CHAPTER VI STRUCTURED DATA AND ABSTRACTION

Why do languages support structured data and abstraction mechanisms?

1 The Pragmatics Question

Although the Core language can express all functions that Church and Tur-
ing consider computable, you would have a hard time writing a program
that allows people to manipulate geometric shapes in the two-dimensional
plane. Consider the simplest shape of all: a Cartesian point. You remember
that you need two numbers to describe the location of Cartesian points: the
x coordinate and the y coordinate. But, all you have as a Core programmer
are plain numbers. So now you wonder whether

it is possible to represent the two coordinates of a Cartesian
point with a single number.

While the answer is affirmative, it won't satisfy you. You will need a lot of
code to combine the two numbers into one; you need even more code to
extract the two coordinates from such a number; and you need a few other
ways of manipulating such Cartesian coordinates.

Worse, when you look at a numeric constant in your program, you just
don’t know whether it represents this number or a coordinate. This obser-
vation has tremendous implications for code that must represent Cartesian
coordinates in this manner. Imagine that your code treats a single number
as the representation of a coordinate instead of a number representing a dis-
tance between two points. Or, your code may deal with a number that rep-
resents a distance as a coordinate. Since numbers come without any marker
that classifies them as either plain numbers or representations of Cartesian
coordinates, you cannot equip your code with appropriate checks. The best
you can do is to create a rigorous and comprehensive test suite that ensures



This discussion
ignores chars,
Booleans, and other
essentially atomic
forms of data similar
to numbers.

92 Section 1

that everything works properly. And if it doesn’t, looking for a bug will be
extremely painful.

This scenario reveals another problem with the Core language, namely,
the complete lack of an abstraction facility. Clearly, the operations for turn-
ing two coordinates into a single number and for extract the x or y coor-
dinates from a single number are going to show up all over a program.
Even if we assume that they are short calculations—one-liners if we allow
nested expressions—every reader of the program must assign a name to
these (deeply) nested expressions: combine, number2x, number2y, and so on.
In short, Core lacks the ability to name expressions and re-use them. More
generally, the language lacks a construct for abstracting identical or similar
pieces of code into a single form that can be referred to via a name.

In sum, any use of Core raises the following two related questions:

* how can developers represent structures information as data, and

* how can developers name—and abstract over— repeated pieces of
code so that it becomes possible to reuse them easily.

1.1 Design Choices

Historically, language creators gave distinct, unrelated answers to these
two questions. To permit a direct form of representation of structured in-
formation as data inside of a programming language, they added arrays (of
numbers). Arrays have come in many forms and shapes: one-dimensional,
vector-like data; two-dimensional ones, resembling matrices; 0-based, 1-
based, and programmer-defined based arrays; and many more flavors. In
essence, though, an array is little more than a slice of memory from the un-
derlying hardware, possibly equipped with some additional pieces, such
as length information.

As for naming pieces of code and abstracting over differences, lan-
guage creators introduced procedures and functions. The latter word was
chosen in recognition of the relationship between language design and
mathematical notation where functions—like those students get to know
in pre-algebra courses—name expressions and abstract over the differences
among similar expressions. Of course, due to the imperative nature of his-
torical languages—quite similar to Core—they rarely represented mathe-
matical functions.

Over time, the designers of programming languages realized that nei-
ther arrays nor plain functions met the needs of programmers concerning



The Pragmatics Question 93

the representation of complex information. Two different solutions to these
questions emerged:

¢ The first one is the idea of a class, which combines several pieces of
data via fields with methods. The latter enable programmers to de-
fine function-like facilities that process instances of this class.

¢ The second one combines first-class functions with structures, also
known as records. Functions come with support such as pattern-
matching for processing structures; if they are also first-class values,
it is possible to store functions in structures.

At this moment in time, the first approach dominates the landscape of pro-
gramming languages, though flavors of the second alternative are making
a come back.

This chapter presents a model of the first approach, focusing on the
most essential elements:

¢ (Classes that have a fixed number of fields and methods.

¢ The construction of class instances must supply as many values as
there are fields. The resulting values are so-called first-class objects,
distinct from numbers and distinct from instances of other classes.
They can be passed to methods as arguments, placed in variables,
stored in fields, and so on.

¢ Allfields and methods are public, meaning a piece of code with access
to an instance of the class can read any field, modify the content of
any field, and call any method.

This sparse model—lacking sub-classing and type-like features—is a good
starting point to gain a first understanding of how the addition of classes to
a language such as Core answers the two questions raised here. Addition-
ally, even with all these simplifications, the model enables us to consider
the rather dramatic increase in costs and benefits over Core.

1.2 Costs and Benefits

The addition of classes to a language such as Core comes with quite a num-
ber of pluses and minuses for the developer. As for the benefits, the are
essentially the answers to the above questions, but let’s spell them out:



94

Section 1

With classes, it becomes easy to formulate reasonably direct data rep-
resentations for the information that a program is to process.

Since class instances differ from numbers and each other, program-
ming with classes also reduces the potential of conflating one piece of
data for another. Coding becomes less error prone.

Methods are a natural mechanism for naming repeated pieces of code.

If they are parameterized—as they usual are—they also help pro-
grammers abstract over similar pieces of code. That is, methods ab-
stract over pieces of code that differ in pieces that can be named and
whose values can be passed into a method.

The inclusion of methods in classes signals to future readers that these
pieces of functionality belong to this specific form of data.

Unsurprisingly, the addition of a complex sub-language such as a class

system also injects some complexities into programming that a purely nu-
merical language doesn’t suffer from. Most importantly, programmers must
grok a complex model of computation, meaning syntax and semantics, be-
fore they can truly take advantage of the pragmatic benefits. Since a class-

based language comes with a lot more syntax than say Core—meaning BNF
productions-and validity constraints—forming correct programs also be-

comes a more complex task. The semantics of a class-based language is
also far more complicated than the one of Core:

* Asa program instantiates a class, it allocates some space in the store

for the values of the fields and the name of the class. Semantically,
this space is a single piece of data. It can find its place in a variable or
the field of another object; but it may also just be part of an expression
that retrieves a field’s value or calls a method.

One consequence is that a programmer must become keenly aware of
the distinction between lexical scope and dynamic extent. The life
time of a variable corresponds to its lexical scope. By contrast, the
life time of an object depends on dynamic properties of the program.
As long as any variable or field can refer to an object located in the
store, programmers consider the object as being alive; otherwise it is
dead. Language researchers speak of the object’s dynamic extent, i.e.,
the time between the birth of the object and its death. Semantically
speaking, variables exist in environments, objects in stores.



The Pragmatics Question 95

Programmers must learn to consider dynamic extent, a far more com-
plex notion than lexical scope, simply because it is a time slice of a
program execution rather than a fixed region of text.

¢ Furthermore, because a program can point several variables and fields
to the same object—that is, the same place in the store—changes to the
object are visible from many different places in the program.

Language researchers refer to this phenomenon as aliasing.

Programmers must learn to reason about the aliasing of objects, espe-
cially whether they want the effect in some situation or not. And if
they don’t want it, they need ways to avoid it.

