CHAPTER V NESTED BLOCKS

Why should programmers declare variables close to their use?

1 The Pragmatics Question

Imagine yourself editing a Declared program of 10,000 lines. Okay, nobody
should write such programs but in the past people had to do just that, and
therefore language creators had to confront a problem that these program-
mers encountered time and again. So again, imagine yourself editing this
large Declared program and realizing that the values of two variables need
to swapped. Easy, you say—just use a temporary variable to hold the value
of one, and so on. And this raises the question of where this temporary
variable comes from.

A programmer can tackle this problem in one of two ways. The first one
means to navigate to the top of the program, insert a new variable decla-
ration with an appropriate name, and navigate back to the place where the
value swap is to be added. For a long program, this navigation effort might
be significant. The second is a mental exercise: the programmer remembers
the name of a variable whose current value is no longer needed and uses it.
If the programmer is wrong in this second case, the computation is going
to go wrong.

What this scenario describes is concern about the language in a par-
ticular work situation. The language forces the developer into a needless
navigation or a potentially dangerous mental exercise. It sets up a program
organization that provides no information to the programmer about vari-
able names and uses. Let’s take a look at how to solve this problem.

70 Section 1

1.1 Design Choices

Some programmers work in a specific programming language only with
one particular IDE. If we were to accept this combination as a common
standard, there are two different ways to address the problem:

1. add a linguistic construct to the programming language for declaring
variables locally; or

2. equip the IDE with a tool (or tools) that assist developers with the use
and re-use of variables.

As you probably know from experience, language creators solved this prob-
lem with local variable declarations. The question is why they preferred the
linguistic solution over the tools-based one.

An alternative, but equivalent question is which IDE developers pre-
fer. Or, whether a team of developers can agree to use the same IDE for a
project. If the team lead is a strong-willed manager, the team’s members
may just not have a choice. If the team consists of strong-willed individu-
als, they are unlikely to agree on an IDE. The point is that if an IDE is used
for work with a language like Declared, the language creators must equip
it with a tool for managing variable names. And given the speed of evolu-
tion in the field of IDEs makes no sense. Hence, it is the first solution that
eventually prevailed.

1.2 Costs and Benefits

Declaring variables locally has clear advantages for programmers. It first
of all means a programmer does not have to remember all variables that are
visible at a certain place. Justin case a local variable name is the same as one
already in use, the first replaces the second. Next, it helps a programmer
declare variables when needed and for exactly the narrow region of text
where they are needed. And in case, several programmers work on one
large product whose code is in a single file, they don’t have to worry about
each others variable name choices.

For the language creator, every change to a language raises questions
about all parts of its implementation:

¢ Clearly, a change to a language’s grammar induces a change to its
implementation’s parser.

Syntax: Enriching Sample a Last Time 71

¢ In the particular case of local variable declarations, such a change also
demands a look at the validity checker to make sure it can deal with
any new abstract syntax introduced via the changes to the parser.

¢ Finally, new language features may also require an adaptation of the
semantics. While a new semantics was not needed for the addition
of program-wide—also called global—variable declarations to Sample,
local declarations require a completely new abstract machine.

The remaining sections make these points concrete.

2 Syntax: Enriching Sample a Last Time

The design of a language extension starts with syntax. As the preceding
chapters, explain “syntax design” has two aspects: (1) the BNF grammar
and the parser; and (2) a suitably modified validity check. In addition, the
introduction of local variable declarations necessitates the introduction of
a bit of terminology: “scope” or “the scope of variable declarations.”

2.1 Grammar and Parsing

Here is the grammar for a natural extension of Sample with local variable
declarations:
Program ::= (Declaration® Statement® Expression)
Declaration ::= (def Variable Expression)

(
(
Statement ::= (Variable = Expression)
(block Declaration® Statement™)

3 | Variable | (Variable + Variable)

11 2 |

Expression
The keywords (‘def', ‘block') are not variables.

This grammar extends the one from Chapter IV with one alternative for
Statements: a block. Such a block starts with a potentially empty sequence
of variable declarations followed by a non-empty sequence of statements.
Also notice that the symbol “block” is no longer available as a variable,
because it is now used as a keyword.

Stop! Some languages allow the use of keywords as variable names.
What do you think of this idea? Debate with a partner.

