CHAPTER IX MIXING TYPED AND UNTYPED CODE

Why are Rust and TypeScript more liked than C++ and JavaScript?

1 The Pragmatics Question

Time and again, a start-up picks an untyped programming language, say
JavaScript or Python, to get off the ground quickly, including languages
lacking in type-notation expressiveness, say C++. Rumor has it that such
languages are good for the initial building process. Yet, as the company
grows and recruits additional software developers, the lack of types or type
expressiveness becomes noticeable.

People then recognize that typed languages facilitate the “maintenance”
of code. As the preceding chapter explains, explains type systems—sound
and unsound—can assist developers in a range of work situations, includ-
ing what is commonly called maintenance. Properly understood, mainte-
nance denotes variants of every single work situation: adding code means
design and code creation; it means adapting the code base to cope with
new forms of data; it means equipping the code base with additional func-
tionality; it means documenting the interfaces of components; and so on.
At each stage, types and type checking helps.

Without checked types, the on-boarding process becomes a painful ex-
ercise. New developers do not know which kinds of objects come with
which methods; they have to look at the component’s informally docu-
mented interface or the code, because the IDE cannot display a matching
menu. They do not know the signatures of these methods, and once again,
the IDE cannot help with a method-call template. The informal nature of
component interfaces poses another problem: even though these informal
signatures make up an appropriate use of comments, they easily get out of
sync with the code. When the underlying machine finally signals a mistake
because some primitive computational operation fails, these new develop-
ers may have to search for the bug in their own code and in the old code.

194 Section 1

Concretely, these problems show up in different shapes and forms. Most
programmers know that JavaScript illustrates these problems well. Even
with all the enhancements of the last two decades in place—especially the
addition of classes and modules, plus validation modes—developers strug-
gle with adding functionality to its code base. Developers embrace its
typed sibling—TypeScript—as soon as it appeared.

Another example is C++. It comes with a type notation and a type
checker, though the former lacks expressive power and the latter is un-
sound. While the preceding chapter indicates in which work situations
sound type checking helps, the type notation’s lack of expressive is an alto-
gether different problem. Since C++ is a language that permits developers
to directly manipulate memory addresses—known as pointers—you might
expect that the type system enables developers to articulate their thinking
about pointers. For example, the type notation should allow the creator of
one component to communicate to the creator of another who is respon-
sible for marking an address as no longer in use, if both have access to it.
Similarly, it should empower developers to articulate which of two concur-
rent components may modify the content of an address. The C++ language
lacks this power, however. Unsurprisingly, Rust is taking this area of the
software development by storm, precisely because its type system has the
appropriate expressive power.

In short, the emergence of TypeScript and Rust demonstrate how lan-
guage creators can address these pragmatic problems of working develop-
ers. The key is to come up with sibling language that (1) comes with an
expressive type systems and (2) supplies an interface for the smooth inte-
gration of code in both languages. This chapter covers the relatively sim-
ple case of combinations that mix untyped and typed languages, such as
JavaScript with TypeScript. For the case of strengthening type systems, say
C++ and Rust, please consult the relevant literature or blogs.

1.1 Design Choices

Language researchers recognized many decades ago how untyped code
disadvantages developers as a code base grows. Since then, they have come
up with a number of solutions. Here are three distinct approaches with
different motivations:

¢ Going back to the 1980s, the Common Lisp language implements an
optional typing approach. A developer may declare types in various
places, but they are essentially hints to the compiler or the IDE. In

The Pragmatics Question 195

other words, these tools trust any annotations and use them as ap-
propriate.

* Historically speaking, the idea of soft typing comes next. A soft-type
system supplements an existing language syntax. It typically does
not come with a type notation that developers can use. Instead, it
infers types and presents the results in a notation that the soft-type
system creator considers appropriate. A soft-type system may still
come with tools that assist developers with, say, understanding why
a function supposedly has a particular domain or range type.

* Migratory Typing is the most recent and the most successful approach
at the moment. Given some untyped language, language creators
create a sibling language that is syntactically similar to the original
one but comes with a type system. Indeed, once the type annotations
are removed from a program in the sibling language, the result is a
valid code in the original language.

You may wish to consult the literature and the blogosphere for additional
ideas in this realm.

What makes migratory typing so successful is a synergistic combination
of factors. The adjective “migratory” tells us that it is all about moving from
one place to another. First, language creators wish to enable a smooth mi-
gration of code from the untyped world to the typed one. When software
developers notice that a growing code base suffers from a lack of types,
they may wish to migrate existing any piece of code that needs to be mod-
ified. This piece might be an expression or a module, but no matter what,
the type system should pose as few obstacles as possible. Put differently,
the type system should accommodate the idioms of the original, untyped
language—for the ease of code migration from one language to another.

Second, as already mentioned, when a language has been in use for
decades, software developers have created a large body of re-usable com-
ponents, frameworks, and libraries. They will want a simple way of access-
ing these untyped components from newly created typed code, and they
want to make sure that this access is in sync with the type annotations. A
common solution is to provide a mechanism for specifying type interfaces
for untyped code in a post hoc manner.

Finally, language creators also apply “migrate” to the software devel-
opers themselves. Imagine developers who have spent many years or even
decades working with the untyped language. Although they may not want
to migrate existing and working code it is easy to imagine that they want

Experienced
developers know that
touching code often
means enbugging it.

196 Section 1

assistance from a type system. Since these developer are used to certain
idioms, one non-starter would be to force them to change their coding
style just to accommodate the type checker. Once again, the type system
must accommodate the idioms of the original, untyped language as much
as possible—for the sake of developers.

The creators of Typed Racket and, a decade later, TypeScript recognized
the critical nature of these factors and took them as objectives of their re-
spective designs. Unsurprisingly, the resulting type systems resemble each
other in some ways, and they differ in others. Both achieved the first and
third objective in a reasonable manner, relative to the starting points. When
it comes to the second one, however, the two designs differ radically.

When it comes to interactions between typed and untyped code, Typed
Racket aims to satisfy the academic goal of achieving the highest degree of
soundness. By contrast, the TypeScript documentation advertises that the
language is essentially just JavaScript. More precisely, the two language
designs implement two radically different semantic choices:

* The TypeScript approach is to validate that the types accurately de-
scribe the code in the typed component and, once this is done, to
throw away the types. Clearly, this approach is unsound, because
typed code interacts with untyped, and thus unchecked, code.

¢ The Typed Racket approach is to validate the typed component using
the post hoc type specifications for an untyped component as given.
Next it compiles these post hoc types into run-time checks at the bound-
ary between typed and untyped pieces. If these checks discover a
non-conforming value, this value is a witness to a concrete violation
of the specified type. To alert the developers, the semantics assigns
an error to the combined system .

Both of these solutions have distinct costs and benefits, for both software
developers and language creators. It’s time to consider those next.

1.2 Costs and Benefits

A migratory typing system shares the goals of a plain static type system,
but it is clearly more complex than the latter. On the design side the com-
plexity mostly shows up in the derivation rules, but, if a high degree of
soundness is desirable, the translation from types to run-time checks re-
quires quite some sophistication to keep the cost in check. On the usage
side, the complexity appears in two forms. Even though the design of the

The Pragmatics Question 197

type system aims to accommodate the idioms of the underlying untyped
language as much as possible, developers still face a steep learning curve
to get their code to pass the type checker. Furthermore, when developers
impose a typed interface on existing untyped code, they invariably make
mistakes, and someone has to cope and fix these mistakes later. Let’s take
a close look at the two sides.

From the perspective of a software developer, a migratory type system
means that each piece code could live in either world: typed or untyped. As
long as the developer works in the typed world, a migratory type system
comes with all the same costs and benefits as a plain static type system:
a decrease in expressiveness, support from the type system during most
work situations, and so on. It all differs as soon as both languages are
involved, and the difference has two major aspects.

The first difference concerns the interaction between typed and un-
typed code. If a developer wishes to use an untyped framework in typed
code, it does not suffice to import it without ado. Otherwise the type
checker does not know how to validate calls into the framework and re-
turns from there, not to speak of higher-order uses. That is, the developer
must find or create a typed interface for the imports from the framework.

