CHAPTER IV SYNTAX AND VALIDITY

Why do most languages demand that programmers declare variables?

1 The Pragmatics Question

The Bare Bones language of the preceding chapter resembles some existing
ones, and it comes with one well-known, serious flaw. For example, con-
temporary Python still allows programmers to just write down assignment
statements to variables and fields without requiring declarations. Here is
an example, using Bare Bones syntax:

((title = 1.0)

(offset = 0.0)

. 1,000 lines of loops and conditions ...
[(titel = title + offset) |
title)

Stop! Take a look at the boxed code, which highlights the problem. Has
something like this happened to you when you wrote Python code, perhaps
with a field assignment?

Unlike the problem of references to variables without value in an ex-
pression, which the semantics can deal with, the problem of assignments to
misspelled variables does not cause the BareBones parser to signal a syntac-
tic error or the BareBones semantics to map its meaning to error. Assuming
this program does not suffer from bad variable references, it is syntacti-
cally well-formed, and the runMachine semantics returns a number for this
program.

If it is not a syntax problem and if it is not a semantics problem, the
program poses a problem of pragmatics. Since we defined pragmatics as
a concern of language combined with work situations, we need to identify
these two for this specific problem. So, imagine a quality engineer whose
task is to write black-box tests. Unless such tests force the value of offset to

Fundamental
properties of
computation render
stch tools at best
reasonably sound.

54 Section 1

differ from 0.0, these test may never reveal that the program suffers from a
misspelled variable name in an assignment statement. Once this software
gets deployed, however, a user may run this program in ways that does
expose the problem in an observable manner.

To sum it all up, typos can pose serious problems to programmers and
users in BareBones programs. We need to consider solutions and the impli-
cations of such solutions.

1.1 Design Choices: Valid Syntax vs Style Checks

Almost all contemporary programming languages make the declaration of
variables mandatory. Every variable reference and every assignment to
a variable must connect to a variable declaration. Language implementa-
tions check this property even before a programmer runs a program; unless
the property holds, a program in such contemporary languages can’t run.
Similarly, modern IDEs mark up uses of undeclared variables so that pro-
grammers can fix such problems while they create code.

Generalizing a bit, two fundamental changes to the syntactic part of the
programming language answer this first pragmatic question:

1. The language’s syntax must include a facility for declaring variables.

2. The language implementation must come with a tool that checks that
all references and assignments to variables relate to a corresponding
declaration.

The second property points out that checking syntax is more than parsing
to check whether a program is well-formed according to some BNF. In ad-
dition, a language implementation must check that the well-formed syntax
is valid, meaning it satisfies additional properties not expressible via BNF.

Some language communities consider variable declarations a nuisance
but admit that the pragmatic question exists. Their leaders have therefore
proposed to equip a language’s tool chain with a “style check”er (aka, lin-
ter) for checking code properties. For the case of references to variables
without values in the store, such a software tool can read the program text,
analyze it, and make a (reasonably) sound judgment as to whether run-
ning the program may signal an error. For the other case, however, when
a programmer misspells the variable on the left-hand side of an assign-
ment statement, such software tools can make at best good guesses—and
programmers are annoyed when bad guesses pile up. Unsurprisingly, pro-
grammers tend to turn off these optional tools and fail to discover these
problems too late.

The Pragmatics Question 55

A comparison of these two design choices makes it quite obvious why
the vast majority of language designers have resorted to the first solution
and have mostly rejected the second one. As a matter of fact, they rec-
ognized the pragmatic question in the late 1950s and came up with the
solution in 1960, understanding its pros and cons over 80 years ago.

1.2 Costs and Benefits

Every decision concerning pragmatics deserves a cost-benefit analysis, even
a decision as clear-cut as the one in favor of variable declarations. In the
case of programming language pragmatics, such cost-benefit analysis takes
into account the working situations of the programmer that raised the prag-
matic question and the work that the decision imposes on the language
implementer. While shifting work from a lot of programmers to a few lan-
guage implementers is generally a good idea, it may become unreasonable
when the decision is a close one.