Stop! Note that the grammar allows arbitrarily deep nesting of block
statements. Formulate a program according to this BNG that contains block
statements nested five levels deep.

72 Section 2

A parser for this final revision of Sample must recognize one more S-
expression as a well-formed Statement. Once the parser recognizes an state-
ment starting with block, it is going to construct an abstract syntax node
from the sequence of declarations and statements.

The design of this abstract syntax node should account for the needs of
the validity check and even the abstract machine that interprets it. From
this perspective, a language creator has two choices:

¢ The first, obvious one is to develop a data representation for just these
new kinds of nodes.

* A second one recognizes the similarity between a Program and a block
statement. Both nodes contain a sequence of declarations and state-
ments; a node for Program also includes an AST for the final Expression.
One way to unify the two is to parse a block statement into a Program
node that contains a distinct marker instead of an Expression AST.

Stop! Think through the pros and cons of each design alternative.

2.2 Scope

A programming language such as Sample must come with a description of
the scope of variable declarations. Language researchers introduced the
word scope to refer to the region of text where a declaration binds occur-
rences of a variable name. Knowing this terminology, and understanding
the concept, helps programmers present code in precise terms and assess
the problems of programming languages they encounter.

Once a programming language design team has specified the syntax
of the language, its next task is to specify scope. While this task sounds
straightforward, it turns out that even the global declarations of the pre-
ceding chapter come with a hitch. Since two distinct variable declarations
may use the same name, the region of the second one cuts a hole into the re-
gion of the first one. Take a second, close look at the screenshot of figure 13.
It displays a program that declares the same variable—oneVariable—twice.
The arrows indicate which declaration binds which occurrence of the same
name, and they implicitly define the scope of each declaration:

¢ The first declaration’s scope are lines 4 through the right-hand side of
the declaration on line 7.

* By contrast, the second declaration’s scope consists of lines 9 and 11.

Syntax: Enriching Sample a Last Time 73

¢ sample-with-block.rkt - DrRacket

sample-with-block.rkt v (define ...) v @ ”p| #'>! p Stop™

1: sample-with-block.rkt 2: main.rkt
#lang Sample
((def one 1.0)

(def anothe
(def andAThir iable 3.0)

(def oneVariablg (oné~+ andAThirdVariable))

(block

(def anothe
11 (def x 3.0)
12 (andAThirdvariable =\ (anot

=
Lo oOoO~NOOUL A WNE

iable (anothefvariable + oneVariable))
ariable + x)))

14 | (oneVariable = (anotherVariable + oneVariable))

oneVariable)

Welcome to DrRacket, version 8.17 [cs].
Language: Sample, with test coverage [custom).
6.0

All expressions are covered ¥ Show next time? ®

Determine language from source [custom] v 10:11 543.61 MB El ¢

Figure 20: Blocks, scope, and binding in the Sample language

The purpose of a block statement is to create such holes in scopes ex-
plicitly, as they are needed by programmers without imposing any extra
work on them. Consider the following program, which contains one block
statement with two variable declarations:

((def one 1.0)

(def anotherVariable 2.0)

(def andAThirdVariable 3.0)

(def oneVariable (one + andAThirdVariable))

(block

(def anotherVariable (anotherVariable + oneVariable))
(def x 3.0)

(andAThirdVariable = (anotherVariable + x)))

(oneVariable = (anotherVariable + oneVariable))
oneVariable)

74 Section 2

Figure 20 displays the same program in one of Sample’s IDEs.

One of the two local declarations introduces the same variable name as
the second global declaration. Programming language people say the local
declaration shadows the global one. But, the expression on its right-hand
side refers to this name, which definitely raises the question of what the
scope of each declaration is—and implicitly argues for using well-defined
concepts and commonly understood terminology for such linguistic phe-
nomenon.

Figure 20 clarifies the notion of scope for Sample in a graphical man-
ner. The scope of a variable declaration in a block statement consists of all
declarations and statements that follow, meaning the right-hand side of a
declaration is not included in the scope.

The two arrows originating from the global declaration of anotherVariable
demonstrate a second point about scope. While one arrows points to the
right-hand side of the shadowing declaration, the second reaches across the
entire block statement. That is, a global declaration’s scope may include all
pieces of code outside of a nested block statement.