* In some way, a method call resembles the use of a function in pre-
algebra, once the targeted method has been identified. It is this latter
part of a method call that imposes work on the programmer. Since
different classes may contain methods with the same name (yet dif-
ferent expression), the meaning of a method call is only clear when a
programmer understands which object is the target of the call.

Language researchers dub this concept dynamic dispatch, because the
actual method is identified only during program execution when the
“dispatch” takes place.

A programmer must carefully think about code to ensure that code
refers to the truly desired method. If a program comes with the classes
Artist and Cowboy and both supply a method named draw, it is unlikely
that these methods are meant to exhibit the same behavior.

In sum, while a class system clearly benefits programmers in many work
situations, it also raises the bar for thinking about code.

From the perspective of the language designer, adding classes to Core
is a major undertaking. It means significant changes to the syntax, both
grammar and validity constraints. It requires an extensive revision of the
existing semantics plus the development of a semantics of classes: field
access, field mutation, and method calls. All of these changes imply a
good amount of implementation work: the parser, the validity checker, the
compiler, and the run-time system. But, in the end, these additions are of
tremendous help to working developers and therefore worth their careful
design and implementation.

The rest of the chapter introduces Class, the syntax and semantics for a
class-based extension of Core. With Class in hand, we can discuss the com-



96 Section 2

plexities of class-based, object-oriented programming compared to rather
simplistic model of computation from the preceding chapters.

Exercise 15. Imagine an extension of Core with structure-type defini-
tions (records) and procedures. Which of the just presented benefits and
costs of the class extension do not apply to this alternative?

Exercise 16. Consider an extension of the language proposed in exer-
cise 15 so that functions are first-class values in addition to structures and
numbers. In particular, assume that the fields of structures may contain
functions. Which of the just presented benefits and costs of the class exten-
sion do not apply to this second alternative?

2 Project Language: Class

Adding the syntax of a class system to Core requires the addition of pro-
ductions to the language’s grammar and the introduction of appropriate
validity rules. While the first is reasonably straightforward, the second one
exposes a critical tension inherent to language design: which parts of a
program to check before program execution and which ones to check during
execution. Indeed, the tension goes back to the origins of computer science,
concretely the theory of computation, which tells us that not all problems
are solvable via algorithms.

2.1 Class: the Grammar

Figure 28 presents the grammar of Class, the class-based extension of Core.
A Class program consists of a possibly empty sequence of class definitions
followed by the program’s body. In a language such as Java, the latter cor-
responds to the main method of the main class. The body is like a Core pro-
gram that may also contain expressions and statements related to classes.

The keyword class marks a class definition, which consists of an em-
bedded parenthesis-delimited sequence of the names of fields followed
by a possibly empty sequence of method definitions. In turn, a method
definition comes with a parameter list—a sequence of variable names sur-
rounded by parentheses—and a method body; the latter is again a sequence
of variable declarations, statements, and an expression. This expression
computes the value that a method call returns.

Next, the Expression production enables object creation, access to a field,
method calls, and object identification. Field modification, though, is a
statement, because it has only an effect, not a result.



Project Language: Class 97

Program ::= (Class® Declaration* Statement® Expression)
Class ::= (class ClassName (FieldName*) Method¥)
Method ::= (method MethodName (Parameter¥®)
Declaration¥
Statement™®
Expression)
Declaration ::= (def Variable Expression)

Statement ::= (Variable = Expression)
| (1if0 Expression Block Block)
| (whileO Expression Block)
| (Variable --> FieldName = Expression)

Block ::= Statement
| (block Declaration® Statement™)

GoodNumber

Expression =
| Variable
\
\
\

(Variable + Variable)
(Variable / Variable)
(Variable == Variable)

new ClassName (Variable%*))
Variable —--> FieldName)

Variable —-—> MethodName (Variable®))
Variable isa ClassName)

I«
I«
I«
I«
The set of ClassNames is the same as the set of Variables.
The set of FieldNamess is the same as the set of Variables.
The set of MethodNames is the same as the set of Variables.
The set of Parameters is the same as the set of Variables.

The set of Variables consists of all Names, minus keywords.

The set of GoodNumbers comprises all inexact numbers
(doubles) between -1000.0 and +1000.0, inclusive.

Figure 28: The grammar of the Class language

Class names, field names, method names, and method parameters are
drawn from the same set as variables. The BNF productions use different
(meta)names for these sets just to explain their various roles in a program.



98 Section 2

Also, these names indicate where it is possible to reference these names, a
critical aspect of validity checking and semantics.

A second look at the grammar reveals that the word “this” isn’t men-
tioned anywhere. But, as every student of computing knows, “this” seems
to play an important role in method bodies. Specifically, the word “this” is
a reference to the concrete object on which the method is called; it is often
dubbed the target of a method call. Syntax design of a class-based language
can choose to make “this” special or to treat it as an ordinary variable that,
semantically, has meaning inside of a method body. The design of Class
takes the second approach.

Exercise 17. Design an AST data representation for Class. Implement
a parser for Class that maps an S-expression to an instance of AST. Re-use
your solution from exercise 10 as much as possible.

2.2 Class: Scope

The scope of a class’s name is the entire program. All expressions in a
program may refer to any defined class.

Next, the parameters of a method are visible in its body, that is, the
following sequence of declarations, statements, and return expression. Fol-
lowing tradition, the name this denotes the target object of a method call—
by default and implicitly. To be precise, the method header introduces the
name this, whose scope ranges from the end of the parameter list to the end
of the method.

Parameters, including this, are just variables. Hence, a programmer may
declare a variable this inside of a method or use the name of a parameter for
a declared variable. Doing so will shadow the implicit declaration of this
and the parameter of the same name, respectively.

By contrast, FieldNames and MethodNames do not have a scope. That is,
expressions and statements may use any name as an “index”—i.e. use the
—> notation—for a FieldName or a MethodName into an object. If the target
object comes with an appropriately named field or method, the phrase has
meaning; otherwise it doesn't.

Given these scoping rules, let’s consider the two Class programs in fig-
ure 29. Both come with one class definition named C, and both create one
instance of this class in the program’s body. The program on the left uses
C in the program’s body, and it refers to this as the target object in the set
method. In contrast, the program on the right uses C inside the class and



Project Language: Class 99

((class C (f) ((class C (f)
(method set (p) (method make (p)
(this -> £ = p) (def this 66.0)
42.0)) (new C(this))))
(def one 1.0) (def one 1.0)
(def obj (new C(one))) (def obj (new C (one)))

(def fld (obj —-—> f))

(obj ——> £ = (obj —-—> set(one))) (obj = (obj ——> make (one)))
(one = (obj —-> £f)) (one = (obj —-> f))
(one + fl1d)) one)

Figure 29: Two simple Class programs

in the program’s body. Furthermore, it declares a variable named this im-
mediately below the method header of make, thus making it impossible to
refer to the target object in the remainder of the method’s body.

Exercise 18. Use your experience with object-oriented languages to ex-
plain the intuitive meaning of the two programs in figure 29.

2.3 Class: Validity, the Easy Part

Since the design of Core avoids “undefined variable” errors, the question
arises whether similar properties can hold for the Class language. In other
words, we are checking whether to impose validity constraints on well-
formed Class programs with the goals of

* providing feedback to the programmer during code creation, and
¢ simplifying the semantics of the Class language.