As far as programmers are concerned, variable declarations come with
some obvious positives and one negative one for the programmer. On the
positive side, variable declarations protect programmers from insidious
mistakes and unwanted “undefined variable errors” discovered when the
program is run. Indeed, the language implementation can collaborate with
the IDE and warn programmers about problems as they edit code. That is,
variable declarations support the act of entering code into an editor. On
the negative side, the requirement to declare variables before use imposes
a small amount of extra keyboarding on the programmer. On balance, the
positives clearly favor the addition of variable declarations.

As far as the language creator is concerned, variable declarations im-
pose two costs. The first one is intellectual. In addition to a BNF speci-
fication, which determines when some text is a well-formed program, the
creator is now responsible for making decisions on what it means that a
variable is defined before it is used. The decision is expressed as a set of
constraints between distant pieces of code. A well-formed program is re-
ally considered a program suitable for execution only when it satisfies these
constraints too. Language researchers tend to say a program is well-formed
and valid when it is formed according to the BNF and when it also satisfies
the declared-use constraints, respectively.

Finally, concerning the language implementer, variable declarations and
their accompanying constraints impose extra work. While a parser can
check whether a program is well-formed, it isn’t suitable to check whether
a well-formed program is valid. To implement this validity check, the lan-

56 Section 2

guage implementer must process the given program again, after it is known
to be well-formed. And now it becomes clear, why the parser’s creation of
an abstract syntax tree (AST) is so important:

If the validity checker is a function from ASTs to something else,
its implementation does not have to account for syntactic mis-
takes. That is, working with ASTs simplifies subsequent checks
of desirable program properties.

In other words, while the introduction of ASTs may have appeared to com-
plicate things at first, it should now be clear that it simplifies language im-
plementations.

2 Valid Syntax: In General

The preceding cost-benefit analysis concludes with the idea that validity
checking is a function that consumes an abstract syntax tree. To work out
the precise nature of its signature, let’s start by recalling the generic signa-
ture of a parser:

parse : PlainText -> AST

Its domain is, in general, plain text, typically read from an input device; its
range is AST, which is the set of abstract syntax trees enriched with error
nodes. The IDE uses the latter to inform programmers of syntax mistakes,
that is, violations of the language’s BNFE.

If the parse function discovers a violation, it is unnecessary to check
whether the program comes with declarations for all variables. Conversely,
the validity checker consumes only the AST- subset of AST. The question is
what this function should return. Just like parse, the validity checker may
succeed and confirm that all variables mentioned in the program come with
a declaration; or it may fail and discover a variable name without a decla-
ration. In the failure case, we would once again like the language imple-
mentation to inform the IDE so that, in turn, it can highlight the undeclared
variables. In short, we want the following signature:

// check that variables in a program come with a declaration
validityCheck : AST- -—> AST

Unfortunately, working out the top-level signature is the easy part; the
difficult aspect of validity checking is due to the physical separation of vari-
able declarations from variable occurrences, be that on the left-hand side of

Valid Syntax: In General 57

an assignment statement or inside of an expression. Following proper pro-
gram design principles, validityCheck dispatches to auxiliary functions that
deal with declarations, statements, and so on. And this implies that these
auxiliary functions need to communicate which variables have been de-
clared. We can express this relationship with two sketched signatures:

// check that variables in a piece a program are declared
validityCheckOfPieces
ASTforPiece- Set<Symbol> -> ASTforPiece

// determine the set of declared variables
// ensure that declarations are valid
validityCheckOfDecls

ASTforDecl ... —-> ASTforDecl+ & Set<Symbol>

The first signature says that checking pieces of a program—say, statements—
requires knowledge about which variables have been declared. We use sets
of variables to represent this knowledge. The second one is for a function
that processes variable declarations. It clearly needs to return the set of
variables it finds. But, as the next section shows, even variable declara-
tions may be invalid, which is one reason why it also returns a potentially
annotated abstract syntax tree.

(define (main)
(define s (program->ast (read)))

;; STATIC

(define parsed (program->ast s))

(unless (plain-ast? ast-well-formed)
(error "well-formed program expected"))

(define valid (closed-program parsed))
(unless (plain-ast? valid)
(error "valid program expected"))

;; DYNAMIC
(runMachine valid))

Figure 12: Language implementations consist of many passes

Now that we have parsers, validity checkers, and a machine, it is time
to adapt the main function from figure 5 to cope with them all. Figure 12
explains how this composition works. The function reads an S-expression
from the standard input device, followed by two traversals of the program:

Remember that
keywords merely
separate S-expressions
that play one kind of
code from those that
play others.