Finally, figure 21 makes another point concerning scope using the same
program. The arrow points from the declaration of andAThirdVariable to the
assignment statement inside of the nested block statement. It binds the left-
hand side, meaning the variable whose value is to be changed.

What this discussion shows, is that an abstract machine must be able
deal with nested scopes. In other words, a variable may go in and out
of scope as the machine evaluates the sub-expressions of a program and
changes the association between variables and values. The next section
will explain the implications of this statement for the abstract-machine de-
sign. Before we deal with the machine, though, we need to briefly address
validity checking for Sample.

2.3 Validity Checking

The goal of validity checking remains the same: to ensure that all variable
occurrences are associate with some variable declaration. Since the design
of the validity checker in the preceding section follows fundamental design
principles, adapting it to the revised BNF grammar is straightforward. The
production for Statement is the only one that got modified. Hence, closed-stmt
is the only function that must change.

Here is the adapted function:

#; { stmt- Set<vVariable> -> Stmt }
(define (closed-stmt stmt- declared)

Syntax: Enriching Sample a Last Time 75

[] sample-with-block.rkt - DrRacket

sample-with-block.rkt v (define ...) v @ ”p| #'>! p Stop™

1: sample-with-block.rkt 2: main.rkt

#lang Sample

((def one 1.0)

(def anotherVariable 2.0)
(def andAThirglVariable 3.0)

(def oneVarigble (one + andAThirdVariable))

(block
(def anotherVariable (anotherVariable + oneVariable))
11 (def x 3.9)

12 (andAThir8lvariable = (anotherVariable + x)))

=
EWW\IO\U’!#U}N)—‘

14 | (oneVariable = (anotherVariable + oneVariable))

oneVariable)

Welcome to DrRacket, version 8.17 [cs].
Language: Sample, with test coverage [custom].
6.0

All expressions are covered ¥ Show next time? ®
Determine language from source [custom] v 10:11 547.94 MB El @

Figure 21: Blocks and assignment statements in the Sample language

(match stmt-
[(ass x rhs)
(define x++ (closed-var x declared))
(define rhs++ (closed-expr rhs declared))
(ass x++ rhs++)]

[(seq decl—% stmt—x)
(define-values (decl* declared++)
(closed—-decl* decl-% ' [] declared))
(define stmtx (closed-stmt* stmt—x declared++))
(seq declx stmtx)]))

The function consumes an abstract syntax tree free of error nodes. It repre-
sents a single statement in Sample. While the production for Statement in the
preceding chapter has only one alternative on the right-hand side, the one
from this chapter has two. Hence the adapted function employs a condi-
tional to distinguish the two cases:

76 Section 3

1. The first case is exactly the original code for this function.

2. The second, boxed one corresponds to the newly added alternative
form of Statement.

This second case deconstructs the abstract syntax node (seq) into its two
pieces: a sequence of error-free declarations (decl-*) and a sequence of error-
free statements (stmt*). Since functions for checking the validity of sequences
of declarations and sequences of statements exist, checking these pieces is
delegated to those. The last line re-assembles the generated ASTs into a
new representation of a block statement. If the functions didn’t discover
any errors, the given node and the returned one are identical; otherwise
the latter contains error nodes so that the IDE and the compiler can inform
the programmer of infractions. See figure 16 for an example.

3 The CESK Abstract Machine: Local Declarations

A semantics for syntax with local variable declarations must reflect the con-
cept of scope in some ways. Graphically speaking, the semantics of binding
must faithfully mirror the arrows of figure 20. So, unlike in the preceding
chapter, it is no longer possible to run Sample programs with (potentially
deeply) nested block statements on the CSK machine by just changing vari-
able declarations into assignment statements. Doing so would conflate two
distinct variable declarations.

One way to model the semantics without giving up the CSK machine is
to change the names of all variables so that each declaration introduces a
distinct name. Since

1. the number of variable declarations (and their scopes) is finite and
2. the set of Variables is infinitely large,

such a renaming transformation is clearly feasible. This transforma-
tion would have to respect the scope structure, or, equivalently, the bind-
ing structure, of the given program, meaning names bound to the same
declaration are replaced by the same new and distinct symbol. Language
researchers call this approach a static semantics of scope.