As it turns out the design of the Class language comes with two kinds
of validity constraints that programmers would find useful and that lan-
guage designers could use to simplify the semantics. The first kind con-
cerns the definitions of classes, the major new component of the Program
production of the BNF grammar. The second kind concerns the additional
expressions and statements that enable the creation and manipulation of
instances. Surprisingly, the two kinds of validity concerns radically differ
from each other, in nature and in eas-of-checking. While this section deals
with the first, easy kind, the next one covers the difficult problems.



100 Section 2

Let’s start with the programs in figure 29. Both of them are clearly well-
formed and valid programs. Now contrast this first program with the fol-
lowing class:

((class C (f) (method m(a) 42.0))

(class C (f f)
(method m(p p) 42.0)
(method m(p) 21.0))

def one 1.0)
def instance (new C (one)))

def field (instance ——> f))
instance -—-> f = (instance —--> m(one)))
one = (instance -> f))

(
(
(
(
(
(one + field))

It defines two classes—with the same name. Worse, the second, boxed class
exhibits several other issues that every major programming language flags:

¢ The symbol C is used twice to name a class.

¢ In the second well-formed class definition, f is the name of two fields.
¢ Similarly, both methods in the second class definition are named m.

* And finally, the first method definition has two parameters named p.

Clearly, two class definitions with the same name make no sense, because
the natural scope for one class definition is the entire program, including
the class definitions that precede it and those that follow.

Exercise 19. Explain in a similar manner why duplicate field names,
duplicate method names, and duplicate parameter names make no sense.

Exercise 20. Explain why we admitted duplicate variable definitions in
the same sequence of Declartions.

Turning these examples of meaningless program pieces into validity
constraints is straightforward. The first one is about the global sequence
of class definitions:

No two classes should have the same name.
The second one is all about constraints about code within a single class:

No two fields should have the same name, no two methods should have
the same name, and no two parameters of a method should have the
same name.



Project Language: Class 101

Since there are two distinct set of rules, a well-designed static checker
should employ two passes:

* one for enforcing that all occurrences of ClassNamess refer to defined
classes; and

¢ another one for making sure that the various kinds of names within
field and method definitions (ClassNames, FieldNames, MethodNames, and
Parameters) are distinct.

Exercise 21. Design and implement a validity checker that enforces the
validity rules for Class. The checker consumes error-free ASTs from exer-
cise 17; if it finds errors it annotates the AST.

Once these validity constraints are successfully checked, we can think
of the defined collection of ClassNames as a set. Indeed, it is just like the set
of variables that are declared at the top of the program. And this suggests
an analogous rule for the occurrences of ClassNames:

All occurrences of a ClassName in expressions and statements must re-
fer the name of one of defined classes.

Exercise 22. Turn this rule into a static checker,—The implementation
follows the same pattern as checking that all variable references point to
declared variables. Given a well-formed program, the set of classes is one
direct component of its AST. This node contains the AST for all classes and,
inside of those, their names. Hence, a static checker can enforce the rule by
visiting all expressions and statements in the given program and checking
that every occurrence of a ClassName is a member of the set of class names.

2.4 Undecidable Problems and Validity

Before we continue our exploration of validity constraints for Class, we
need to take a step back and consider the nature of computational prob-
lems. As it turns out, some problems are undecidable, and this idea is
directly connected to the validity checking in language implementations.

Let’s make this idea precise. A problem is a set S of data representations
(of information) together with a subset T = S of “positive” elements; all
other elements are “negative.”. Here information means programs in Class,
and ASTs are data representations of these pieces of information.

Such a problem is decidable if there is a total function D from S to the
Booleans such that for all s € S

Gadel, Church, and
Turing discovered
intrinsic limitations
on logic and
computing,
respectively.



102 Section 2

e if D(s) = true, then s € T, and
e if D(s) = false, thens ¢ T.

If there is no such total function D, the problem is undecidable.

Here is a first concrete example. Take the problem as the set S of all
Class ASTs, and the set T as those ASTs for which an evaluation on suitably
modified CESK machine terminates. People call this the “halting problem”,
and Turing proved that it is undecidable.

In the context of a class-based language, we get a second concrete ex-
ample that is relevant to software developers. Let’s again start from the
set of all ASTs as the set S, but take as T all those field-access nodes in the
AST that an evaluation o suitably modified CESK machine reaches. If so,
we could also consider T as the set such the evaluation of (o -> f) always
succeeds. The question is whether such problems are decidable.

At this point, you might wonder whether D could use the CESK ma-
chine to determine whether a specific property holds for some Class AST.
In other words, why shouldn’t D run the given program on this CESK ma-
chine and observe how field references are evaluated?

Given your experience with writing and running programs you know
that program executions may not terminate. Using Core, a programmer
may write (while0 0. (x = x)), which causes the (well-formed and valid) pro-
gram to loop forever. In short, if D relied on the CESK machine, it wouldn’t
be atotal function.

Stepping back, this brief excursion into computation theory relates va-
lidity checking to pragmatics. As a developer enters program text into an
IDE, programming language tools such as the parser and validity checker
are supposed to provide feedback. To be effective, these tools must always
terminate and provide the IDE with an answer that can be rendered as feed-
back. Conversely, the problems that these tools address must be decidable.
In particular, the developers want feedback before—and indeed without—
running the program.

Note Just because a problem is undecidable does not mean that we can-
not determine whether s € T for some specific s. The key is that we cannot
do so for all s. Researchers who investigate IDE tools occasionally exploit
this “loophole.” They construct validity-checking tools that attempt to de-
cide whether the code is valid and, if the answer isn’t available within a
certain amount of time, it is ignored. We ignore this ambitious idea here.



Project Language: Class 103

2.5 Class: Validity, the Undecidable Part

We can now return to the development of validity constraints for Class and
consider some problems that look more ambitious than those of section 2.3
of this chapter. Based on your experience with class-based programming
languages, you might wonder whether the following validity problems are
decidable and thus worth adding to a model of Class:

A (new C (1 ... xn)) expression may fail because C does not have 7 fields.

* A field access (target — f) may fail because target is not an object or there
is no field f.

* A field modification (target — f = ths) may fail because target is not an
object or there is no field f.

* A method call (target — m(...)) may fail because target is not an object or
there is no method m.

While the first problem is decidable, the remaining three are undecidable.

Concretely, there are no functions that consumes a program’s AST and
returns true if, say, a field access expression cannot fail. Doing so would re-
quire inspecting the AST and to determine exactly which objects target may
ever denote. And this kind of problem is exactly one of the undecidable
ones that people investigated in the 1930s and found undecidable.

A subset of this problem is decidable, however. When the target is this
and there is no parameter and no locally declared variable named this, a va-
lidity checker could determine whether the object comes with a field named
f. Similarly if the target of a field mutation or a method call is this, a function
could use the given AST to determine whether the named field or method
is available.