58 Section 3

parsing and validity checking. Each traversal is followed by a conditional
that sends an error signal to the caller unless the result of the traversal is an
abstract syntax tree without error nodes. If both of these traversals succeed,
main uses runMachine to determine the result of the well-formed and valid
program—either a number or an error message.

The figure also indicates a bit of terminology concerning language im-
plementations, meaning executable models, interpreters, or compilers. Each
such implementation consists of two parts: a static one and a dynamic one.
The static part always comes in the shape of a series passes, each of which
checks some properties and potentially computes information about the
given program. Furthermore, pass n + 1 always consumes the results of
pass n and relies on the properties it has checked. The dynamic part con-
sists of just the semantics, that is, a piece of functionality that consumes
well-formed and valid programs to determine its value. While our mod-
els use abstract machines, a proper implementation typically realizes this
functionality via a combination of hardware and software.

Going forward, this book will present additional static passes and sig-
nificantly richer abstract machines than the CS or CSK machine. In this
chapter still, we also explain how static checks eliminate dynamic checks.
Put differently, the construction of an abstract machine—or the code sent
to hardware—may assume that the success of the static passes and that the
corresponding properties hold. Indeed, this is also true for the communi-
cation between the language implementation and the IDE; it, too, can use
information gathered from static passes to assist the programmer.

3 Valid Syntax: An Example

Let’s illustrate the abstract explanation from the preceding section with an
extension of the Sample language that comes with variable declarations:

Program (Declaration® Statement™® Expression)
Declaration ::= (def Variable Expression)

Statement ::= (Variable = Expression)

Expression =1 | 2 | 3 | Variable | (Variable + Variable)

The symbol ‘def' is not a variable.

We keep referring to this language as Sample. Its programs are still a single
S-expressions, though this one consists of up to three pieces: a potentially
empty sequence of variable declarations, followed by a potentially empty
sequence of (assignment) statements, wrapped by a single expression. The

Valid Syntax: An Example 59

addition of a production for Declarations is the only new part. It uses one
additional keyword: def, similar to the keywords in Bare Bones. And like
the grammar for Bare Bones, the grammar for Sample does not permit pro-
grammers to use def as a variable name.

Here are the two sample programs from the preceding chapter modified
to satisfy the Program production of the Sample BNF:

well-formed, valid well-formed, invalid

((def a 1.0) ((def a 1.0)

(def b 2.0) (def b 2.0)

(def temporary (a + b)) (def temporary (a + b))
(def ¢ (a + temporary)) (def ¢ (a +))
(temporary = 3.0) (temporary = 3.0)

(c + temporary)) (c + temporary))

A comparison with the preceding chapter tells us that the first three assign-
ment statements have been changed to variable declarations, which consist
of a symbol and an Expression. The box around temprary, the misspelled vari-
able inside the addition expression, indicates where an IDE should flag the
code as invalid.

Stop! Formulate a well-formed and valid program whose sequence of
variable declarations is empty.

Stop! Did you notice that it is a variable declaration that is invalid?

What the right-hand column illustrates is something that the abstract
explanation of the preceding section could only allude to, namely, that a
variable declaration may be well-formed but invalid. In the case of Sample,
a variable declaration consists of a name and an expression. The latter may
refer to variables—and those variables should already be declared.

The word “already” points back to the word “sequence” (of variable
declarations), which implies order. So, if a programmer writes

((def oneVariable 1.0)

(def anotherVariable 2.0)

(def andAThirdVariable (oneVariable + anotherVariable))
L)

then the validity checker inspects one such declaration after another. In
this particular example, the first declaration checks out because there are no
variables on the right-hand expression; the second one is valid for the same
reason. Key is that each declarations contributes one variable to the set of
declared ones. Hence, right before the validity checker inspects the third
declaration the set of declared variables is {oneVariable, anotherVariable}. The
checker’s next task is to look at the expression part of the third declaration,

60 Section 3

which is an addition expression. Such expressions consists of two variable
references separated by +. For each of these variables, the validity checker
must clarify whether they are already in the set of declared variables. For
this example they are, and therefore the checker blesses this sequence of
declarations.