The alternative is to transform the CSK machine into a model that as-
signs a semantics to variable scopes. Assigning meaning to scope as a part
of the program execution (in a model) is far more powerful than the static

The CESK Abstract Machine: Local Declarations 77

approach. In particular, this dynamic approach can accommodate local vari-
able declarations that appear during execution and which, by definition,
could be nested infinitely deep. While the current syntax does not enable
such executions, revisions in subsequent chapters do. Hence, we opt for
this second, dynamic approach to assigning semantics to scope. The new
machine has been known as the CESK machine since the 1980s.

3.1 The States

The CESK machine comes with four registers, just as its name suggests: C
for control, E for environment, S for store, and K for continuation.

As before, the C contains expressions, including numerical literals that
result from the evaluation of expressions, plus the special f token, which
indicates that the machine is searching for the next expression to evaluate.

The new E register contains an association of variables and locations.
More precisely, it maps just those variables to locations that are in scope
for the evaluation of the expression in C. Assume that the set of locations is
infinite, symbolic, and distinct from the set of Variables. The content of this
register denotes the meaning of scope.

In contrast to the CS and CSK machines, the S register of a CESK ma-
chine associates locations with numbers. The number associated with a
location is the current value of the variable that is mapped to this location.

While environments come and ago, reflecting the evaluation of nested
block statements, locations never disappear. But, it may no longer be possi-
ble to reach a location by starting from the variable names mentioned in the
contents of the other registers. The period from when a location comes into
existence until it becomes unreachable is the dynamic extent of the lifetime
of a particular variable declaration in a program.

Note At this stage, the indirection via locations is a convenience, not a
necessity, because the scope of a variable coincides with its dynamic extent.
It does reflect that the same variable name may exist at the same time and
stand for distinct values, even if only one of them is visible at any one place.
For the language extensions in the next chapter, the existence of a location
becomes a necessity.

Finally, the K register contains not just a program, but stacks of program-
like shapes combined with environments:

closure: (deff stmt¥ $) in e,

closure: (deff stmtik 3) in e
closure: (def® stmtd expr) in []

78 Section 3

These combinations are known as closures; their exact data representation

of closures doesn’t matter. We refer to each layer in this stack as a frame.

The stack reflects the nesting of block statements in the program, and the

frames correspond to scope extensions via local variable declarations.
Let’s take a close look at the shape of these frames, starting with

closure: (defd stmtd expr) in []

It represents the part of the original program whose expressions haven'’t
been evaluated yet; the machine needs to continue evaluating those when
the frames atop of this one are evaluated. Each frame on top of the original
program frame contains the $ marker in the expression position instead of
an expression:

closure: (deff stmtf $) in e;

This marker signals that these frames represent the nest of block statements
whose evaluation has been started and yet contain expressions (inside of
the declarations and statements) that remain to be evaluated.

The search for expression remains a process driven by the contents of
K. More precisely, the machine searches in the top-most frame until the
sequences of declarations and statements are exhausted. Writing down the
complete stack for these search is therefore unnecessary. It suffices to focus
on the top-most frame, and it is useful to introduce a notation to formulate
the cases of the transition function in a concise manner. So,

<< (deff stmtk $5) >>

abbreviates the entire stack from the Oth layer to the nth one:

closure: (deff stmt¥ $) in e,
closure: (deff stmt¥ $) in e
closure: (defd stmtd expr) in []
And,

<< (def{ stmtd expr) >>

is short for

closure: (defd stmtd expr) in []

Note how each frame contains an environment distinct from the environ-
ment in any other frame.

Partitioning this set of states into its three pieces follows the patterns
from the preceding chapters. An initial CESK state has this shape, given
some Program p:

The CESK Abstract Machine: Local Declarations 79

t, [1, [1, (closure: p in [])

that is, it combines the search-for-an-expression marker with two empty
association tables, and the full-program closure as the first and only frame
in the continuation stack. The set of proper final CESK states has a number
in the C register and an empty stack in K:

n, e, s, []

For these final states, it doesn’t matter what E and S contain. Additionally,
the set of final states includes error states:

error, e, s, []

Recall that when an abstract machine transitions to an error state, runMachine
stops and issues an informative message.

Stop! Choose a data representation for the states of the CESK machine
in your favorite programming language.