Since these cases are rather special, and since the expressions in ques-
tions raise additional questions, we delay the treatment of such validity
constraints. Technically speaking, Chapter VIII covers the addition of a
type system to our language models, at which points validity checking
works rather differently. Instead, we enrich the CESK semantics so that it
comes with checks that determine whether a field access, a field mutation,
or a method call is meaningful.



By comparison,
numbers are easy to
represent, which is
why numeric
expressions didn’t
deserve a discussion.

104 Section 3

3 The CESK Machine for Class

A modified CESK machine serves to explain the semantics of classes. Since
the collection of classes does not change over time, it plays the role of a
constant for the transition function. The load function can set up this quasi-
constant so that the transition function has access. As for the sets of con-
trol strings, environments, stores, and continuations, revising them is quite
straightforward. In addition to the statements and expressions of Core, the
ones for revised CESK machine must account for the additional statements
and expressions in Class. Finally, a semantics for Class must assign meaning
to instances of classes, which implies that the set of values now comprises
both numbers and data representations of objects.

3.1 Representation of Objects

The expression (new C (x y z)) expresses the intention to create an instance of
C whose three fields are initially associated with the values of the variable
x, v, and z. This information—the class combined with the field values—
needs a representation in our model, because this is how models assign
meaning to expressions. Here are some possibilities::

1. The first five chapters present models that are completely mathemat-
ical. If we wanted to continue in this fashion, we would have to use a
protocol for representing objects as bundles of locations in the store.
For example, if a class has 7 fields, the representation of an instance
could use n+1 slots in the store. One of them would contain the name
of the class, and the remaining slots would contain the value of fields.

2. Another approach to extend the mathematical approach of the first
five chapters is to use a vector-like concept from mathematics to rep-
resent an object—something like a Cartesian point—and to stick this
representation into a single location. In practice, this idea means to
pick some immutable data structure in the chosen implementation
language and to stick instances of this data structure into the store.
When the machine evaluates a field-access expression, the CESK tran-
sition function can retrieve the object from its location and index the
designated field.

3. When it comes to modeling mutation, both purely mathematical ap-
proaches cause serious complications. Although possible in princi-
ple, we choose to use a third approach—the use of a mutable data



The CESK Machine for Class 105

structure in the chosen implementation language. This choice comes
with one clear downside: we can no longer interpret the model with
our (quite simple) understanding of mathematics. One clear upside
is that this approach is easy to implement.

We go with alternative 3, emphasizing ease of implementation over math-
ematical reasoning.

Note By tying the model to a mutable data structure in the implemen-
tation language, we choose the so-called meta-language approach. That is,
our e model of semantics no longer just relies on a neutral understanding
of mathematical concepts, such as sets and functions, but, at least to some
extent, of a tru understanding of our chosen implementation language. As
John Reynolds pointed out a long time ago, this may inject elements of the
implementation language into the modeled language. With the CESK ap-
proach, it is fortunately possible to avoid most of the problems in a natural
way, and the rest of the book makes sure that the only point of “contact”
remains the data representation of objects.

Exercise 23. Design a data representation for instances of classes in your
favorite programming language. Include the functionality (1) for accessing
and modifying fields and (2) for retrieving the AST for a specific method,
assuming a collection of classes is also given.

3.2 CESK States for Class
Let’s recall what the content of the CESK machine’s registers represents:

¢ Control strings direct the CESK machine. The register contains one of
three kinds of elements: an expression to be evaluated; the value from
an expression evaluation; an error token, causing the machine to stop;
or the T token, indicating that the machine is searching for the next
expression to evaluate.

As pointed out, the set of values comprises both numbers and data
representations of objects.

The Class language adds several forms of expressions to Core: new, isa,
target — f, and target — m(...). For each of these expressions, we need to
equip the transition function with corresponding cases.

Additionally, the search process may find a field-mutation statement,
which places an expression into the C register. Once the value of such

See “Definitional
interpreters for
higher-order
programming
languages” in ACM's
Annual Conference
Record (1974).



106

Section 3

an expression is found, the transition function can wrap up the exe-
cution of the statement via a use of meta-functionality.

Environments associate variables with locations. While the CESK ma-
chine for Core allocates new locations only for variable declarations,
the CESK machine for Class also allocates locations for the parameters
of a method when it is called.

Stores associate locations with values. Keep in mind that the set of
values is more than just the set of numbers in this variant of the CESK
machine.

Continuations are potentially empty stacks of closures. Each such clo-
sure represents which part of the given program’s instructions remain
to be executed.

Figure 30 is an amendment to the notational conventions of figure 23. As
you study the following subsections, consult these tables as needed.

name(s) and term(s) standing in for

C a name for a class

f a name for a field

m a name for a method

o a program variable that is supposed to denote an object
x* a potentially empty sequence of program variables

v values, include numbers and objects

v* a potentially empty sequence of values

obj an object in the implementation language

thisL a location for this

x1*

a potentially empty sequence of locations

Figure 30: Additional CESK Conventions for Class (also see figure 23)

As for the classification of the sets of states into initial states, intermedi-
ate states, and final states, the definitions remain the same. The set of initial
states turns the variable declarations, statements, and return expression of
a program into the first closure. Similarly, the final states are those that con-
tain a value or the error token in the C register and an empty stack in the K
register. All remaining states are intermediate states.



The CESK Machine for Class 107

Exercise 24. Revise the data representation from exercise 13 for the
states of the CESK machine for Class. Implement the load and unload func-
tions, which turn a program AST into an initial state and unload a final
state, respectively. Keep in mind that the load function must also extract
the collection of class definitions from the given program AST and make it
available to the transition function.

3.3 The CESK Transition Function: Adapting the Cases for Core

The definition of the CESK transition function from Chapter V almost works
for Core statements and expressions within the Class model language. But,
given that the set of values now comprises numbers and data representa-
tions of objects, the cases do not apply as-is. Consider the simple case of an
addition expression the C register:

Control  Environment. Store = Kontinuation

evaluate an addition

before: (y + z) e s k
after:  + e s k
where yl = e[y]
and zI = e[z]
and  yn = s[yl]
and zn = g[zl]

Since locations in the store map to numbers, this definition is a straightfor-
ward three-step procedure: retrieve the location of the two variables (y, z)
from the environment; retrieve the numbers associated with the respective
locations (yl, z1); and stick the sum of the two numbers (+ yn zn) back into
the C register. Now, however, the set of values comprises both numbers
and objects, and as a result the addition may not always succeed.

Figure 31 presents an adaptation of the transition function. Like the
CESK transitions for division in the preceding chapter, addition now re-
quires two cases: one for success, when both variables refer to numbers in
the current store, and one for failure, when at least one of them refers to
an object. Beyond the cases for addition, figure 31 displays the case for a
comparison expression. Like the success case for addition, it retrieves the
values of the two variables and uses the =0? function to compare them.

All of the remaining rules of the CESK transition function from the pre-
ceding chapter work mutatis mutandis. For example, the cases for if state-



108

Section 3

Control  Environment  Store

Kontinuation

evaluate an addition (success)

before: (y + z) e s
subject to: 'y and z are numbers
after:  + e s
where yl = e[y]

and zl = e[z]

and yn = s[yl]

and zn = g[zl]

evaluate an addition (failure)

before: (y + z) e s
subject to: 'y or z is not a number
after:  error [] [1

evaluate a comparison

before: (y==1z) ' e s
after:  rr e s
where yl = e[y]
and zl = e[z]
and yn = s[yl]
and zn = s[zl]

and | rr = areynand zn structurally equal?