Since these useful frameworks have typically evolved over a long time,
they tend to consist of large amounts of code, and their creators may be
retired or even deceased. The combination of these two factors means
that the creation of such typed interfaces is a significant amount of labor.
Both factors also make it difficult to come up with correct type signatures
for the exported pieces of functionality. As a result, such post hoc inter-
faces tend to come with numerous errors, that is, with types that fail to
accurately and correctly describe the presumably well-tested and exercised
framework code. For an illustration of this point, find the on-line repos-
itory called, Definitely Typed, which is a collection of typed interfaces for
JavaScript libraries that are used in TypeScript code. Visit some of the files
to see how large they are. And check out the GitHub issues—closed and
open—to get a sense of how many errors people have already discovered.

Bugs in these types may manifest themselves long after the release of
their containing interface (files and components). Let’s make this precise.
Suppose the framework supplies a function that supposedly returns an in-
teger but, for the given inputs, actually produces a string. Nothing pre-
vents such an event, because the type checker does not validate untyped
code. What happens next depends on whether the combined language
comes with (1) run-time checks at the boundary, (2) run-time checks in the
underlying semantics, and (3) none of these. In all cases, the task of dis-

198 Section 1

covering the bug and locating it, is left to the developer who imports the
framework—and this is usually neither the developer of the framework nor
the developer of its typed interface. Obviously, the very possibility of such
events happening must count as a potentially large cost.

The second difference between a migratory type system and a plain
static one is about expressive power. While it is true that types restrict what
a programmer can say, a migratory typed system offers the best of both
worlds in this regard. If a developer notices that the type checker cannot
validate a particular kind of code, an escape to the untyped world solves
the problem. Escape means, of course, that the developer must create an
interface between the two pieces. But, unlike in the case of existing libraries
or frameworks, in this case the creator of the typed code, the untyped code,
and the interface between them is one and the same person. In short, the
mixing of typed and untyped worlds via closely related programming lan-
guages offers a large benefit when it comes to the ease of turning ideas into
working code.

From the perspective of the language creators, the cost/benefit analysis
looks somewhat different. As mentioned, the creators must come up with
judgment derivation rules that accommodate existing idioms and, if they
want a sound type system, they must also develop a translation from types
to run-time checks.

Before the language creators can even develop a type notation—mnot
to mention derivation rules or type checkers—they must spend a good
amount of time studying how programmers have used the untyped lan-
guage in the past. These programmers don’t just create code in a haphaz-
ard fashion, hoping for the best. With any training, experience, or both,
they design code in a type-directed manner, just like the developers who
use a typed language. But, they are not constrained by a specific type no-
tation or by specific rules. Instead, they tend to think of sets of values and
this thinking can be recognized as type-like reasoning. Hence the designers
of migratory type systems must ask what “expressiveness” and “effective-
ness” mean in this context, and how to balance the two. Unsurprisingly,
this problem is by far the most complex language design problem men-
tioned in this book.

The semantic design choice—trust types or enforce them with run-time
checks—also poses a significant problem for language creators. No matter
what they choose, the result deeply affects the work of software developer:

¢ If they choose to throw the types away after validating them, they
shift work to the software developers. As explained, the mix of typed

A Type System for Untyped Languages 199

and untyped code is going to cause mismatches between the types
that specify an boundary and the values that cross the boundary.
The continuing computations are erroneous in an insidious manner.
Sometimes the problem is easy to discover, sometimes it takes quite
a while for people to recognize it. Since the unprotected boundary
provides no information about the mismatch, the work of discover-
ing where the mismatch is located, and how to fix it, is completely
left to the developer.

e If the language creators choose to compile types to run-time checks,
they clearly help developers with the discovery of bugs, but at the
same time, they create a different problem for the working develop-
ers. Every run-time check costs time and thus reduces the perfor-
mance of the program. Every run-time check may disable compiler
optimizations, costing additional time, space, and energy. A software
developer working on performance-critical code may not be able to
tolerate this kind of performance loss.

In sum, the design and use of a migratory type system comes with po-
tentially large costs and benefits. This chapter presents a model of both
a sound and unsound system; doing so naturally builds on the preceding
chapters. Once these designs are understood, we return to the discussion
of the above points in section 7. By contrast, the design of an accommodat-
ing type system is beyond the scope of this book; the next section supplies
a taste of what it means, without explaining how the type system works.

2 A Type System for Untyped Languages

The preceding section explains that a migratory type system must satisfy
two criteria: (1) It has to accommodate the idioms of the underlying, un-
typed language, and (2) it has to come with a mechanism for smoothly
integrating untyped code into typed code and vice versa. This section cov-
ers the two topics with two corresponding subsections, using Racket and
Typed Racket for this presentation. While the first one is somewhat or-
thogonal to the story of this book, the second one motivates the essential
elements of the models presented in the remaining sections of this chapter.

2.1 A Type System for Untyped Idioms

Existing Racket code repositories validate that Racket programmers mostly
think of types as sets of values. Their reasoning reflects naive set theory. If

A properly trained
developer would
replace these strings
with constant names
in both the types and
the code.

200 Section 2

they know a bit of advanced type systems, their signatures (in comments)
may use an existential quantifier to hide a type inside of a region; they may
resort to a universal quantifier to appeal to parametric polymorphism; they
may add dependencies between domains and ranges of functions; and so
on. Typed Racket accommodates most of these ideas, at a mostly reason-
able cost to the developer, as this section illustrates.

#lang racket #lang typed/racket

;7 A TLC is one of: (define-type TLC

i "red" (U "rad"

;7 — "green" "green"

;7 — "yellow" "yellow"))

#; (TLC —-> TLC) (: switch (TLC -> TLC))

(define (switch cc) (define (switch cc)

(cond (cond

[(equal? "red" cc) [(equal? "red" cc)
"green"] "green"]
[(equal? "green" cc) [(equal? "green" cc)
"yellow"] "yellow"]
[(equal? "yellow" cc) [(equal? "yellow" cc)
"red"])) "red"]))

Figure 67: Finite sets of values are types

The most basic way of “thinking of types as sets” reduces to an enu-
meration of a finite number of elements. Say a software developer’s charge
is to develop a controller for a traffic light that at any moment illuminates
either its red bulb, its green one, or its yellow one. Put differently, the state
of the traffic light is equivalent to its illuminated color. This analysis sug-
gests that a natural data representation of the traffic light is the finite set
containing the three obvious strings: “red”, “green”, and “yellow”. As the left
column of the figure 67 shows, the conscientious Racket developer writes
down this choice using structured English. The module in the figure also
comes with the switch function, which picks the bulb to be illuminated next.

The right column displays a conversion of this untyped module into a
typed one. First notice how the type definition directly mirrors the infor-
mal data representation with an actual union type (U) of three constants.
Second, the second use of a comment—the type signature of the switch
function—also has an immediate and easy-to-understand representation in
Typed Racket. Third, the body of the function definition remains the same,
because the type checker can validate the function’s signature against the

A Type System for Untyped Languages 201

original code. That is, the type system allows a direct expression of data
definitions as type definitions, and the type checker easily copes with func-
tion definitions for such simple examples.

Basic set operations make an appearance in almost every piece of code,
and the type system accommodates the most important ones, as the next
example demonstrates. Figure 68 presents two versions of the factorial as a
conscientious Racket programmer, or a properly instructed novice, would
write them. On the left we see the factorial function in plain Racket. Tt
comes with two appropriate comments: a signature and a mathematical
purpose statement. While the function definition itself matches the proper
mathematical definition, note that the module comes with a basic unit test
(written as a submodule). The right column of the figure presents a conver-
sion of the left-hand code into a Typed Racket module.

#lang racket #lang typed/racket
;; Natural -> Natural (: ! (Natural -> Natural))
;;nl =1 -2 - ... - n ;s =1 -2 - ... - n
(define (! n) (define (! n)
(if (= n 0) (if (= n 0)
1 1
(* n (! (= n 1))))) (*» n (! [(=n1)}))))
(module+ test (module+ test
(require rackunit) (require typed/rackunit)
(check-equal? (! 3) 6)) (check-equal? (! 3) 6))

Figure 68: Set differences between types confirm case-based reasoning

This second complete example already demonstrates some important
points. First, and as before, the function definition does not have to change.
As long as the programmer specifies a type that matches the function’s
code, the code can often remain the same. Second, the changes to the nota-
tion are simple. The programmer adds typed/ to the language-specification
line and the require specification for the unit-test library. Next, the signature
(comment) is turned into a type specification that associates the name of
the function ! with its type (Natural => Natural). Third, the type copies Natural
from the unchecked signature, and the type checker successfully validates
this type against the function definition.