o0 sample-1.rkt - DrRacket

sample-1.rktv (define ...) v @ P p| #'>! Runp Stop™

1: sample-1.rkt

Sample | E=a
((def oneVawjable 1.0)

(def
(def

(def

oneVafiable)

Language: Sample, with test coverage [custom].
6.0
>

All expressions are covered ¥ Show next time? ®

Determine language from source [custom] v 1:12 507.15 MB D @

Figure 13: Binding in the Sample language

Our explanation immediately raises the question whether it is accept-
able that such a sequence contains two declarations for the same variable.
Here is a corresponding modification of the running example:

((def oneVariable 1.0)
(def anotherVariable 2.0)
(def andAThirdVariable 3.0)

(def oneVariable (oneVariable + andAThirdVariable))

-)

And the answer to this question is “it is up to the language creator.”

Valid Syntax: An Example 61

Some creators disallow duplicate variable declarations; others accept
them; and in some languages one form of variable declaration is made for
duplicate declarations and a different one prohibits them. For illustrative
purposes, the Sample language accepts duplicate variable declarations, and
figure 13 illustrates with a screenshot what this means.

The program in the figure starts with the very sequence of declarations
under discussion and adds an assignment statement plus a final expres-
sion. The arrows indicate how variable references are resolved. While the
first declaration of oneVariable points to the occurrence in the expression of
line 7, the second declaration—on line 7—points to three occurrences be-
low: one on the left-hand side of the assignment, one on the right, and one
in the final expression. The technical term for this relationship among vari-
able declarations and variable occurrences is binding; that is, people say the
occurrence inside the expression is bound by the first declaration and the
occurrences on lines 9 and 11 are bound by the second declaration.

#; {type Prog =

(U Err
(struct prog (prog
[declarations List<Decl>
statements List<Stmt>
end]) Expr))}
#; {type Decl =
(U Err
(struct decl [var rhs]) (decl Symbol Expr))}
#; {type stmt =
(U Err
(struct ass [lhs rhs]) (ass Symbol Expr))}
(struct expr []) #; {type Expr =
(U Err
(struct num expr (n)) (num N)
(struct ref expr (name)) (ref Symbol)
(struct add expr (left right)) (add Symbol Symbol))}
#; {type Err =
(struct err (msg)) (err String)}

Figure 14: An AST data representation for Sample with declarations

3.1 The Implementation

Figure 14 displays the adaptation of our AST data representation to Sample
enriched with variable declarations. It comes with one new struct type, decl,

The screenshot is for
an implementation of
Sample, with the
DrRacket IDE tailored
to this implementation
via the first line.

62 Section 3

and a corresponding type-like comment. The prog struct type has one ad-
ditional field, declarations, which is going to contain the AST representation
of the sequence of declarations. Otherwise, the AST data representation is
like the one in figure 4; a quick comparison may help.

#; {Prog- -> Prog}
(define (closed-prog prog-)
(match-define (prog decl-x stmt-* expr-) prog-)

(define-values [declx declared] (closed-declx decl-x ’"[] (set)))
(define stmt* (closed-stmt* stmt—* declared))

(define expr (closed-expr expr- declared))

(

prog decl* stmtx expr))

#; {List<Decl-> List<Decl> Set<Var.> -> List<Decl>, Set<Var.>}
;; accumulate the declared variables, checked declarations
(define (closed-decl* ast-decl* decl-* declared) ...)

#; {Decl- Set<Var.> -> Decl Set<Var.>}
(define (closed-decl ast-defl declared) ...)

#; {List<Stmt-> Set<Var.> —-> List<Stmt>}
(define (closed-stmtx ast-stmtx declared) ...)

#; {stmt- Set<var.> -> Stmt}
(define (closed-stmt ast-stmt declared) ...)

#; {Expr- Set<Var.> -> Expr}
(define (closed-expr ast-expr declared) ...)

Figure 15: A validity checker for the Sample language

The chosen AST representation drives the design of the validity check-
ing functionality. Since there are five kinds of AST nodes, the validity
checking functionality consists of (at least) five functions or methods: one
per kind of AST. Furthermore, the function for programs is the entry point
and can thus serve as an overview of the complete piece of functionality.

