to the already-existing transition function. Also, implement a csk1
programming; use a suitably modified specification like the one for csko in
exercise 3.