Figure 31: The CESK transition function for Class: addition, comparison

ments remain the same, though the interpretation of the phrase “n is 0.0”
shifts to the following:

if nis a number (i.e., not an object) and n is equal to 0.0.

The same shift in meaning applies to the cases for while.

Exercise 25. Generalize the function =0?, originally specified in exer-

cise 13, so that it works for the set of values in the context of Class. Two
objects are equal if they have the same fields and the fields contain the

same values.

Exercise 26. Adapt all cases of the Core transition function from the

preceding chapter so that they apply to the CESK machine for Class.



The CESK Machine for Class 109

3.4 Creating and Checking Instances

Figure 32 shows the transitions for creating instances of a class. While the
validity checking ensures that C is a defined class, it does not guarantee
that the new expression comes with the same number of values as there are
fields in the class definition. If the two counts agree, the machine creates
an instance of C and places it into the control-string register. Otherwise, the
machine signals an error. See section 3.1 of this chapter on what the data
representation of an instance combines.

Control Environment  Store  Kontinuation

evaluate a ‘new’ expression (success)
before: (new Cx*) e s k

subject to: class C has the same number of fields as x* has elements
after:  obj e s k

where v* = s[e[x*]],...

and  obj create instance of C using v* for the values of the fields

evaluate a ‘new’ expression (failure)

before: (new C x*) e s k
subject to: class C does not have the same number of fields as x* has elements
after:  error [1 [1 [1

evaluate an ‘isa’ expression

before: (oisaC) e s k
after:  ans e s k
where obj = s[e[o]]

and = ans = check whether obj is instance of C

Figure 32: The CESK transition function for Class: instances

The third case in figure 32 concerns the isa expression. When such an
expression shows up in the control-string register, the validity check of the
syntax guarantees that C is to the name of a class defined in the source text
of the given program. The machine must determine whether the value is
an instance of C, and, if so, deliver an appropriate value.

Exercise 27. Design and implement a function that consumes the name
of a class and a sequence of values to create an instance. Re-use the solution
of exercise 23.

Exercise 28. Design and implement a function that consumes any value

Aguain, this property
could be checked but
deferring this point to
Chapter VIII is the
pragmatic alternative.



110 Section 3

and a class to determine whether (1) the value is an object and, if so, (2) it
is an instance of the given class. As for the result of this function, see the
discussion in exercise 13 and adapt as appropriate.

3.5 Field Access

In contrast to expressions involving class names, expressions involving
field and method names need semantic checks that everything matches.
For field-access expressions specifically, two situations may trigger faults if
the machine doesn’t recognize them first:

¢ The variable o may not refer to an object.
¢ While o may refer to an object, it may not have the specified field.

Since a field lookup can succeed only for objects with the desired field, the
machine must signal an error in both situations.

Control  Environment  Store - Kontinuation

evaluate a field reference (success)
before: (0o —f) e s k
subject to: 0 is an object and has the desired field

after:  ans e s k
where obj = s[e[o]]
and ans = get value of f from obj

evaluate a field reference (failure)

before: (o —f) e s k
subject to: o may not be an object or does not have the desired field
after:  error [] [] [1

Figure 33: The CESK transition function for Class: field access

The two cases for the transition function are presented in figure 33. The
tirst case specified a before: condition that includes “o is an object and has
the desired field.” Its after: state consists of the value in the field—whose
retrieval depends on your choice of data representation—and the given en-
vironment, store, and continuation. As in other error cases, the second case
in figure 33 places error into the C register and resets the remaining ones to
initial values.



The CESK Machine for Class 111

Exercise 29. Design and implement a function that consumes an object
and the name of a field and that returns the value associated with this field
in the given object. Keep in mind that due to the formulation of the transi-
tion function, it is guaranteed that the given object has the specified field.
Re-use the solution of exercise 23.

3.6 Method Calls

In Class, method calls are expressions. Like a field-access expression, a
method-call expression must satisfy certain conditions before the machine
can perform it; see figure 34. In particular, the target (o) must refer to an
object; the object must have the desired method; and the number of param-
eters of the method and the number of arguments must agree. If a CESK
state meets these three conditions, it transitions to a state that has new con-
tent for each of its four registers:

¢ The environment register contains a table that associates the method’s
parameters and this with locations that the current store s does not
associate with values.

¢ The store in the S register associates these newly allocated locations
with the corresponding values. In particular, the location associated
with this maps to the object itself.

* Finally, the machine pushes a new closure onto the continuation in
the K register. This new closure combines the (abstract syntax tree) of
the method’s body with the old environment.

¢ The control-string register contains f, because the machine must find
the next expression to evaluate. After all, the next expression to be
evaluate is somewhere in the method’s body (a sequence of defini-
tions, statements, and a return expression).

It is for this case of the transition function that the name of the class is
included with an object. Given the object that o denotes, the machine can
retrieve the class definition by using the class name. The desired method
is located in the AST of the class definition, meaning the machine can both
check the conditions of the before: specification and extract the method’s
AST itself for the after: state.

Stop! Take a close look at figure 34. Why is it unnecessary to add a case
concerning the return from a method call?



112 Section 3

Control Environment  Store  Kontinuation

evaluate a method-call expression (success)

before: (0 > m(x*...)) e s k
subject to: o is an object
... has the desired method
... the correct number of parameters

after: el sl push[cl, k]
where obj = sle[o]]
and  v*, ... = sle[x*]], ...

and [ para*,body]| = the parameters & body of method m inthe class of obj

and  cl = closure: body in e

and  thisL = anew (relative to s) location

and  xI%, .. = as many new (relative to s) locations as elements in x*
and el = [][para* =xI*],... [this = thisL]

and sl = s[xI* =v*],... [thisL = obj]

evaluate a method-call expression (failure)

before: (0 — m (x*)) e s k
subject to: o may not be an object or
... does not have the desired method
... takes a different number of arguments

after:  error [] [ [1

Figure 34: The CESK transition function for Class: method call

Exercise 30. Design and implement a function that consumes an object,
the collection of all defined classes, and the name of a method, and that
returns the (AST of) the specified method. Keep in mind that due to the
formulation of the transition function, it is guaranteed that the given object
has the named method. Re-use the solution of exercise 23.

3.7 Field Mutation

Like a variable assignment, a field-mutation statement consists of a left-
hand side and a right-hand side. For the statement to make sense, the
left-hand side must refer to an object with a desired field, while the right-
hand side is an expression. The expression’s value is supposed to be the
value of the object’s field after the statement is evaluated. Consequently, a
field-mutation statement comes with two places whose value must be de-
termined: the object target position and the right-hand side.



