
44
00

: 11
/11

CHAPTER VII MODULES

Why do languages come with modules, packages, or namespaces?

1 The Pragmatics Question

The models of the first six chapters roughly correspond to the program-
ming languages people invented and used from the 1950s through the 1970s.
Back then, the creation of software was mostly the task of a lonely pro-
grammer or small teams. In-person meetings established conventions and
protocols that overcame weaknesses in programming-language support of
separate development of components.

Imagine the following scenario in such languages:

• All programmers need libraries beyond the basic ones that a sparse
language provides. They may want basic data structure libraries or
basic mathematical algorithms. Eventually someone creates such li-
braries, say in the form of classes. The language implementation is
then modified so that it prepends these libraries to the programmer-
developed code as part of the loading process.

• A manager designs a rather large software system and recognizes that
this is way too large for the current team. So the team is charged with
identifying the interfaces of components, say collections of yet-to-be-
implemented classes, and to divide the work among the members of
the team and other teams. For a time, all these people work sepa-
rately, creating classes to meet the interface specifications and auxil-
iary classes to factor these implementations into reasonable chunks.
The manager’s idea is to append all these separately developed classes
to set up and run one complete program.

If all this is done naively, some such program is sooner or later going to
suffer from name clashes.



44
00

: 11
/11

130 Section 1

A team using a plain class-based language could work around this short-
coming with the use of naming protocols. Each member would have to sys-
tematically use this protocol—manually. Perhaps the team could also agree
to use an IDE tool to make sure the code adheres to this protocol. How-
ever, any work situation that involves some kind of manual checking—
even with an IDE tool—is highly error-prone. Just imagine a team that
produces the first version of a successful system whose members quickly
quit one after another. New members are brought on. Everyone needs to
be trained in the use of the protocol and the IDE tools. Sooner or later,
someone is going to violate the protocol and cause havoc.

In our context, support for software development in a team means a
mechanism for dealing with separately developed classes. That is, we imag-
ine that a language design that would enable a team to divide up a system
design into separately implemented pieces. Each of these pieces may con-
tain a class or even several, and each of these depends only on a few, explic-
itly declared such pieces. As a result, these pieces can be re-used in many
systems; they become library components.

1.1 Design Choices

Programming language creators recognized the problem as early as 1980.
Since then they have created a fair number of linguistic mechanisms to ad-
dress the naming problem:

• Modula, an aptly named language, introduced the idea of a module
into the design space around 1980.

• The family of Lisp languages started supporting namespaces around
the same time. From there the idea spread to other languages, includ-
ing Java.

The names of classes, variables, and fields exist in separate names-
paces, and the Java implementation resolve the same name in these
distinct spaces. Consider figure 41, which presents two classes: Main
and c. While the latter also contains a field named c and uses c as a
parameter name in the constructor, the former creates an instance of
c, stores it in the variable named c, and then access the field of this
instance via c..

Exercise 42. Compile and run the Java program in figure 41. It is
going to print 66, which confirms that the Java implementation is ca-
pable of managing the various roles of the name c.



44
00

: 11
/11

The Pragmatics Question 131

• Class-based languages added packages and inner-classes to address
the issue. Both enable software developers to manage names, usually
via the use of so-called fully qualified names.

A package in Java is a container for related classes. For example,
java.util.Date is a package that offers a generic data representation for
dates and pieces of functionality for manipulating it. And, java.sql.Date
is a package for representing and manipulating SQL dates, that is,
dates as used in the database language.

By now, though, even Java also offers modules. Its designers have
understood that classes, packages, and modules play distinct roles in
different working situations.

class Main {
public static void main(String argv[]) {

c c = new c(66);

System.out.println(c.c);

return ;

}
}

class c {
int c = 2;

c(int c) {
this.c = c;

}
}

Figure 41: Java: namespaces and fully qualified package names

This chapter presents a simple model of module-based extension of
Class. Its purpose is to bring across how modules work, how they differ
from classes, and how they assist software developers with their work in
teams. For now, imagine the following general arrangement:

• We use the word system to refer to a collection of modules.

• A module contains and exports class definitions.

• A module may import all classes from already existing modules.

• Since it is about name management, a Module programmer should
recognize the underlying class-based program without any problem.

Like all models, this one greatly simplifies actual module mechanisms.
Most languages offer all kinds of conveniences on top of these basic as-
pects. But, once you understand the model presented here, you can work
out the additional costs and benefits of them on your own.



44
00

: 11
/11

132 Section 1

1.2 Costs and Benefits

A system built from modules provides two major advantages for some im-
mediate but small notational overhead. The key is that each module iso-
lates a developer’s work from the work of others while simultaneously
making its dependencies on other modules explicit. In turn, the language
implementation confirms the correctness of the dependency specifications,
which enables it to compile modules independently. To receive these bene-
fits, a developer must add the lines of code that state the module-level de-
pendencies; fortunately, modern IDEs can assist developers with this task.

The picture differs for the language creator. It starts with the idea that
modules are just textual containers that isolate one bunch of classes from
others. As such, they are syntax without any meaning—or as implied so far,
a system of modules imposes organization on an executable class-based
program. To ensure that this program is well-formed and valid, the lan-
guage creators have to work out appropriate validity constraints on the
system as a whole and individual modules.

While these validity constraints aren’t complex, their existence has im-
plications for the developer as well as the language implementer. For the
former, it steepens the learning curve. Concretely the developer must con-
tinue to respect all the existing validity constraints for the underlying lan-
guage of classes and must learn what it means to formulate modules prop-
erly. The language implementer has to add code to the existing validity
checker so that these module-level validity constraints are enforced. When
the checker discovers violations of the constraints, it must synthesize a rea-
sonable amount of information so that the IDE can inform the developer.