So take a look at the top-most function definition in figure 15. It uses the
name closed-prog, because programming-language researchers say a “pro-
gram is closed” if all variable occurrences refer to a variable declaration.
Because this function consumes an error-free AST—ast-prog—it suffices to
match it against the only kind of struct instance of Prog-. The result of this
match are the three pieces of an AST for a program: the list of declara-
tions, the list of statements, and the final expression. Each of these pieces is
processed in turn, yielding ASTs that potentially contain error nodes when

Valid Syntax: An Example 63

undeclared variables are discovered. The last line of closed-prog assembles
these pieces back into a complete prog node.

Of the three processing steps of closed-prog, the one concerning declara-
tions is the only interestng one. A sequence of declarations contributes not
one, but two results to the overall check: (1) the declared variables and (2)
the results of checking each declaration. The signature indicates this insight
with two kinds of data on the right side of the -> marker:

#; {List<Decl-> List<Decl> Set<Var.> —-> List<Decl>, Set<Var.>}
;; accumulate the declared variables, checked declarations
(define (closed-decl* decl—-x declx declared)
(match ast-decl=
["[] (values declx declared)]
[(cons decll- others)
(define-values (decll declared++)

(closed-decl decll- declared))
(closed—-decl* others (snoc decl* decll) declared++)1]))

Note the distinction between the first input—List<Decl->, a list of error-free
ASTs—and the first result—List<Decl>, a list of ASTs that may contain error
nodes. Returning such ASTs is necessary so that the IDE can inform pro-
grammers of the kinds of mistakes that the beginning of the section illus-
trates. The closed-decl* function traverses the list using a match conditional.
When the list is empty, it returns the ASTs and the set of declared variables
as a tuple of two values. Otherwise, it processes the first declaration and
then “loops” over the remaining ones.
The last building block of interest is the function that deals with an in-

dividual variable declaration:

#; {Decl- set<vVar.> —-> Decl, Set<Var.>}

(define (closed-decl decll declared)

(match-define (def x rhs-) decll)

(define rhs (closed-expr rhs- declared))
(values (def x rhs) (set-add declared x)))

It deconstructs the given declaration into the variable and the right-hand
side of the declaration. The latter is an expression that may contain one or
two variables. The closed-expr function checks that these variables are de-
clared and, if not, constructs an AST with appropriate error nodes. In turn,
closed-decl combines whatever AST closed-expr returns with the declared vari-
able into a new AST: (def x rhs). The function’s result is a tuple of two values:
the potentially revised AST and the set of declared variables enriched with
the variable found in the given declaration.

All remaining functions for validity checking in figure 15 are much
more straightforward than the two concerning variable declarations. Stop!

64 Section 3

Take a look at the figure and try to sketch the last three functions, which
are specified via signatures and meaningful names.

o0 sample-undefined-x.rkt - DrRacket
sample-undefined-x.rktv (define ...) v @ ”p| #'>! p Stop™
1: sample-1.rkt 2: sample-undefined-x.rkt

#lang Sample

((def oneVariable 1.0)
(def anotherVariable 2.0)
(def andAThirdVariable 3.0)

1
2
3
4
5
6

(def oneVariable (oneVariable + |notDeclareddVariable))

(oneVariable = (oneVariable + oneVariable))

o
o Voo

oneVariable)

sample-undefined-x.rkt:7:33: notDeclareddVariable | Jump to Error (35.) R

Determine language from source [custo... v 7:33 536.85 MB D 3

Figure 16: Undefined variable errors in an IDE for the Sample language

3.2 The Implementation for an IDE or Compiler

Take a second look at figure 13. Arrows in this figure indicate which vari-
able declaration binds which variable occurrence. Question is how an IDE
can know where to anchor these arrows and where to point them to. Now
take a first one at figure 16. It shows how an IDE for Sample highlights a
variable occurrence without a corresponding variable declaration. Again,
the question is how an IDE can highlight this part of the program text. Fi-
nally figure 17 illustrates yet another case when an IDE clearly needs more
than the plain AST data representation of this book: a name refactoring tool
for the Sample language.

An IDE needs an abstract syntax representation that includes the data
representations of the essential pieces of some program text and the source

Valid Syntax: An Example 65

Rename “anotherVariable” to:

Cancel

Figure 17: Name refactoring for the Sample language

locations of all these pieces. For example, the DrRacket IDE for Sample
records the line of each piece of plain text in an AST node and the column.
In order to perform a decent job with drawing arrows between variables,
the IDE also records the span of the names. Even plain compilers that wish
to report syntax and validity errors in a productive manner need to include
such information in their data representations.