The CESK Machine for Class 113

Control  Environment Store  Kontinuation

search ends a field assignment
before: 1 e s € [1 (0 — f=rhs):stmt*, r )
after:  rhs e s £ [1, (0 = f =rhs)ustmt*, r )

execute a field assignment (success)

before: v e s € [1, (0 — f =rhs)ustmt*, r )
subject to: o is an object and has the desired field

after: 1 e s C [1 stmt*, r )
where obj = sle[o]]
and set f in obj to v

execute a field assignment (failure)

before: v e s € [1 (0o — f=rhs):stmt*, r )
subject to: o may not be an object or does not have the desired field
after:  error [1 [1 [1

Figure 35: The CESK transition function for Class: field mutation

Figure 35 displays the three cases of the transition function that deter-
mine the meaning of a field-mutation statement:

1. The first case states that the machine is in search mode (f) and that the
top-most closure of the continuation comprises a sequence of state-
ments, starting with a field-mutation statement, and preceded by an
empty sequence of definitions. The after: state’s C register contains
the right-hand side expression, meaning the machine is supposed to
evaluate it next. Once C contains the value of the right-hand side ex-
pression, the machine distinguishes two cases.

2. The second case specifies that the before: state identifies o with an ob-
ject in the store, specifically with an object that has the desired field.
Its after: state description says that the machine is back in search
mode, that the object in the store is modified, and that the evaluation
of the field-mutation statement is complete.

3. The third case informs the language implementer that if o does not
denote an object or if it denotes an object without the desired field,
the language implementation is supposed to signal an error.



114 Section 4

Note again how this expression is only evaluate when (1) the machine is in
search mode (}) and (2) the statement is the first in a sequence of statements.

Exercise 31. Design and implement a procedure that consumes an ob-
ject, the name of a field, and a value. It modifies the named field of the
object, so that it is associated with the given value. Keep in mind that due
to the formulation of the transition function, it is guaranteed that the given
object has the specified field. Re-use the solution of exercise 23.

Exercise 32. The semantics of field-mutation statements evaluate the
right-hand side of (o — field = rhs) before checking whether the left-hand side
refers to an object. Hence, this arrangement leads to premature evaluations.
Rewrite the instructions so that the right-hand is evaluated only if the entire
instruction may succeed. Can a programmer observe the difference?

Exercise 33. Extend the transition from exercise 26 so that it includes the
cases for object creation, instance checking, field access, method calls, and
field mutation.

By combining the load, unload (see exercise 24) and transition functions
with the runMachine function (see section 2 of Chapter III), you obtain a com-
plete semantics for well-formed and valid Class programs.

4 Project Tasks

The exercises in the preceding two sections request a parser for Class, sev-
eral Class-specific validity checkers, and an adaptation of the CESK ma-
chine to the new expressions and statements. It is now time to compose
these pieces of functionality to a complete, executable model.

Exercise 34. Adapt the main function from figure 12 so that it can run
the entire process of parsing Class program syntax, validating it, and deter-
mining its meaning.

The function should issue error strings in the following order:

* “syntax error” if the parser discovers any mistakes;

® “duplicate name error” if the Class-specific validity checker encounters
two classes with the same name, a class with two identical field names,
or a class with two identical method names;

® “undeclared name error” if the validity checker encounters an undeclared
ClassName or variable.



Project Tasks 115

* “runtime error” if the CESK transition function stops due to a final state
with an error in its C register.

If the machine returns a number, main issues it as the final result.

4.1 Properly Evaluated Method (Tail) Calls

One of the puzzles in section 3 asks you to notice that method calls do not
come with a return case in the transition function. Here is why this matters.

Language researchers say a method in Class is tail-recursive if its body
comes with a return expression that calls this; indeed, this return expression
is often called a direct tail call. The left column of figure 36 shows a concrete
example.

((class While (count) ((class While ()
(method w() (method w(other)
(def d (this —--> count)) (other -——> w (this))))
(def one -1.0)
(def e (d + one)) (class Repeat ()
(1f0 e (method w(other)
(e = e) (other —--> w (this))))
(this —-=> count = e))
(other ——> w ()))) (def r (new Repeat ()))
(def w (new While ()))
(def u 3.0)
(def w (new While (u))) (w ——> w(r)))
(w =—=>w ()))

Figure 36: Examples of direct and indirect tail-calling methods

Stop! How long will this program run?

Exercise 35. Evaluate this program with a direct tail call on your CESK
implementation and continuously measure and print the size of the stack
in K every time the transition function is called. What do you observe?

Indirect tail calls are return expressions that call a different method in
either the same object or some other object. The code snippet on the right
side of figure 36 illustrates indirect tail calls with two methods that are
mutually recursive across class boundaries.

Stop! How long will this program run?



An executable
semantics can
confirm a developer’s
reasoning, if the
(immensely complex)
implementation
adheres to this
(reasonably small)
specification.

116 Section 5

Exercise 36. Evaluate this program with indirect tail calls on your CESK
implementation and continuously measure and print the size of the stack
in K every time the transition function is called. What do you observe?

As these exercise demonstrate, the content of K is bounded. Specifically,
it contains at most one frame, i.e. closure. If the semantics specification of a
programming language satisfies this property and an implementation pre-
serves it, the language is said to implement (method) calls properly. The
concrete implication of this property concerns the consumption of space by
a program; it does not come with any consequences concerning the con-
sumption of time.

Note Old-fashioned language researchers speak of “tail call optimiza-
tion,” but this phrase is utter nonsense. What the careful formulation of
the CESK machine shows is one natural way of specifying the behavior
of (method) calls. It just so happens that “long time ago, in a galaxy far,
far away” the first compiler writers happen to choose the other, space-
consuming implementation of function calls. To defend their honor, they
later dubbed the alternative implementation an “optimization.”

5 Developers Must Learn to Think Hard

With the addition of classes, reasoning about a program’s properties be-
comes complex, as pointed out in the introduction of this chapter. fortu-
nately, a model enables software developers to reason about program be-
havior; with an executable model, like the one for Class, they can also run
quick experiments to see what happens, especially if they can annotate the
source code.

This section presents examples that illustrate the new issues mentioned
there: dynamic extent differs from lexical scope; object aliasing means a
mutation in one place has a long-distance effect; and the meaning of field
references and method calls are inherently dynamic properties.

5.1 Dynamic Extent vs Lexical Scope

When the CESK machine evaluates a variable declaration, it enters a spe-
cific lexical scope of the program text. It adds an association between the
variable and a new location to the current environment to create a new one.
It then places this environment back into the E register. As long as this new
environment exists in the CESK machine—either in E or within a closure on



Developers Must Learn to Think Hard 117

the stack in K, the variable is alive. By design, this life time ends when the
CESK machine finishes the evaluation of the lexical scope associated with
the variable declaration.

By contrast, when the CESK machine encounters a new expression in
the program text, it creates an object and places it into the C register. What
happens after that depends on the remaining instructions in k. For example,

(x = (new C ()))

would assign the new object to an existing variable, meaning the object
would be accessible as long as the variable is alive. But,

((new C ()) —-=> m())

would just call a particular method and then the object would cease to exist.
Equipped with this simple explanation, take a look at this example:

((class Counter (count)
(method getCount () (this —--> count)))

(def u 3.0)
(def v 42.0)

(block
(def ¢ (new Counter (u)))
(v = c))

(v ——> getCount()))

The boxed region is the lexical scope for the program variable c. Its initial
value is an instance of class Count. Otherwise the block contains a single
assignment statement, which places the value of cinto v, a program variable
in the outer scope.