A use Natural—instead of the conventional Integer—illustrates how pro-
grammers can reason in an untyped language. In the context of an ordi-

In Racket “1” really is
a function name.

202 Section 2

nary statically typed language, a programmer would use Integer to specify
the inputs and outputs of the factorial function, even though every discrete
mathematics textbook says that it is a function on N. A programmer who
uses an untyped language can go along with the textbook, as the signature
on the left of figure 68 shows. The signature informs readers that ! must
be applied to natural numbers, and the creator of ! must validate this con-
straint for the recursive call. Since n is larger than 0 in the else branch of
the conditional, (- n 1) is still a natural number, meaning applying ! to this
number is acceptable.

Racket’s type checker reasons in a similar manner. To start with, the
type system defines Natural as O or n + 1 for a natural number n. Further-
more, Racket’s migratory type system employs set-based reasoning via ba-
sic logical propositions. Thus, while n has type Natural in the conditional
check, (1) it can focus on 0 when the outcome of the check is positive, and
(2) it can subtract 0 from the type for the else case. Hence, by the time it
checks the framed expression, it may conclude that (1) n is positive and (2)
(-n 1) is still in Natural. In general, the type of a variable depends on where
it occurs within a nest of conditionals and whether the type checker can
convert conditions into propositions that narrow down the specified type.

Figure 69 illustrates this principle with a higher-order example. The fig-
ure again presents two columns with untyped and typed code. The framed
expression within the typed module is the focus of this example.

Take a look at the untyped module. Its purpose is to represent and
process shapes, concretely a mix of circles and squares. A structure defini-
tion is used to represent basic shapes; an informal data definition ties them
together into the (set of all) Shapes. The main function, area-of-just-squares,
consumes a list of Shapes and produces the area of all squares on this list.
It employs several higher-order functions: filter, map, and foldr. Of these,
the first one whittles the given list of arbitrary shapes down to a list of just
squares. Hence, the programmer can use map to apply a function for com-
puting the area of one square to all elements of this list—without any fear
of accidentally applying the structure-selector to the wrong kind of struct.

Although this code does not contain any conditional per se, it neverthe-
less demands a form of conditional reasoning from the programmer. Tech-
nically, the reasoning lifts the hidden conditional from filter and combines
it with square?, the given predicate. By combining the two, a programmer
may conclude that the remaining occurrence of sq* in the definition of area-
ofjust-squares has a narrower type than [Listof Shape], namely [Listof Square].

Now take a look at the typed module on the right side. This conver-
sion requires a bit more effort than for our first example, mostly due to

A Type System for Untyped Languages

203

#lang racket
#; (Shape = Circle or Square)

(struct circle (radius))
#; (circle r) ; r is the radius
;; r is REAL

(struct square (side))
#; (square s) ; s, a REAL, is
;7 the length of its side

#; ([Liston Shape] —-> REAL)

(define (area-of-just-squares s)
(define sqgx (filter square? s))
(define ar* (map sg-area sqgx))
(define sum (foldr + 0 arx))

;7 return:
sum)

#lang typed/racket

(define-type Shape (U Circle Square))

(struct Circle ((radius : REAL)))
#; (circle r) ; r is the radius
(struct Square ((side : REAL)))
#; (square s) ; s is its length

(: area-of-just-squares
([Listof Shape] -> REAL))
(define (area-of-just-squares s)

(define sqgx* (filter Square? s)j|)
(define ar* (map sg-area sgx))
(define sum (foldr + 0 arx))

;5 return:

sum)

#; (Square -> REAL) (:
(define (sg-area x)
(sgr (square-side x)))

sg—area (Sguare —> REAL))
(define (sg—area x)
(sgr (Square-side x)))

Figure 69: Set-based reasoning generalizes to higher-order idioms

the sloppy type definitions and signatures (in comments) of the untyped
variant. For example, the first data definition (comment) refers to Circle, an
undefined name. A future reader is presumably supposed to conclude that
the structure definition of circle introduces this type. During the conver-
sion of such a module into a typed one, a programmer must write down
definitions that properly refer to each other, which explains the change in
spelling of Circle and Square.

When it comes to the function definition of area-of-just-squares itself, the
type checker again validates the existing code against the associated type
without ado. It mimics the reasoning concerning the framed application of
filter. Typed Racket’s type for filter says “if the given predicate represent a
subset S of the given list elements, then the result is a list whose elements
belong to S.” Here, Square? is a predicate that does describe a subset of Shape,
namely the left half of the union, and therefore the resulting list contains
nothing but instances of Square.

Racket borrows object-oriented programming idioms from JavaScript
and Python:

204

Section 2

#lang racket

(provide add-search)

Pos =

(

#r
(Opt =
#

(

((Class

(Cons Natural Natural))
(Pos or #false))

([Listof Opt] or #false))

[the-text (-> String)])

->

(Class

[the-text (-> String)]

[search

(define

(> String Opt*)]1))

(add-search cls%)

(class cls%
(super—-new)

(inherit the-text)

#;

(String —-> Optx)

(define/public (search s)

(define txt (the-text))
(regexp-match-positions

s txt))))

#lang typed/racket ;; add-mixin.rkt
(provide add-search)

(define-type Pos

(Pairof Index Index))
(define-type Opt

(U Pos #false))
(define-type Optx*

(U (Listof Opt) #false))

(: add-search
(A1l (a)
((Class #:row-var a
[the-text (-> String)l)
->
(Class #:row-var a
[the-text (-> String)]
[search (-> String Opt=*)]1))))

(define (add-search cls%)
(class cls$%
(super—new)

(inherit the-text)

(: search (String —-> Optx))
(define/public (search s)
(define txt (the-text))
(regexp-match-positions
s txt))))

Figure 70: Object-oriented idioms need more than set-based reasoning

* Classes serve as factories for objects.

* A class may extend another class, but determining which class it ex-
tends is a semantic decision not a static one.

¢ A function may consume or return a class. Racketeers call such func-
tions mixins.

In other words, classes are first-class values in Racket.

By convention, names
ending in % refer to
classes.

Figure 70 presents a module that exports a (simplified version of a)
widely used mixin. The purpose of the mixin is to consume a class that
allows users to manipulate text, e.g., a message box or a program editor.

As documented via its signature, it makes one assumption about its ar-
gument, namely that it comes with a method called the-text and that this

A Type System for Untyped Languages 205

method returns a string. The mixin extends the given class that supports
all methods of the given one, plus a method that searches for a pattern in
the string extracted with the-text. More precisely, the new method returns
the positions where the pattern occurs in the string.

Writing down the mixin’s signature takes three auxiliary data defini-
tions: one for positions (Pos) within strings; another one for optional posi-
tions, in case the search for a pattern fails; and a final one for an optional
list of search results. The signature itself tells a future reader of this code
that the given class must have (at least) a method named the-text and that its
result still has the method plus a new one named search.

As the right column of figure 70 indicates, the signature is focus of this
example. The framed type signature looks much more complex than the
informal one on the left. Concretely it differs in two ways, both major:

* First, the All quantifier signals that the signature is parametric in some
parts, and a reader must pay attention to where these parts are.

* Second, the quantified type variable, a, denotes a row, that is, any
feature that a class type may mention: fields, methods, and more.

Put differently, turning the informal signature into a technically correct
takes both an understanding of a sophisticated notation and of universal
row polymorphism. Given this type, the type checker can validate an im-
plicit point of the untyped code: the mixin cannot rely on, or modify the
meaning of, anything but the the-text method. While the creator of the un-
typed code intended to issue this rather strong guarantee, Typed Racket
can statically validate it for the typed set of modules and can generate run-
time checks that guarantee the integrity of this statement at run time.

The presented example are illustrative but far from complete. Once lan-
guage creators have an initial design of a migratory type system, develop-
ers will ask for two kinds of refinements. First, some will argue that it
requires too many changes to untyped code to appease the type checker or
that it is impossible to appease it all but should be possible. Second, de-
velopers used to static type systems and their pragmatic advantages may
expect to find certain conventional type-system features that are incompat-
ible with a migratory system. As a result, the development of a migratory
type system is a never-ending refinement loop.