Stop! Define load and unload functions for the CESK machine.

3.2 The Transition Function

One way to develop the transition function for the CESK machine is to
adapt the CSK transition function to deal with the separation of the store
into an environment and a store proper. Let’s start with the transition for
executing assignment statements:

Control Environment Store Kontinuation

search ends with right-hand side of assignment
before: § e s { [, (x =rhs)ustmt*, r)
after: rhs e s € [1, (x =rhs):stmt*, r)

value for right-hand side of assignment

before: n e s €[] (x =rhs):stmt*, r)
after: 1 e s[xl=n] { [], stmt*, r »
where x1 = e[x]

The before: condition of the first case describes a search scenario when the
next expression—rhs—has been found. Considering that the corresponding
case in the CSK transition function does not involve the store, it is unsur-
prising that the after: specification says that C contains rhs and otherwise
the state remains the same.

80 Section 3

By contrast, the second case above involves the store in the correspond-
ing CSK case, so the adaptation needs work. The before: condition tells
us that the value of the right-hand side of the assignment statement has
been found; it is the number n. Intuitively, we understand that from now
on going forward, the variable on the left-hand side of the assignment
statement—symbolized with x—should be associated with this number.
But, environments associate variables with locations, and stores map loca-
tions to values. Hence, the transition function first determines the location
of the variable via the environment:

and then creates a store that associates this location with n (and retains all
other associations):

Stop! Why is (x = ths) missing from the after: state description?
The adaptation of the rules for the evaluation of expressions proceeds
in a similar manner:

Control Environment Store Kontinuation

evaluate a variable

before: 'y e s k
after: n e s k
where yl = e[y]
s[yl]

and n

evaluate an addition

before: (y + z) e s k
after: + e s k
where yl = ely]
and zI = e[z]

and yn = s[yl]
and zn = s[zl]

When the CESK machine encounters a variable in C, determining its value
proceeds in two steps: (1) find its location in the current environment (e)
and (2) extract the value of this location from the current store (s). Sim-
ilarly, an addition expression causes the abstract machine to retrieve the
locations of the two variables and then to look into the store to obtain the
actual value. Once these values are available, the transition function uses

The CESK Abstract Machine: Local Declarations 81

an abstract addition +; an implementation would use the addition function
for inexact numbers (doubles).

Control Environment Store Kontinuation

search ends with def rhs
before: t e s { (def x rhs)::def*, stmt*, r)
after: rhs e s { (def x rhs)::def*, stmt*, r)

value for right-hand side of declaration

before: n e s { (def x rhs)::def*, stmt*, r)
after: e[x =x1] s[xl=n] { def*, stmt*, r)
where x1 = anew (relative to s) location

search encounters nested block

before: T e s € [1, (block d* s*):stmt*, r)
after: e s push[cl, k]
where k = [] stmt*, r)

and

closure: (d* s*$) in e

search exhausts nested block

before: 1 e s CILILS)

after: el s popl k]
where el = the environment in the top-most closure
and k= C[LI1$)

search ends with the return expression

before: T e s CILILr)
after: r e S CILILr)

search ends with evaluated return expression

before: v e s CILILr Y

after: v el s popl k1
where el = the environment in the top-most closure
and k= L[LILT)

Figure 22: The CESK transition function for variable declarations

At this point, you should wonder how locations come into existence,
and the answer can be found in figure 22. This figure displays all the cases

82 Section 3

of the CESK transition function related to variable declarations, both global
and local. The first two cases explain how the transition function deals with
variable declarations in the top-most stack frame:

1. When the machine searches for the next expression to be evaluated
and the sequence of declarations in the top-most closure is not empty,
the right-hand side of the declaration becomes the content of the C
register. Note the similarity to the cases for assignment statements.

2. Once the value is found, the transition function allocates a new loca-
tion, that is, a location not used in the current store s. Using this new
location the after: state specification tells us that

¢ thenewly created environment associates the left-hand side vari-
able with the new location, and

¢ the newly created store associates the location with the value (n)
in the C register.

Note also that the machine switches into search mode again.

Stop! How would you implement “find a new location” in your favorite
programming language? What does this implementation depend on?