Thus, when the CESK machine encounters this nested block, it squirrels
away the current content of E by pushing a closure onto the stack in K and
then proceeds as follows:

1. The search inside the block places the new expression into Count and
instantiates the class to yield a new instance.

2. Once this instance is in C, the CESK machine allocates a location cl
that is not in the current store s; associates cl with the new instance
in an extended store; and adds an association between ¢ and dl to the
current environment. Let’s call this new environment ec.

This expression is
ill-formed in our
restrictive syntax but
well-formed in most
object-oriented
programming
languages.



118 Section 5

3. Using ec, the machine finds and evaluates c. The result of s[e[l]] is the
new instance.

4. Now that the instance is back in C, the machine completes the assign-
ment statement. It looks up v’s location in ec, yielding vl, and creates
a store in which vl maps to the newly created instance of Count.

At this point, the block’s instructions are exhausted and the CESK machine
pops the content of K. The result is that ec is no longer reachable in any way,
but v1 still contains the instance of Count. Thus, calling getCount in the return
expression succeeds and yields 3.0.

Stop! Why does it yield 3.0?

In this example, ec denotes the scope of the boxed statement; to be even
more precise, it denotes the lexical scope of the declaration of c. As the pro-
cess description explains, the environment comes into existence and disap-
pears. By contrast, the store keeps getting extended and never disappears.
Hence, it is possible to assign the instance of Count to a variable outside the
scope of the nested block, a scope whose meaning is just e. Put differently,
the instance is alive beyond the lexical scope defined by the box, because it
is in the store.

Stop! When does the life of an instance end?

Note The dynamic extent of an instance is determined in an implicit
manner. Most generally speaking, if at any point during an evaluation of a
program it is possible to replace an instance in the store with a number, say
42.0, and the rest of the program evaluation does not change, the instance is
dead. The earliest such point in a program’s evaluation determines the life
span of the instance; the time between the creation of the instance and this
point is its dynamic extent.

One consequence of a finite dynamic extent is that the location associ-
ated with an instance could be reused for other values. Recognizing this
property and getting the location ready for reuse is called garbage collec-
tion. The CESK machine, as presented, comes without a garbage collection
mechanism. Hence, all instances remain in the store until the end of the
program evaluation. If we limited the store to a finite size, evaluations
would occasionally exhaust all available locations and fail due to this limit.
Mathematical models of languages, including executable models, ignore
such limits, but a programmer must keep them in mind.



Developers Must Learn to Think Hard 119

5.2 Object Aliasing

In the preceding subsection, two variables briefly referred to the same ob-

ject, though one of them immediately went out of scope. When two vari-

able simultaneously refer to the same object, programming language peo-

ple speak of object aliasing, and programmers must be keenly aware of

aliased objects. After all, modifying the object via one variable reference

means a reference via the second variable is going to notice the change.
Consider the following program:

((class Counter (count)
(method getCount ()

(this —--> count))
(method upCount ()

(def crt (this —--> count))
(def one 1.0)
(this ——> count = (crt + one))
0.0))

(def u 3.0)

(def ¢ (new Counter (u)))

(def d c¢)

(u = (d ——> upCount ()))

(c ——> getCount()))

Its three variable declarations create a single object—an instance of Counter—
and give it two names: c and d. The following statement is really just a
method call, because the value of left-hand side variable is not used again.
Key is that the right-hand side uses d to initiate the method call, not c. A
quick look at the definition of Counter shows that this method call increases
the count value of the object. But, when the return expression observes the
value of count via c, it notices this change from 3.0 to 4.0.

A programmer with an understanding of the CESK semantics can think
through the relationship among the variables, their locations, and the vari-
ous objects. In this particular case, the environment for the program scope
consists of three variables associated with three locations. The call to up-
Count pushes this environment onto the continuation, together with the re-
mainder of the assignment statement and the return expression. Once the
CESK machine has determined the effects and result of the method call, this
environment is restored and the assignment to u is executed. At this point,
the machine has nothing left to do but evaluate the return expression of the
program: (c —> getCount()).



The dots in the tables
aren’t necessary for
the example. They
indicate that
environments for
larger programs
contain more entries.

120 Section 5

before (d --> upCount()) after (d --> upCount())
environment store environment store
u:ul ul: 3.0 u:ul ul: 00

instace of Counter
instace of Counter

Figure 37: A diagram of object aliasing

Figure 37 shows how a programmer can imagine this state transition
graphically. It consists of two diagrams: one of the before: state and one of
the after: state—meaning before and after the evaluation of

(d —=> upCount ())

Each diagram comes with two tables: the environment and the store. The
environment associates variables with locations, and it doesn’t change. The
store associates locations with values, which changes as needed. For exam-
ple, the location ul maps to 3.0 in the before: state and to 0.0 in the after: state.
Stop! Why is this the case?

Each state diagram contains two arrows that point to a cloud: one from
cl, the location for ¢, and one from dl, the location for d. The cloud represents
the only instance of Counter that the sample program creates. This object’s
single field is displayed as a box near the top-right. In the before: diagram,
this box contains counter : 3.0; in the after: state, it is counter : 4.0. Since both
the locations for ¢ and d point to the same object, the change is visible via
references to either variable in the program. Hence, (d -> getCount()) is 4.0.

Exercise 37. Turn this example of a Class program with object aliasing
into a unit test for main from exercise 34.

Exercise 38. Construct an example like the one from this subsection in
your favorite programming language and observe the effects of aliasing.



Developers Must Learn to Think Hard 121

class definition program body
(class C (f) (def one 1.0)
(method eq (other) (def ¢ (new C (one)))
(def old (this --> f)) (def d c)
(def myf old) (def e (new C (c))
(def urf (other —--> f)
(def res 1.0) (one = (c —-—> eqg(d)))
(d = (c -——> eqg(e)))
(1f0 (old isa C)

(this —-—> f =

= 42.0)
(this ——> f =

(old + res)))

(one + d)

(urf = (other --> f)
(myf = (this --> f)
(res = (urf == myf))
(this --> £ = old)

res))

Figure 38: Intensional (also known as) pointer equality

Exercise 39. Two objects are extensionally equal if they are instances of
the same class and each of the corresponding fields contains extensionally
equal values.

Two objects are intensionally equal if mutating the field of one affects the
same change in the other. Programmers dub this form of equality “pointer
equality” due to diagrams such as those in figure 37.

Stop! Develop a class with a single method, eq. This method consumes
another instance of the same class and determines whether the two are in-
tensionally equal.

The left-hand side of figure 38 shows a solution. Its right-hand side
presents an example of a use of this method. Explain.

5.3 Call-by-value Prevents Variable Aliasing

What all this tells us, is that the CESK semantics determines the values of
the arguments of a method call and hands them to the method. Language
researchers dub this transfer of a value as a parameter-passing mechanism.
This particular one is an idea that students actually get to know in Ameri-
can pre-algebra courses: if f(x) = ... x ... is a function definition, then a use
of f, say f(40+2), is evaluated by substituting 42 for x into the expression of
the right-hand side of the definition of f.