2.2 Integrating Typed with Untyped Code

Equipped with a sense of what it is like to program in Typed Racket, we
can now address the issue of mixing typed and untyped code. Since Racket

206 Section 2

modules specify the language of their content, the creators of Typed Racket
made the decision to “migrate” at the granularity of entire modules. This
decision implies that there are four kinds of module dependencies: the
original untyped-on-untyped plus the new typed-on-untyped, typed-on-
typed, and untyped-on-typed cases.

Of these four cases, only one poses a design problem to the type-system
creators, namely, the case of importing an untyped module into a typed
one. Since the type checker needs to know types for all names and since
untyped modules do not supply types for their export, Typed Racket sup-
plies one novel construct: require/typed, which, roughly speaking, enables
programmers to attach types to imported names.

Next, importing a typed module into another typed module is straight-
forward. The first module attaches a type to each exported name, and the
type checker can use this type for the validation of the second one. Con-
versely, since the type checker does not inspect untyped modules, export-
ing from a typed to an untyped merely means ignoring the types from the
exports in the importing one.

Let’s consider some concrete examples. Suppose a Typed Racket de-
veloper needs to create code that calls a factorial function. Further assume
that in the decades prior to the creation of Typed Racket, the Racket team
equipped its language with a discrete mathematics library that exports !,
the factorial function. Here is how the developer would go about import-
ing this one function from the untyped Racket library:

. lang typed/racket

(require/typed library/discrete-mathematics ;; imagined
[! (-> Natural Natural)])

(13)

This require/typed specification still refers to a specific module, but it also
lists all names that are to be imported into this module’s scope and, criti-
cally, their type. In this example, the type of ! is the same as the one in the
preceding section. Note, though, that a type of, say, Natural > Integer might
also work for this client module. That is, the type attached to imported
names is up to the developer of client code, not the developers who created
the library.

Things can get complicated, though, as the two columns of figure 71
show. On the left, this figure displays a simple data representation for
squares and circles, like the one in the preceding subsection. Both struc-
tures are exported wholesale, meaning the respective predicates, construc-

A Type System for Untyped Languages

207

tors, selectors, and so on. On the right, the figure displays a typed client
that recreates the area-of-just-squares function from figure 69.

#lang racket ; server.rkt

(provide
(struct-out square)
(struct-out circle))

#lang typed/racket ; client

(require/typed "server.rkt"
[#:0paque Square square?]
[#:0paque Circle circle?]

[square-side (Square —-> REAL)])

#; (Shape = Circle or Square)
(define-type Shape

(struct circle (radius)) (U Square Circle))

#; (circle r) ; r, the radius,
;7 1s REAL (: area-of-just-squares

([Listof Shape] -> REAL))
(struct square (side)) (define (area-of-just-squares s)
#; (square s) ; s, REAL, is L))

;7 the length of its side
(: sg-area (Square —-> REAL))
(define (sg-area x)

L)

Figure 71: Requiring structures from an untyped module

A sophisticated require/typed specification bridges the gap between the
two modules; see framed code. The first two imports name opaque types,
Square and Circle, respectively. Each such opaque type corresponds to a
predicate, here square? and circle?, respectively. The last import looks like
the one from the first example, bringing the square-side selector into scope
at type Square -> REAL. By connecting the untyped and typed module with
this require/typed specification, the developer can make the rest of the typed
module look just like the code in figure 71 (right column).

The last example brings us back to the world of modules and classes
from the model in the preceding chapter. Figure 72 displays two modules:
an untyped in the left column, a typed one in the right column. While the
first one sketches a simplistic multi-line text editor, the second combines
this text editor with the mixin from figure 70.

For the purpose of this chapter, the framed require/typed specification is
the relevant part of this example. It brings the text-editor% class into scope
of the typed module. Since the exporting module, on the left of the figure,
is untyped, the importing module must assign a type to the class so that
the type checker can validate the module’s code. The type specifies the

208 Section 3

#lang racket ; editor.rkt #lang typed/racket
(provide text-editor%) (provide searchable-text-editor%)
(define text-editor% (require add-mixin)
(class object%
(super—new) (require/typed editorn
[text-editor%
(field (Class
#; [Vectorof String] [field (text (Vectorof String))]
(text (make-vector LINES ""))) [text++ (-> Natural String Any)]
[retrieve—-all-text
#; Natural String -> Void (=> String)1)1)
;; add ‘c' to the end of
;i the ‘at' line ‘this' editor (define searchable-text-editor%
(define/public (text++ at c) (add-search text-editor$))

(define a (vector-ref text at))
(define b (string-append a c))
(vector-set! text at b))

#; —-> String
(define/public (retrieve-all-text)
(string—join (vector->list text) " "))))

Figure 72: Requiring a class from an untyped module

only field of text-editor% as a string-vector, and associates the two methods—
text++ and retrieve-all-text—the expected signatures.

By contrast, the import add-mixin refers to a typed module. Hence it is
unnecessary to use require/typed or to equip the imported name with a type.
Instead, Typed Racket can retrieve the type of add-mixin from its exporting
module. With both the editor and the mixin in scope, the module can create,
and export, a searchable version of this text editor by applying the latter to
the former.

Stop and take a second look at figure 72. This example serves as inspi-
ration for the model of the next section. Do not continue until you get a
good sense of how this example works.

3 Project Language: Mixed

Mixed is a model of modern languages with migratory type systems, such
as Flow, Hack, and TypeScript. Like all of our models, it deviates from
reality in some ways, and it resembles it in others. In order to build on the

Project Language: Mixed 209

models from the first eight chapters, the migratory type system of Mixed
exists at the module level, not inside of small pieces of code. Furthermore,
instead of forcing Mixed programmers to write “interface modules,” like
those found on TypeScript’s Definitely Typed repository, the model borrows
the idea of require/typed. Although the result is seemingly simple, it still
provide the opportunity to investigate the major semantic design decision
that creators of these language face.

The section presents Mixed following the outlines of the preceding sec-
tions: the grammar, the validity constraints, the additional judgment deriva-
tion rule, and a note on semantics. When language creators proceed sys-
tematically, they approach a design in a similar fashion.

3.1 Mixed: the Grammar

Figure 73 presents the essential productions of the BNF grammar of Mixed;
for all other productions, consult figures 46 and 47. A mixed system con-
sists of typed and untyped modules. The typed ones may import names
from the untyped ones and vice versa. In order to facilitate implementa-
tions of the model, the new keyword timport marks how a typed module
accesses the exports of an untyped module. As mentioned, we borrow the
idea of tmodule from Typed Racket, meaning it includes a Shape that specifies
the type that the type checker must use to validate the importing module.

MixedSystem ::= (MixedModule*
MixedImport®
Declaration®
Statement™®
Expression)

MixedModule ::= (tmodule ModuleName MixedImport* Class Shape)
| (module ModuleName Import* Class)

MixedImport ::= (import ModuleName)
| (timport ModuleName Shape)

Figure 73: Mixed: the Grammar

It is noteworthy how we can enforce certain contextual constraints via
this BNF and the use of distinguishing keywords. First, MixedIlmport shows
up only in the context of tmodule, i.e. an untyped module cannot impose a
type on an imported class. Second, the imports for the system’s body also

210 Section 3

belong to MixedImport, which implies that it is typed code. While this kind of
“grammar hacking” accomplishes some basic validity checking, it cannot
eliminate the context-sensitive validity checker in general.

Exercise 78. Design an AST data representation for Mixed. Implement
a parser for Mixed that maps an S-expression to an instance of AST. Re-use
your solution from exercise 51 as much as possible.

3.2 Mixed: Validity

Even though the BNF forces programmer to use timport only in the context
of tmodule, this constraint does not ensure that the given ModuleName refers
to an untyped module. Similarly, the grammar does not rule out the at-
tempt to import a typed module via timport. Finally, a sequence of MixedIm-
ports could contain two distinct timport specifications for the same untyped
module. In principle, this situation is acceptable but, to simplify the model
implementations, we rule it out.

Technically put, a Mixed system is subject to three structural validity
constraints:

¢ The typed portions of a system must import untyped modules via a
timport specification.

¢ The typed portions of a system may not import the same module using
two different Shapes.

¢ The typed portions of a system may not import a tmodule using a tim-
port specification.

Keep in mind that “typed portion” covers typed modules and the system’s
body consisting of declarations, statements, and the final expression.