The second pair of cases in figure 22 concerns local variable declara-
tions, specifically nested block statements:

1. A machine in search mode that encounters a top-level stack frame
whose sequence of declarations is empty and its sequence of state-
ments starts with block has to continue the search inside this block
statement. Hence the after: state specification pushes a new frame
on the stack. This frame combines the current environment with a
quasi-program formed from the block statement: note the $ marker in
the final-expression position. From here the search continues.

2. The CESK machine recognizes that a nested block’s instructions have
been executed when the top-most stack frame contains an empty se-
quence of declarations, an empty sequence of statements, and the
marker $. If a machine states satisfies this before: description, the
transition function creates a state that pops the top-most frame. Con-
cretely, this means

¢ the environment of the top-most stack frame becomes the cur-
rent environment in register E, and

The CESK Abstract Machine: Local Declarations 83

¢ then the top-most frame disappears.

Note that the machine remains in search mode.

In sum, the execution of a variable declaration causes a machine to allocate
locations. Otherwise the use of variables just requires an indirection of
looking into the environment first and then into the stack.

Stop! The case for the final return expression is missing. Formulate the
missing case for the CESK transition function. Let the corresponding case
for the CSK machine guide your design.

Stop! Design and implement the transition function in your favorite
programming language using your data representations from the preced-
ing subsection.

name(s) and term(s) standing in for

c a generic control

e el generic environments

s,s1 generic stores

k a generic continuation

d a closure

n, xn, yn, zn numbers

XV, z program variables

x1, yl, I locations

1, ths, tst expressions

def* a potentially empty sequence of definitions
stmt, thn, els, body statements

stmt* a potentially empty sequence of statements
e[x] the location at variable x in environment e
s[x1] the value at location 1in store s

e[x = xI] an environment like e, but x stands for x1
s[xl = n] a store like s, but x1 stands for n

Figure 23: Conventions for the CESK transition function for Core

Stop! Take a look at figure 23, which lists the notational conventions
used to describe the transition function for the CESK machine. As you

84

Section 4

tackle this chapter’s project next and the projects in the following chapters,
keep this table in mind and consult it often.

Program HEES
Declaration ::=

Statement

Block =

Expression

(Declaration*® Statement® Expression)
(def Variable Expression)

(Variable = Expression)
(1f0 Expression Block Block)
(whileO Expression Block)

Statement
(block Declaration® Statement™)

GoodNumber

Variable

(Variable + Variable)

(Variable / Variable)

(Variable == Variable)

The set of Variables consists of all Names, minus keywords.

The set of GoodNumbers comprises all inexact numbers

(doubles) between -1000.0 and +1000.0,

inclusive.

Figure 24: The grammar of the Core language

4 Project Language: Core

Figure 24 presents Core, the model language that represents the primitive
but universally shared syntax of most widely used programming languages.
It adds local variable declarations to the Declared language, and it adds a
condition and a looping construct to the latest version of Sample. Addition-
ally, its Expression sub-language comes with two new forms:

¢ a division expression, which divides two numbers, and

It really is wrong to
compare inexact
numbers (doubles) for
equality. This topic is
beyond the scope of the
book, however; it
belongs into a first
course on
programming.

® a comparison expression, which compares two numbers, yielding 0.0
if they are the same and 1.0 otherwise.

A straightforward adaptation of the CESK machine for the Sample lan-
guage yields a semantics for Core. In a sense, the set of states just contain

Project Language: Core 85

additional forms of syntax; nothing else changes. The transition function
needs cases for the evaluation of the two new forms of expression, and it
needs cases for searching the next expression in conditionals and loops.
That's it, but also see the next subsection.

Control Environment Store Kontinuation

search for expression in if
before: 1 e s & [, (if0 tst thn els)::stmt*, r)
after: tst e s « [1, (if0 tst thn els)::stmt*, r)

pick then branch from if0

before: n e s { [1, (f0 tst thn els)::stmt*, r)
subject to: nis 0.0
after: 1 e s € [] thnzstmt*, r)

pick else branch from if0

before: n e s €[], (f0 tst thn els)::stmt*, r)
subject to: nisnot 0.0
after: 1 e s K [1 els:stmt*, r)

Figure 25: The CESK transition function for Core: conditionals

Figure 25 gathers the cases for the transition function that describe how
it deals with conditionals. The first case explains what happens when the
machine is in search mode and encounters a conditional in the top-most
frame of K as the next instruction. As the after specification shows, the
conditional’s test expression becomes the content of C.