Put differently, we once again expose the difference between a model
of some aspect of languages and an actual realization of the same aspect in
the tool chain that software developers actually use. While the executable
model suffices to gain an understanding of what, for example, validity
checking means, the reader must keep in mind that it is just that: a model.

While the presented
argument is informal,
it is sufficiently
rigorous and a
theoretician of
programming
languages could turn
it into a mathematical

proof.

66 Section 4

4 Static Checks Eliminate Dynamic Checks

Checking the validity of a Sample program with declarations comes with
the additional benefit of simplifying the machine. Recall the CS and CSK
machine designs from the preceding chapter. In both cases, the machine
has to have transitions for the cases when variables don’t have a value in
the store yet. Return to figure 10, and inspect the right column. It presents
two pairs of transitions for evaluating expressions: each pair consists of a
“success” and a “failure” case.

The addition of variable declarations to Sample and checking them be-
fore the program is handed to the abstract machine eliminates the need for
these case distinctions. All variable declarations precede all the program’s
statements and final expression. The expressions in the sequence of vari-
able declarations may refer only to already declared variables. Finally, each
variable declaration immediately associates a value with the declared vari-
able, so that all variable references are guaranteed to have a value in the
store register S of an abstract machine.

search for expression, place value evaluating expressions
Control Store Kontinuation Control Store Kontinuation
search ends with return expression evaluate a variable
before: 1 s ([1e) before: 'y s k
after: e s ([1e) after: n s k
where n = s[y]
search ends with right-hand side of assignment evaluate an addition
before: 1 s ((x = ex):stmt* e) before: (y + z) s k
after: ex s ((x = ex)::stmt* e) after: + s k

value for right-hand side of assignment

before: n 3 ((x = ex)::stmt* e)
after: s[x=n] (stmt*e)

Figure 18: The CSK transitions for well-formed and valid Sample programs

Figure 18 presents the CSK transition function for well-formed and valid
Sample programs. Take a close look. The machine comes without transitions
for variable declarations. Once the checker confirms an AST’s validity, one

Project Language: Declared 67

can think of variable declarations as just assignment statements in this sim-
ple case of Sample. In other words, a simple rewrite of all def into ass nodes
turns the AST into a program that can run on the simplified CSK machine.

Stop! Design and implement an AST traversal that performs this rewrite
for your data representation.

5 Project Language: Declared

Let’s expand on the Bare Bones project from section 5. This section’s Bare
Bones language extends Sample with conditionals and loops. Just as with
the latter language, Bare Bones programs may contain variable references
that have no value in the CSK store (of exercise 4).

Program ::= (Declaration®* Statement*® Expression)
Declaration ::= (def Variable Expression)
Statement (Variable = Expression)

(1f0 Expression Block Block)
(while0 Expression Block)

Block = Statement
| (block Statement™)
Expression GoodNumber

| Variable
| (Variable + Variable)
| (Variable / Variable)
| (Variable == Variable)

The set of Variables consists of all Names, minus keywords.

The set of GoodNumbers comprises all inexact numbers
(doubles) between -1000.0 and +1000.0, inclusive.

Figure 19: The concrete syntax of the Declared language

Figure 19 presents the BNF for the Declared language, which extends
the grammar for Bare Bones with variable declarations. Only the first two
productions differ; the remaining ones are adapted as is.

The following exercises guide you through the process of adapting the
executable model for Bare Bones to this new language.

68 Section 5

Exercise 5. Your task is to enrich your AST data representation for Bare
Bones from exercise 1 and the parser to accommodate the variable declara-
tions of Declared.—The parser maps an S-expression to an instance of AST,
an abstract syntax tree that may contain error nodes.

Exercise 6. Design and implement a validity checker for Declared using
the AST representation you chose for exercise 5.

Exercise 7. Design and implement a function that replaces all variable
declarations with assignment nodes in a Declared program AST.

Exercise 8. Your task is to simplify the CSK machine for Bare Bones for
running only well-formed and valid Declared programs.

Exercise 9. Modify the main function from figure 12 so that it can run
the entire process of parsing, validating, and determining the meaning of a
Declared program.