Exercise 79. Design and implement a validity checker that enforces the
validity rules for Mixed. The checker consumes error-free ASTs from exer-
cise 78; if it finds errors it annotates the AST appropriately.

3.3 Mixed: Type Checking

The point of creating mixed systems is to connect typed and untyped pieces
of code; in the context of Mixed, this means connecting typed and untyped
modules. Hence, a type checker must validate that the types and the code
in the typed portions are in sync. Conversely, the untyped modules of the
same system do not have to satisfy any type judgment rules.

Project Language: Mixed 211

M is the name of mod in Modules
C is the name of the class defined in mod
[an import]

Modules, SClasses |- (timport M S) == SClasses [C : 5]

Figure 74: Deriving the key judgment for mixed systems

Given this objective, the adaptation of the type judgment rules from
chapter VIII is straightforward:

e The adaptation of the rule for type checking complete systems, see
figure 51, must ignore untyped modules.

¢ The import of an untyped module into a typed one calls for the addi-
tional type judgment rule of figure 74.

In sum, and as advertised at the beginning of this chapter, the Mixed
model is a rather small extension of Module from a syntactic point of view.
By implication, the type system of Mixed does not accommodate the pro-
gramming idioms of Module; it imposes the same limitations on typed por-
tions as the model of the preceding chapter. The goal remains to investigate
the semantic choices in the design of Mixed.

(module A (tmodule clientA (tmodule clientB
(class A () (timport A (timport A
(method 'id(x) -0 (O]
x))) ((id (REAL) ((id ((((x REAL)) ()))
REAL)))) (((x REAL)) ())))))

Figure 75: Two types for the same exported class

Exercise 80. Figure 75 consists of three columns:

¢ The left-most one displays the untyped module A, which exports a
class named A.

¢ The middle column shows how to import module A at one type.

212 Section 3

* The module in right-most column imports module A at a different
type.

Argue why the type checker should accept both timports or reject them.

Exercise 81. Adapt the type checker from exercise 62 to perform a com-
plete type-checking pass for Mixed. The type checker should merely sig-
nal an exception when it discovers a type violation. Each such exception
should come with an error messages that assist the Mixed programmer with
the task of repairing type errors.

3.4 A Note on Types and Semantics

According to exercise 80, two distinct modules can legally import the same
module with two distinct types. Similarly, a module can import another
module using a type that the type checker would reject. Figure 76 illus-
trates this point with the same exporting module as figure 75, but with an
importing module that assigns a invalid type. That is, the type checker
would reject this combination of exported class with importing type.

(module A (tmodule clientA
(class A (timport A
(method id(x) (0
X))) ((id (REAL)
(((x REAL)) ())))))

(class clientA ()
(method di() (new A())))

0
((di ()

((id (REAL)
(((x REAL)) ()))))))))

Figure 76: The wrong type for an exported class

Stop! Convince yourself that the type checker rejects a typed variant of
module A if it is equipped with the framed type inside of clientA’s import.

Exercise 82. The following code fragment completes the two modules
of figure 76 into a full Mixed system:

Semantics: The TypeScript Approach 213

(import clientA)

(def a (new A()))
(a ——> di())

Does this system type check? If so, explain how. Otherwise explain why
the type checker rejects this system.

The exercise raises the question of what should happen with a Mixed
system that type checks even though the type assigned to a class imported
from an untyped module is a mismatch. As alluded to in this chapter al-
ready, this question leads to a semantic design decision, and as it turns out,
different language creators give different answers to this question.

4 Semantics: The TypeScript Approach

TypeScript advertises itself as a form of JavaScript. Concretely, its web page
says “TypeScript becomes JavaScript via the delete key.” What this means,
is straightforward. once the type checker has confirmed the validity of the
types with respect to the typed portions of the code, the TypeScript imple-
mentation traverses the given code, erases the types, and generates a plain
JavaScript program.

Modeling TypeScript’s semantics with our models is equally straight-
forward. Every tmodule of a Mixed system becomes a plain module; the type
of the former simply disappears. Similarly, every timport specification be-
comes a import by erasing the type from the former. The resulting code is a
well-formed and valid an element of the Module model.

Exercise 83. Your task is to implement the “erasure” pass, which turns
a Mixed system into a Module system.

5 Semantics: The Typed Racket Approach

In contrast to the industrial TypeScript team, academic researchers have
spent two decades exploring different flavors of sound semantics of migra-
tory type systems. The goal of these efforts is to notice when a value flows
from an untyped portion of the code into the typed portion, or vice versa,
but does not match the specified type.

For example, if the di method in figure 76 not only created an instance of
A but also called the instance’s id method on some number, id would return
the very same number, which does not match its return type specified in

Typed Racket was the
first language to
implement a complete
solution.

214 Section 5

the framed timport type. If such a value flow takes place in a TypeScript
program compiled to JavaScript, it is unclear what will happen; academic
language designs aim to catch such type mismatches and inform the software
developer of them.

The stated goal allows many different implementations. Each imple-
mentation notices type mistakes at slightly different times. This section
presents an implementation that approximates Typed Racket’s solution,
but deviates from it in some ways. In essence, the Typed Racket solution is

¢ to check basic values, such as numbers or strings, when they flow
from an untyped to a typed portion of the code or vice versa; and

¢ to wrap objects so that it becomes possible to check every access or
mutation of the value according to the specified types.

For simplicity, the semantic model of this section leverages the exis-
tence of the linker to manifest the boundaries between typed and untyped
portions. Concretely, the linker is used to clone an untyped module if it
is subject to a timport in the context of typed code. This clone comes with
a type but is not type checked; after all, type checking takes place before
the linker kicks in. Finally, the section presents a modified CESK machine,
which creates simple proxy values when a class from a tmodule is instanti-
ated. This proxy value monitors all interactions between the object and its
use contexts, and when a type mismatch is discovered, it causes the ma-
chine to halt execution.

5.1 Linking in Mixed-Type Setting

The stated semantic goal of wrapping all instances of typed classes in a
protective cocoon poses a problem. While the class definitions inside of
typed modules obviously give rise to typed instances, the import of un-
typed classes into typed portions of a Mixed system implicitly creates typed
classes. After all, the type checker validates the type portion as if the un-
typed module were type-checked, too. If the semantics is supposed to en-
sure that all instances of typed classes behave, and are used, in accordance
with their type specification, it must be informed of this implicit conversion
of an untyped module into a typed one.

At this point, you might wonder why we cannot just use the types in
timports to equip the untyped modules with types. Doing so would convert
them into typed modules, and the semantics could generate the desired

Semantics: The Typed Racket Approach 215

wrapper. It turns out, though, that this idea really is too simplistic. As fig-
ure 75 demonstrates, the two distinct typed modules can import the same
untyped module at two distinct types without violating validity or type
constraints.

Instead of imposing additional validity constraints, we make the addi-
tional linker pass work harder. To differentiate this new linker from the
one in chapter VII, we call it a sound linker. Its purpose is to translate a
well-formed and valid Mixed system into a well-formed and valid Classy
program, using the old linker pass and two new ones:

1. For every occurrence of a timport specification, a synthesis pass gener-
ates a new typed module from the named untyped one:

* For an occurrence of (timport M Shape) in module K, this pass cre-
ates a typed copy of M named M.into.K annotated with Shape and
replaces the import specification in K with (import M.into K).

* For an occurrence of (timport M Shape) in the system’s body, this
pass creates a typed copy of M named M.into.Body annotated with
Shape and replaces the import specification in the system’s body
with (import M.into.Body).

Note These names make sense only because this synthesis pass may
assume the AST is well-formed and valid. It would be a problem if
the system contained an untyped module named Body. So, do not use
Body as a ModuleName.

2. A typed-classes pass transfers the types from tmodule ASTs to the ASTs
of class definitions.

The modified CESK machine of section 5.2 will use these type anno-
tations in class ASTs to monitor all of their instances.

Exercise 84. Design and implement the synthesis pass so that it adds
the generated modules to the given Mixed system according to the speci-
fications in this section. Keep in mind that the given AST is well-formed,
valid, and type-checked.

Exercise 85. Design and implement the typed-classes pass according to
the specifications in this section. It consumes the output of the synthesis
pass from exercise 84.

Exercise 86. Adapt the linker from exercise 64 so that it works for the
ASTs generated by the typed-classes pass exercise 85.