Once the machine has evaluated this expression, it picks one of the two
branches and discards the remainder of the conditional. The chosen branch
becomes the first of the sequence of statements in the top-most frame of K,
while the C register is set to T, meaning the machine is back in search mode.

Stop! Take a close look at the figure. How does the machine differenti-
ate the two cases?

The cases in figure 26 explain how the transition function treats while0
loops. In a way, the three cases mirror the cases for conditionals, though
the generated states differ. Again, if the machine is searching for the next
expression and encounters a looping statement as the first one in K, the
loop’s test expression is placed into C.

86 Section 4

Control Environment Store Kontinuation

search for expression in while
before: 1 e s € [1, (while0 tst body):stmt*, r)
after: tst e s € [, (while0 tst body)::stmt*, r)

decide whether to run while loop (positive)

before: n e s € [, (while0 tst body)::stmt*, r)
subject to: nis 0.0
after: 1 e s € [1, body:o,r)

where o = (while0 tst body)::stmt*

decide whether to run while loop (negative)

before: n e s { [1, (while0 tst body)::stmt*, r)
subject to: n is not 0.0
after: 1 e s K [1 stmt*, r)

Figure 26: The CESK transition function for Core: loops

What happens when the value of the test expression is found, is the
interesting part. The first case—when the value is 0—tells us that the after:
state contains a newly synthesized statement in the top-most frame of K. In
a conventional syntax, we might write this:

body; whileO (tst) body

That is, the body part of the while0 statement becomes the first instruction of
the sequence of instructions. Furthermore, the original while0 statement is
now the second one; after all, once body is executed the loop may have to
run again. And, because body is a Block and there is no obvious expression to
evaluate next, the machine is instructed to search for the next expression.
Stop! Take a close look at the second case in figure 26 to make sure you
understand how it works.

Finally, the last case in figure 26 informs an implementer of what hap-
pens the value of the test expression in a while0 statement is not 0. The after:
state specification tells us that the while0 statement is discarded from the
top-most stack frame, leaving just the remainder of the sequence of state-
ments (stmt*) in place.

Project Language: Core 87

41 Why Core? Why CESK?

Core can express all classic computations, meaning the partial-recursive
functions of the Church-Turing hypothesis. Also, its syntax and seman-
tics is one that all programmers immediately recognize. In this spirit, Core
can serve as the foundation from which we investigate truly interesting
questions of pragmatics.

Stop! These claims assume that we understand what each Core state-
ment and expression computes. But we haven't articulated the cases for
comparison and division yet. Do so.

While programmers may acknowledge that, in theory, Core is every-
thing needed, none of them would want to develop a piece of software
in this impoverished syntax or variants thereof. Software development
requires much more than Church-Turing computability, both in terms of
expressive syntax and pragmatics.

Also, the CESK semantics is easily adapted to any future extension with
expressions and statements. Changing the set of states require a “re-direct”
to the revised BNF productions. The actual work consists in adding cases
to the CESK transition function:

¢ Every new kind of expression can show up in the C register, and there-
fore we need an evaluation rule for those occasions. Like the case
for addition, these evaluation rules essentially appeal to a function
in mathematics or the implementation language chosen to realize the
machine.

* For every new kind of statement, the transition function must be
equipped with a rule for finding the next nested expressions to be
evaluated and for how to use the value to change the K register once
the value of the expression is found.

If a new kind of statement contains more than one sub-expression, it
might be necessary to add several such sets of rules to the transition
function.

Stop! How could the CESK machine deal with a for loop or a multi-pronged
conditional such as a numeric switch statement?

In sum, Core and CESK jointly set us up for a proper and reasonably
smooth investigation of the pragmatics behind programming language con-
cepts that actually affect software developers.

This book focuses on
pragmatics, not
expressive power.
Readers interested in
the second topic may
wish to check the
literature.

This standard is
known as IEEE 754.

88 Section 4

4.2 The Meaning of Numbers, Errors

Stop! Can your transition function deal with the cases for comparison?

One way to formulate the case for division is to copy the cases for addi-
tion from the preceding section and to replace + with /. In the before: con-
dition, the symbol refers to what the Core programmer writes down, while
the / in the after: specification refers to the division operation in mathemat-
ics or the chosen implementation language.