In the presence of
parallelism, this eq
method won'’t function
properly, which is why
language
implementation
provide intensional
equality as a basic, fast
instruction.



The designers of Algol
and Haskell also
experimented with
when to determine
the value of an
argument. We ignore
this dimension.

122 Section 5

Although it seems straightforward to use this same idea for method and
function calls in programming languages, the designers of languages have
experimented with a rather large variety of ideas over the past six decades:
call-by-value, call-by-reference, call-by-copy-in-copy-out, and several more.
The reason for this experimentation is that a straightforward adaptation of
the mathematical concept faces two problems:

¢ The first one is due to the presence of assignment statements in most
programming languages, for both plain variables or the fields of ob-
jects. Assignments do not exist in mathematics. But, since methods
are added so that programmers can abstract over repeated pieces of
code, the question arises whether methods should also abstract over
code with assignments—to variables or fields of objects.

¢ The second one concerns the notion of what is passed, that is, the
question of what programmers should consider an argument value.
As you may have noticed, all of our semantic models—from the CS
machine to the CESK machine—explicitly define what the set of val-
ues is. In the context of Class, the set of values comprises numbers
and objects—indeed, mutable objects from the CESK implementation
language. Hence, abstracting over field assignments in Class code is
straightforward as the preceding sub-section showed.

Given this background, old timers of the software profession like(d) to
confront job interviewees with the following puzzle:

Write a function in your favorite programming language that
swaps the values of two given variables. Alternatively, explain
why writing this function is impossible.

What they are getting at, is the natural follow-up question to the preceding
sub-section, namely, whether it is possible to alias variables just like objects.
If so, a method call would be able change the value of a variable at the call
site, and writing a “swap” method would be straightforward.

A'look at the CESK machine of Class answers this question. Every
method parameter gets associated with a brand new location, and each of
these locations maps to the corresponding value in the argument list, inde-
pendently of what kind of value is passed in. This transfer of values from
one place in a program to another via a method call is dubbed call-by-value.

If a programming language uses call by value only, variable aliasing
and its effects are impossible.



Developers Must Learn to Think Hard 123

env. for call
((class Counter () x:1
(method upCount (x) this -
(x = 42.0) store
0.0))

(def ¢ (new Counter ()))
(def y 1.0)
(def uselessResult

(c —=> upCount ()))

env. for body

Figure 39: What variable aliasing would look like, if it existed in Class

Now contrast call-by-value with an alternative that re-uses a location
when the parameter is a variable. This alternative is referred to as call-
by-reference. Figure 39 illustrates this idea with an example. The code on
the left-hand side passes y (boxed) to upCount. In a call-by-reference world,
the semantics would look up the location associated with y and point the
parameter, x, to the same location. The right-hand side of the figure ex-
plains this situation with a diagram; technically, the diagram explains the
environment and store right after the CESK machine begins its search for
an expression in the body of upCount. It is easy to see that an assignment
statement to x inside of upCount would change the value of y, too.

A programming language with some form of call-by-reference argu-
ment passing enables variable aliasing.

Just like with object aliasing, a programmer may intend the aliasing
of variables across method boundaries—to abstract over repeated variable
assignment patterns—or may accidentally cause variable aliasing. In the
second case, the programmer may observe strange behaviors of the code.
To assist client programmers, the creator of a method that uses call by ref-
erence should advertise any possible effects via a purpose-and-effect state-
ment (method documentation), because a by-reference indicator alone does

In Class, all
arguments to method
calls are always
variables (to simplify
the semantics). Briefly
imagine a relaxation of
this constraint.



124 Section 5

not suffice. Such a statement should help programmers with understand-
ing aliasing effects.

Note Over time, programming language creators have recognized that
the downsides of call-by-reference argument passing outweigh the upsides.
As a result many modern languages use call-by-value only.

The C family of languages, including C#, remains an exception, offer-
ing several by-reference parameter-passing mechanisms. In addition, C#
supports forms of in and out parameters, inherited from the Ada language.

Old timers used to C-style coding may also make statements such as
“objects are passed by reference” and “variables are passed by value.” Such
statements simply show a lack of understanding of semantic models. Ob-
jects in a Class-like language are semantic values and are mutable; no con-
fusion of terminology is needed to explain these effects. Worse, variables
don’t even exist when a program is executed, so they can’t be “passed.”

5.4 Dynamic Dispatch

Method calls and field access/mutation pose the problem of dynamic dis-
patch. Consider a schematic method call expression: (o -> m(a, ..)). The
method name m is just that, a name. Without any knowledge of the tar-
get object o, a programmer cannot know which method code is going to be
evaluated in reaction to this expression. Since it is undecidable to deter-
mine which object o denotes from program text, the actual object becomes
known only as we determine the program’s semantics—that is, when the
program runs.

(class Cowboy () (def a (new Artist ()))
(method draw () (def ¢ (new Cowboy ()))
1.0)) (def x 0.0)
(class Artist () (ifo [ ]
(method draw () (x = a)
666.0)) (x = c))
(x —=> draw())

Figure 40: An example of dynamic dispatch

Figure 40 displays an old and well-known illustration of dynamic dis-
patch for methods. The class definitions of the program—on the left side—
introduces Cowboy and Artist, both of which come with a method named



Developers Must Learn to Think Hard 125

draw. The names are to suggest that “drawing” for each is considered a
rather different action. Here the methods return 1.0 and 666.0, respectively.

The program’s body—on the right side of the figure—creates an in-
stance of each class, named c and a, respectively. Next a conditional state-
ment selectively assigns one of these objects to x. Finally, the return value
is determined by calling draw on x.

Key to this code snippet is the empty box in the test position of the con-
ditional. In Class, a programmer could create a random number generator,
and the conditional could check whether a generated number is greater or
equal to some limit. In an actual class-based language, say Java, a program-
mer could use an expression to check whether it is Wednesday or whether
the number of inches of rainfall today exceeded some given amount. In
short, it is easy to see how the content of x is not determined until the con-
ditional is evaluated, even for simplistic example like the one in figure 40.

Like the object aliasing aspect of parameter-passing, dynamic dispatch
is desirable and potentially dangerous. It is desirable when a form of in-
formation needs a data representation that requires several classes, all of
which would implement a method with the same name. If you have cho-
sen a class-based language for the projects of this book, you know that your
data representation of ASTs is an example of this kind. By contrast, dy-
namic dispatch poses a problem when the data flow and control flow of
some code is opaque. In that case, the code may call a method with the
correct name and unexpected behavior.

Note While a developer can warn clients about by-reference parameters
in the documentation, it is impossible to do so for dynamic dispatch. Only
disciplined program development can help a programmer.

Exercise 40. Develop a Class program that illustrates dynamic dispatch
and use it to formulate a unit test for main from exercise 34.—You may wish
to extend Class with a (heads-or-tail) expression that defers to a random-
number generator from your implementation language. Hint Consider
testing the for “tail.”

Exercise 41. Develop a Class program that illustrates dynamic dispatch
for field access. Use it to formulate a unit test for main from exercise 34.
Re-use the relevant parts of the solution to the preceding exercises.