216 Section 5

5.2 A CESK Machine Based on Proxies

A sound semantics for Mixed monitors instances of typed classes in the
Classy program that the linker produces, Monitoring means inspecting val-
ues that flow into or out of instances via field access, field modification, or
method calls. That is, when some code retrieves the value of field f from an
instance of typed class C, then monitoring ensures that the value conforms
to the type specification of f in C’s type. Similarly, when some code calls
method m of an instance of typed class C, the monitor checks whether the
given argument values conform to the domain part of m’s type signature in
the type of C.

Let’s enumerate the three ideas that inform the adaptation of the CESK
machine from chapter VI to Mixed:

1. An object is monitored if it is an instance of a typed class.

2. A monitoring semantics intercepts values as they flow into or out of
an object through any channel.

3. Anintercepted value must conform to its type specification, meaning
the semantic model must come with a conformance relation.

The remainder of the section introduces these ideas one at a time.

Note A moment’s thought suggests that the second idea is too strict.
Consider a method call whose target object is an instance of a type-checked
class. The purpose of type checking is to guarantee that the method’s code
is in sync; in particular, the method returns a value that has the specified
type, assuming the given arguments conform to their respective specifi-
cations. Hence, it should suffice to intercept only the arguments to such
a method and to check their conformance. A similar argument could re-
duce the number of interceptions for field mutation and reference. While
the Mixed model uniformly intercepts all values to keep things simple, the
Typed Racket implementation reduces the number of interceptions as much
as possible.

Your choice of data representation for objects in the CESK machine in-
cludes a reference to the class of which it is an instance. Hence, the machine
can always determine whether an instance belongs to a typed class, because
the Mixed linker adds types to the ASTs of classes. However, since the mod-
ified CESK machine must retrieve types frequently, it is best to combine
objects with types when they are created from a typed class. Following the
Typed Racket creators’ terminology, we call this combination a proxy, and

Semantics: The Typed Racket Approach 217

Control Environment Store Kontinuation

evaluate a ‘new’ expression (untyped class, success)
before: (new C (x*...)) e s k
subject to: class C is untyped and has the same number of fields as in x* ...
after: obj e s k
sle[x*1], ...

and obj = create instance of C using v*, ... for the values of the fields

where Vv*, ...

evaluate a ‘new’ expression (typed class, success)
before: (new C (x*...)) e s k
subject to: class C is typed and x* ... conforms to its field types

after: prx e s k
where v*,... = sle[x*]],...
and obj = create instance of C using v*, ... for the values of the fields
and typ = thetype of class C
and prx = make obj conform to type typ

evaluate a ‘new’ expression (failure)
before: (new C (x*...)) e s k
subject to: class C is typed and

... X* ... fails to conform to its field types
... or is untyped
... and x*... is of incorrect length

after: error [] [] []

Figure 77: The proxy-based CESK machine: creation

we agree that the modified CESK machine considers them as values and
monitors their interaction with other code.

Exercise 87. Design a data representation for proxy values, which com-
bine objects with the types of their classes. See exercise 23 for the data
representation of objects. Include the functionality for retrieving the types
of fields, domain types of methods, and range types of methods.

Figure 77 presents the machine transitions of the modified CESK ma-
chine for creating new instances from classes:

1. If the class comes without a type and the new expression supplies the
correct number of variables as arguments, the machine retrieves the
values of these variables and creates a regular object.

218 Section 5

2. If the class is typed, the machine retrieves the values again and, ad-
ditionally, makes sure that these values conform with the types of the
class’s fields. Instead of just creating an object, the machine forces
the object to conform to the class’s type, which in this case means it
combines the two into a proxy.

3. Finally, if neither condition holds, the CESK machine signals an error.

Stop! Compare the first two rules so you understand the differences.

Given an object, a program can check whether it is an instance of a par-
ticular class. While the top half of figure 78 displays a transition rule that
looks just like one from the original CESK specification (see chapter VI), it
differs in a subtle but critical manner. And, understanding this difference
takes some effort.

Control Environment Store Kontinuation
evaluate an ‘isa’ expression
before: (0oisaC) e s k
after: ans e s k
where obj = sl[e[o]]
and ans check whether obj is instance of C

the modules

the system body

(module Untyped
(class U ()

(method m(o) 0)))

(import Typed)

(timport Untyped
Q)

(tmodule Typed ((m (Number)
Number))))
(timport Untyped
() (def u (new U()))
((m (Number) (def t (new T()))
Number))))
(t —=> m(u))
(class T ()
(method m(o) (o isa B)))
(0
((m ((() ((m (Number) Number))))
Number))))

Figure 78: The proxy-based CESK machine: inspection

Semantics: The Typed Racket Approach 219

Take a look at the bottom half of figure 78. It illustrates the subtlety of
isa in this setting with a complete sample system. While the left column dis-
plays the modules of this Mixed system, the right one shows its body. Note
how the framed timport specifications bring the untyped class U from mod-
ule Untyped into the scope of Typed and the system’s body respectively—
attaching the exact same type.

Stop! What do you expect as the outcome of this system?

Here is the point. Although the system body seems to create an instance
of U at the same type as module Typed expects, running the program yields
1.0, meaning that u is not considered an instance of U inside of method m in
class A. Why?

With the introduction of synthetic modules and proxy instances created
from their classes, the semantics also adds error behavior. That is, depend-
ing on context, an interaction with an instance of a class from a synthetic
module may signal an error due to the superimposed type. In our run-
ning example, two distinct import specifications for Untyped can attach two
distinct types. Hence, one instance may behave properly when it inter-
acts with a piece of code, while the other would signal an error during an
interaction with the exact same piece of code. It is therefore necessary to
distinguish instances of two classes from each other, even if the source of
these classes is one and the same untyped module.

Exercise 88. Work out the Classy program that the (adapted) linker
should produce. What would the names of B in Typed and the system’s
body be, respectively?

Exercise 89. Design the auxiliary function needed to determine whether
some potentially proxied object is an instance of some class.

Figure 79 presents the next new cases of the CESK transition function:
the successful reference to a field of an object and the revised failure case.
When the C register contains a field access expression, the machine also
checks whether the value in the named field conforms to the type specified
in the proxy. If so, it retrieves the value, enforces conformance, and places
the conforming value into the C register. Regardless of the nature of the
target, if the field is missing or the value in the field of a proxy does not
match the specified type, the CESK machine signals an error.

Stop! Take a close look at the formulation of the precondition in the
success case of figure 79 and the last line of the after state formulation.

While the precondition says “the value conforms to its type,” the after
state uses the strong language of “making the field value conform to its
type.” The second formulation indicates that conformance checking is not

220 Section 5

Control Environment Store Kontinuation

evaluate a field reference (proxy)
before: (p — f) e s k
subject to: p is a proxy and the value of the field conforms to its type

after: v e s k
where prx = sle[pll
and [obj, fieldType] = extract object and type of fueld f from proxyprx
and u = getvalue of f from obj
and v = make u conform to fieldType

evaluate a field reference (failure)

before: (0 — f) e S k

subject to: o is not an object/proxy with the correct field property
after: error [1 [1 [1

where obj = s[e[o]]

Figure 79: The proxy-based CESK machine: field reference

just an up or down vote on the relationship between a value and its speci-
tied type.

Indeed, checking whether some given value conforms to a type specifi-
cation has three possible outcomes:

1. If the value matches the type, the value is returned.

2. If an object might live up to a type specification in the future, the con-
formance function creates an appropriate proxy from the object and

the type.

3. Otherwise, the given value—a number, an object, a proxy—does not
conform to the given type.

Figure 80 spells out the six scenarios via a two-dimensional table. The hori-
zontal direction enumerates the three kinds of values that the conformance
checker might encounter; the vertical one lists the two kinds of types.

Stop! Read the two complex cases in the lower right of the table in
tigure 80 carefully.

Two of the cases in figure 80 deserve a detailed explanation. When the
given value is a proxy and the type is some Shape, the conformance checker
must compare types, meaning the CESK machine checks types for equality

Semantics: The Typed Racket Approach 221

if the value is:

a number n an object obj a proxy prx
Real use smaller{n} no no
Shapes no combine objand s if the type in prx is equal to S:
into a proxy use prx
else: no

Figure 80: A value conforms to a type, if ...

at run time. This check is an artifact of the model; Typed Racket does not
retain types beyond the type-checking step.