If / denotes mathematical division, every reader knows exactly what
it means. But, as you know, computer hardware does not implement real
numbers; it represents them as inexact numbers, generally known as IEEE
floats or doubles. Almost all programming languages therefore use this
standard to represent numbers. Sadly, even addition of such numbers—an
operation everyone considers straightforward—isn’t the addition we know
from grade school.

Stop! Write a short program in your favorite language that adds two
very large doubles and prints the result.

Control Environment Store Kontinuation

evaluate a division (success)
before: (y / z) e s k
subject to: zis not 0.0

after: double ieee division of yn by zn e s k
where yl = e[y]
and z1 = e[z]
and yn = s[yl]
and zn = s[zl]

evaluate a division (failure)
before: (y / z) e s k
subject to: z1is 0.0

after: error e s [1

Figure 27: The CESK transition function for Core: division

Assuming you choose a truly large number the result is +inf.0. Computer
scientists refer to this phenomenon as numeric overflow, meaning the result
is such a large number that computer hardware can’t represent it. Similarly,
the result of a division operation can be so small that it can’t be represented;
this is called numeric underflow.

Project Language: Core 89

Division comes with another problem, too. In grade school we learn
that division doesn’t work when the divisor is 0. A mathematician says that
division is a partially defined operation. Hardware people trick people into
thinking that (/ 1.0 0.0) is +inf.0, too.

For pedagogic reasons, this book deviates from the IEEE standard for
just this one case. Instead of allowing division by 0.0 to yield “infinity,”
the CESK machine for Core “jumps” signals an error. The specification of
this distinction consists of two cases in the CESK transition function; see
figure 27. Each case comes with a side-condition labeled “subject to.” In
the first one the side-condition adds the constraint that the divisor is not
0.0, while the second case’s side-condition expresses the opposite. The after:
part of the second case specifies a state whose C register contains an error
element, which makes it a final state and causes the machine to stop.

4.3 Project Tasks

Use your favorite programming language to solve the following exercises.

Exercise 10. Design an AST data representation for Core. Implement a
parser for Core that maps an S-expression to an instance of AST.

Exercise 11. Design and implement a validity checker for the Core lan-
guage. Remember that a validity checker consumes an AST without error
nodes. Its result is the same AST if all variables are properly declared;
otherwise it is an AST that contains error node that mark references to un-
declared variables.

Exercise 12. Formulating a transition function in your favorite language
requires the addition of a case for comparison expressions. Unlike in the
case of addition and division expressions, there is no obvious function for
comparing two numbers. Clearly, the comparison of two numbers must
yield a number, because numbers are the only values in Core. Since the
point of a comparison is to make decisions—which branch of a conditional
to evaluate or whether to continue the execution of a while loop—returning
0 for one of the two cases is also natural. We choose to say the comparison
function yields

* 0.0 when the two given numbers are the same;
* 1.0 when the two given numbers differ.

Explain the rationale for specifying the outcome in both cases.
Exercise 13. Design a data representation for the states of the CESK
machine for Core. Implement the load, transition, and unload functions. By

90 Section 5

combining these functions with the runMachine function (see section 2 of
Chapter III), you obtain a complete semantics for well-formed and valid
Core programs.

Exercise 14. Adapt the main function from figure 12 so that it can run
the entire process of parsing, validating, and determining the meaning of a
Core program.

5 Scope in the Real World

This chapter presents the most common meaning of scope. It is often called
“lexical scope,” because each variable declaration connects to an easily
identified region of program text. While the text may contain holes due
to a re-use of a variable name, the direct association enables programmers
to think about basic relationships among variables and the flow of values
from one to another.

A few languages stick to lexical scope for their core syntax. C# and
Java are examples. Many don’t. JavaScript and Python come to mind. The
former comes with deprecated linguistic constructs that make it extremely
difficult for a reader to understand which name refers to which variable,
not to speak of the flow of values from one variable to another. The latter
does not know variable declarations. When a program assigns a value to
a name, it is also not immediately clear where this name is visible. Thus,
although both languages support mostly conventional syntax, determining
scope and reasoning about value flow by just reading program text can be
surprisingly hard.