When the given value is an object and the type is some Shape, the object The conformance
may live up to the expectations. But obviously, it is impossible to know at could check some “first
this particular point whether the rest of the computation is going to interact Z:i;rasp;(;z et;ztéfstlhe
with the object in an appropriate manner. Hence, the machine combines the .t o uetiiod names

object and the type into a proxy and continues from here. are the same.

Control Environment Store Kontinuation

execute a field assignment (proxy)

before: u e s L[] (p— f=rhs)ustmt*, r)
subject to: p-isa proxy and the value of the field conforms to its type
after: e s K [] stmt*, r)
where prx = sle[p]l
and [obj, fieldT] = extract object and type of fueld f from proxyprx
and v = make u conform to fieldT
and set f in obj to v

execute a field assignment (failure)

before: v e s € [1 (0 = f=rhs):stmt*, r)
sutbject to: 0 is not an object/proxy with the correct field property

after: error [1 [1 [1
where obj = s[e[o]]

Figure 81: The proxy-based CESK machine: field mutation

Let’s study field mutation next. Unlike field reference, which extracts
a value from an object, field mutation injects one. According to our agree-

222 Section 5

ment, the CESK machine must intercept this value and inspect it, if the
target object is proxied. Like for field references, this constraint requires
one new case for the transition function and one modified one:

¢ If the target of a field mutation is a proxy and the value in the C reg-
ister conforms to the field’s type, then the CESK machine assigns a
type-conforming value to the corresponding field of the object repre-
sentation.

¢ if the field is missing or the value to be stored in the field of a proxy
does not match the specified type, the CESK machine signals an error.

See figure 81 for these two cases of the revised transition function.

Control Environment Store Kontinuation

evaluate a method-call expression (proxy)

before: (p »>m (x*...)) e s k
subject to: p is a proxy and the arguments conform to the method type

after: 1 el sl push[cl, push[rangeT, k] |
where prx = sle[p]l
and [obj, domainT, rangeT | = extract the object and the type of method m from prx
and tmp*, ... = sle[x*]], ...
and arg®, ... = make the tmp*... values conform to the domainT types
and [para*, body] = the parameters & body of method m per the class of obj
and ¢l = closure: body in e
and thisL = anew (relative to s) location
and . xI*, ... = as many new (relative to s) locations as elements in x*, ...
and el = [][this = thisL][para* = xI*], ...
and sl = s[thisL = obj][xI* = arg*], ...

evaluate a method-call expression (failure)

before: (0 — m (x*)) e s k
subject to: o is not an object/proxy with the correct properties for this call
after: error [1 [1 [1

Figure 82: The proxy-based CESK machine: method calls

A method makes up a two-way street for interactions between an object
and its context. On call, a method internalizes values. On return, a method
externalizes values. In both cases, these values have to conform to the types
specified in a proxy.

Semantics: The Typed Racket Approach 223

Let’s consider each direction separately, starting with method calls. The
rules are spelled out in figure 82. A method call whose target is a proxied
object may proceed if the argument values conform to the domain part of
the method’s signature. If these conditions hold, the CESK machine re-
trieves the proxy and extracts from this proxy the object, the domain types,
and the range type. At this point it can make the argument values conform
to the domain types. Using the resulting values, the CESK proceeds in a
manner that is similar to regular method calls.

Stop! Take a close look at the after state of this case in figure 82.

Note how the K register of the after state contains a continuation that
comes with two new frames. The top-most one is the usual closure. But the
second from the top is just a type. It is at this point in the evaluation of a
method call that the CESK machine knows to which return type a potential
return value must conform, and it must store this type in the continuation
so that conformance can be checked upon method return. And this brings
us to the final two rules.

Exercise 90. Explain the second case in figure 82.

Control Environment Store Kontinuation

returning from a proxied method call (success)

before: v e s (type: rangeT)::k
subject to: value v conforms to rangeT

after:— rv e s k
where rv = make v conform to type rangeT

returning from a proxied method call (failure)

before: v e s (type: rangeT)::k
subject to: value v does not conform to rangeT

after:” error [1 [] [

Figure 83: The proxy-based CESK machine: method returns

A'method return takes place when the C register contains a value and
the top of the K register is a type. It is exclusively due to a call that targets
a proxied object. Figure 83 displays the two corresponding cases of the
revised CESK transition function:

¢ The first case deals with a return value v that conforms to the specified
type. If so, the CESK machine forces v to conform and places the

224 Section 6

resulting value rv into C all while popping the continuation in K.

¢ The second case concerns failure. If the return value fails to conform
to the specified type, the CESK machine signals a failure.

The introduction of a return-from-method case into the transition func-
tion has a serious consequence. As section 4.1 in chapter VI demonstrates,
a method that calls itself consumes as much continuation space as a while
loop. For the proxy-based CESK machine, this property no longer holds. A
self-calling method from a proxied object is going to grow the continuation
one frame per call, meaning in real-world implementations such methods
may run out of stack space.

Exercise 91. Besides the new and revised transition rules presented in
this section, the proxy-based CESK machine also needs a revised function
for checking the structural equality of values. After all, the addition of
proxies to the set of values clearly calls for a revision.

Revise your function for determining the structural equality of values
so that it unwraps the objects hidden inside of proxies. See exercise 25.

Exercise 92. Revise the data representation from exercise 24 to accom-
modate proxies.

Exercise 93. When the proxy-based CESK machine encounters objects,
they are instances of untyped classes. Hence interactions with these objects
may go wrong just like they did in chapter VI

Restore the run-time checks to the CESK machine that you eliminated
in response to exercise 66.

Exercise 94. Revise and extend the transition function from exercise 33 so
that it properly works with proxies.

By combining the existing load, unload and transition functions with the
runMachine function, you obtain a complete semantics for well-formed and
valid Mixed programs.

Exercise 95. Come up with an example system in Mixed that creates
instances of type-checked and classes from untyped modules. Make sure
these instances interact with each other.

6 The Very Final Bit of Theory: Real Type Soundness

Section 4.1 of chapter VIII explains which run-time checks in the CESK tran-
sition function are superfluous if the relationship between the type checker

Pragmatics: Migratory Type Systems 225

and the transition function satisfies a type soundness theorem. This chap-
ter raises the question of whether such a theorem can hold for Mixed or the
actual language implementations that Mixed models.

The answer mat come as a bit of a surprise:

Language models that mix typed and untyped code are type sound to
a degree, not in an absolute sense.

Put differently, “type soundness” theorems for modules like Mixed form a
spectrum. Depending on what kind of conformance checks they impose,
they catch some or all type mismatches and, if they catch them, they catch
them at different times during program evaluation. The very fact that this
chapter presents two semantics for Mixed is proof of this claim. While the
semantics of section 4 checks none of the interactions between typed and
untyped code, the semantics of section 46 checks all interactions.

One consequence of this lack of complete type soundness concerns the
run-time checks in CESK machines. They cannot be removed, which is why
exercise 93 has you restore those removed in the preceding chapter. An-
other consequence is about pragmatics. Run-time checks exist to catch type
mismatches, which programmers introduce accidentally. And this brings
us to the pragmatics of Mixed and its stark semantic choices.

Note On reflection, you may realize that real language implementations
are closer to the Mixed model than the models of the preceding chapters.
That is, all languages mix type-checked and unchecked code. For example,
the latter come in the form of run-time libraries that access devices, and
those libraries tend to use languages with few protective features. Hence,
“type soundness to a degree” for their models is the most realistic charac-
terization a language researcher can provide—even if we ignore the dis-
tinction between models and implementations with bugs.

7 Pragmatics: Migratory Type Systems

Languages with migratory type systems offer different answers to semantics-
oriented pragmatics issues than languages with plain static type systems.
As the two sections on semantics point out, an implementation can choose
from two radically different options:

* to erase the types and just run the resulting untyped code; or

* to use run-time checks to enforce types at the boundaries between
typed and untyped code.

They also protect
partial primitives such
as division. We ignore
those.

226 Section 7

The choice clearly has major implications for the work of software devel-
opers. Concretely, the corresponding questions are why an implementation
team would choose

¢ to erase the types and thus fail to inform developers about type mis-
matches, or

* to use run-time checks and to impose the cost of these checks on the
code that developers deploy.

Stop! Take a look at figure 84 and identify the work situations to which
these questions alude.

work situation a programming with a migratory type system
with type enforcement with type erasure

design code

— migrate
testing
debugging
deployed code
— bug diagnosis

Figure 84: Work situations and the role of types systems

7.1 The Twp Semantics with Concrete Examples

Before we discuss answers to these two questions, let’s consider an illus-
trative and comparable example from two real-world implementations of
Mixed: TypeScript combined with JavaScript, and Typed Racket combined
with Racket. As mentioned, their type systems resemble each other but
their semantics roughly correspond to the two sections on semantics, re-
spectively.

Figures 85 and 86 present the same program in the two combinations.
Both figures display two columns, with one file each. The left column is a
typed module for managing (simplistic) bank accounts; the right one shows
anaive client module. Each of these client modules interacts with the typed
module in two ways:

Pragmatics: Migratory Type Systems 227

¢ The first function call to deposit requests a type-correct addition of 100
to the current balance.

* The second function call applies deposit to ” pennies!”, a string. Ob-
viously this application represents a type mismatch, because deposit
expects a number Or Natural, respectively.

bank.ts client.js
// balance in $$s var Bank = require(’./Bank.js’);
var blnc = 0;
// correct interaction

// add ‘amt‘ in $$s to ‘blnc’ Bank.deposit (100) ;
export Bank.printBlnc () ;

function deposit (amt: number) {

blnc += amt; // incorrect interaction
} Bank.deposit (" pennies!");

Bank.printBlnc () ;
export

function printBlnc() {
console.log("balance: $" + blnc);

}
Figure 85: A TypeScript/JavaScript type mismatch
bank.rkt client.rkt
#typed/racket #lang racket
(provide deposit printBlnc) (require "bank.rkt")
;7 balance in $$s ;; correct interaction
(define blnc : Integer 0) (deposit 100)
(printBlnc)
;; add ‘amt' to $$s to ‘blnc!
(define (deposit amt : Natural) ;7 1incorrect interaction
(set! blnc (+ blnc amt))) (deposit " pennies!")
(printBlnc)

(define (printBlnc)
(println ("a "balance: " blnc)))

Figure 86: A Typed Racket/Racket type mismatch

Stop! Inspect the two figures and make sure you understand the code
and the two calls in the client module before reading on.

As the example points
out, it performs fewer
checks and thus fails
to “protect” addition
from strings.

228 Section 7

Following the presentation of the two semantics, the two code combi-
nations behave differently. While the TypeScript/JavaScript combination
prints

balance: $100

balance: $100 pennies!

to the console, the Typed Racket/Racket system signals an error after print-
ing the balance in response the first function call:

balance: $100
deposit: contract violation
expected: natural?
given: " pennies!"
in: the 1lst argument of
(—> natural? any)

contract from: bank.rkt
blaming: client.rkt

(assuming the contract ‘is correct)

The error message deserves some explanation. It informs the developer
about the type mismatch as the failure of “pennies!” to satisfy natural?, the
predicate that enforces the type Natural. Furthermore, it explains which part
of the function signature the value violates and which boundary between
typed and untyped code causes the problem. Do note the last line, which
is a warning to the developer and which is important when it comes to the
pragmatics rationale behind the semantic choice of enforcing types.

Note In general, a mixed TypeScript/JavaScript program does not have
to terminate properly when a type mismatch occurs. Like our CESK model,
the JavaScript machine does perform some checks that protect primitive
computational operations. Hence these checks may eventually catch a type
mismatch because some inappropriate value flows into a run-time check.

7.2 Performance

Performance matters. And every run-time check has the potential to affect
a program’s performance.

After type checking, the TypeScript implementation compiles the given
source code to plain JavaScript, mostly by stripping the types. Since soft-
ware developers have experienced tremendous performance gains over
the past decades, they consider JavaScript as a performant language. If
the TypeScript implementation were to add run-time checks, a developer’s
work might suffer in two ways:

Pragmatics: Migratory Type Systems 229

e First, the translated TypeScript code would have to pay for the run-
time checks during execution. The developer would have to measure
whether the cost of these run-time checks is acceptable and, if not,
conduct a performance-debugging session.

* Second, as is, TypeScript code carries performance “on its sleeves.”
An experienced JavaScript developer can “see through” the Type-
Script source code and understand it in terms of the corresponding
JavaScript code, including its performance. If the compilation in-
jected run-time checks, this direct correspondence would be severely
distorted.

Experienced language creators may object to this analysis. They under-
stand that type-checking plus a soundness theorem enable language im-
plementers to eliminate run-time checks that ensure the proper working of
computational primitives. Conversely, they may wonder why type check-
ing the typed portions of a mixed system does not yield similar benefits.

In the case of JavaScript, the answer is that the implementation observes
the kind of values that flow through a program, recognizes where it can
eliminate the checks that a static type system would eliminate, and re-
compiles the code accordingly. Additionally, since misbehaving untyped
values may show up inside of TypeScript portions of mixed systems, the
translation is not sound and therefore cannot rely on type checking.

In the case of Typed Racket, the answer differs. The Typed Racket im-
plementation can rely on the type checker because run-time check guaran-
tees that the validated logical properties hold during program execution.
As a result, programs written in just Typed Racket do benefit from type
checking just like programs written in a statically typed language. Even
mixed systems written in both Racket and Typed Racket exhibit improved
performance on occasion.

In some situations, however, Racket/Typed Racket combinations ex-
hibit steep performance losses. The creators of the language have reported
slow-downs at the level of many orders of magnitude for object-oriented
mixed systems, while mostly-functional code seems to suffer from a mostly
reasonable cost for the run-time checks. At this point in time, it is not clear
whether these costs are intrinsic to languages with somewhat-sound migra-
tory type systems or whether different implementations of the underlying
untyped language can eliminate most of the cost of run-time checks.

Plus readers who
remember section 4 in
chapter VIII

230 Section 7

7.3 Testing, Debugging, and Deployment

Discovering type mismatches matters. And every failure to discover a type
mismatch or every delay in the discovery process affects the working soft-
ware developer’s in several different situations, including testing, debug-
ging, and system deployment.

As section 7.1 demonstrates, mixed TypeScript/JavaScript systems such
as the one from figure 85 do not discover the type mismatch between the
string ” pennies!” and the type number. The result is an unexpected outcome.
If this example were a test case, the developer would add an expected out-
come and an automatic comparison, and the test-case failure would point
out a problem.

What just this simple example shows then are three obvious conse-
quences for the developer’s work:

¢ The lack of run-time tests shifts work from the language creator to the
software developer. It becomes the task of the latter to write tests that
catch type mismatches.

¢ A failing test case provides less information than the failure of a run-
time check that identifies the boundary that causes the type mismatch
and the value that causes it. It is now the developer’s problem to find
this boundary and ideally to determine which value failed to match
the type.

* Finally, a type mismatch may also affect a system’s behavior after it
is deployed. In this case, it is the user who suffers. And, if this user
reports the problem, the developers assigned to this bug have even
less information than a failing test case. As a matter of fact, they will
first have to develop a test case that reproduces the problem and use
the failure of this test case to start the search for the type-mismatch
error.

Stop!'Identify the cells in the table of figure 84 that match the three conse-
quences. Can you think of additional consequences?

By contrast, the Typed Racket/Racket system from figure 86 signals an
error as soon as it discovers the type mismatch and supplies a good amount
of error information. At first glance, this information should assist a devel-
oper with testing, debugging, and even with failures in deployed software.
Research by the authors suggests, however, that these appearances are a bit
deceiving.

Pragmatics: Migratory Type Systems 231

When a type does not match a value, it is possible that the type is wrong,
the value is wrong, or both are wrong. And as it turns out, the information
in the error messages seems to help in different ways, depending on what
is the case:

e If it turns out that the type signature is mistaken, the information
from Typed Racket’s failing run-time checks seem to help develop-
ers quite a bit with the debugging process. As mentioned already,
problems with post hoc type signatures are common in TypeScript’s
Definitely Typed code repository. So this research result points in a
helpful direction.

¢ If the problem is due to a bug in the code that is equipped with types
on a post hoc basis, the information seems less helpful. More precisely,
the safety checks of Racket’s version of a CESK machine already catch
many type mismatch problems, and the information that they supply
appears to be equally helpful.

In short, the pragmatics of testing and debugging in a language with a mi-
gratory type systems poses interesting research problems, and the outcome
is wide open.