Finally, the language implementer must supply a linker. Roughly speak-
ing this linker is the tool that unwraps the modules and creates a plain class-
based program. Unwrapping means class definitions are directly exposed
to each other. Since the introduction of modules is partly about freeing
team members from having to adhere to naming protocols for classes, a
naive unwrapping might cause undesirable name clashes. One way to
eliminate this problem is to shape the module level so that such clashes
cannot occur. If this is possible, the linker always succeeds in creating a
well-formed and valid class-based program—meaning the tool itself does
not impose any intellectual cost on the working software developer, at the
cost of having to understand the rules of modules.

Similarly, this arrangement also has a benefit for the language imple-
menter. The linker is going to create a class-based program that can run on
the existing CESK machine. In other words, the module system does not



44
00

: 11
/11

Project Language: Module 133

require any changes to the rather complicated and subtle machinery that
assigns meaning to programs and thus systems.

2 Project Language: Module

Like all of our models, Module presents the bare minimum of a language
with modules. Here are the model’s essential characteristics:

• A Module system consists of a sequence of module definitions, fol-
lowed by a Core program with references to some of the modules.

• A module definition introduces a name and contains a single class def-
inition, which is also visible to the outside—i.e. is exported.

• Each module may refer to classes from modules that precede it in the
sequence of modules, that is, import existing modules.

As usual, the model is small and omits many features of real-world lan-
guages that support modules. The goal is to understand the basics of name
management and how it merely imposes structure on a Class program, not
adding any semantics. If you’d like to explore additional features, feel free
to add and study them on your own.

2.1 Module: the Grammar

Figure 42 presents the BNF grammar for the syntax of Module. The first
production shows how Module systems are created. They consist of a po-
tentially empty sequence of modules, a potentially empty sequence of im-
port specifications, followed by a Core program—referred to as the system’s
body in this chapter.

The second production introduces the rather simple module concept.
A module has a name and contains (1) a sequence of import specifications
and (2) a single class definition. The third and last production introduces
import specifications. Each import names a single module; its purpose is to
make the respective class definition available in the scope of the module.

Intuitively a module is a container that protects the class definition from
name interference. Only imported ClassNames are visible, and exactly one
ClassName is exported. Otherwise the code inside of a module must obey
the grammatical rules of Class.



44
00

: 11
/11

134 Section 2

System ::= (Module
˚

Import
˚

Declaration
˚

Statement
˚

Expression)

Module ::= (module ModuleName Import
˚

Class)

Import ::= (import ModuleName)

The set of ModuleNames is the same as the set of Variables.

Figure 42: The grammar of the Module language

A system consisting of modules also directly corresponds to a Class pro-
gram if we think of module names as prefixes for class names. Consider the
sketch of a Module system on the left:

Java uses $ for similar
purposes. Many other
languages come with
similar conventions.

a Module system the corresponding Class program
(module M (class C ... ))

...

(module K (class C ... ))

...

(module L

(import K)

(class D ... C ...))

...

(import M)

... C ... C ...

(class M.C ... )

...

(class K.C ... )

...

(class D ... K.C ...))

...

... M.C ... M.C ...

Module M as well as K contain a class definition named C. But, as the Class
program on the right shows, if we loosen the rules for formulating class
names—by allowing the dot between letters—the translation is straightfor-
ward and resolves any doubts about which C is meant in which context. In
short, our model of a module language satisfies all four desiderata spelled
out in the introduction of this chapter, though as usual, in a highly simpli-
fied manner.

Exercise 43. Design an AST data representation for Module. Implement
a parser for Module that maps an S-expression to an instance of AST. Re-use
your solution from exercises 10 and 17 as much as possible.



4
4
0
0
:

1
1
/
1
1

Project Language: Module 135

2.2 Module: Scope

Once a language designer has finished a (first draft of a) grammar, the next
step is to specify the scope of names. That is, for each kind of name, it is
necessary to spell out the lexical regions where its visible. Based on a full
understanding of scope, we can state and impose the validity constraints.
In the case of Module, it also enables us to design the linker, which turns a
system into a Class program.

The entire system consists of two lexical regions: the sequence of mod-
ules and the system’s body. In the former, the nth module binds its name
in the remainder of the sequence of modules, starting at module n+1, and
the system’s body. The names of all modules are available, though not nec-
essarily mentioned, in the import specifications of the system’s body.

Next, any sequence of import specifications sets up a lexical scope. An
individual import binds the ClassName of its module in the the remainder
of the sequence plus the module’s class definition or the system’s body,
respectively. If an import binds a ClassName that already belongs to the set of
bound names, it shadows (in the sense of Chapter IV) the existing one.

In this spirit, each individual module is a lexical region, too. In this
region, a ClassName must refer to the internally defined class or to the names
of imported classes. Otherwise, name references are resolved in this region
just like in an ordinary class definition à la Class.

Finally, the system’s body forms a scope. In this region, a ClassName
must refer to one of the names of imported classes. And again, otherwise
the ordinary scoping rules of Core and Class apply.

Exercise 44. Draw the lexical region for each binding occurrence of a
name in the following program:

(module M (class C ... ))

...

(module K

(import M)

(class C ... C ... ))

...

(import K)

(import M)

... C ... C ...

The last point to clarify is how ModuleNames, ClassNames, and variables
co-exist in Module. In Class, a ClassNames is already somewhat like a variable
and somewhat special. Consider this simple Class program:



44
00

: 11
/11

136 Section 2

((class C ()

(method m(C)

(new C (C))))

(def c (new C()))

(c --> m(c)))

Here C is the name of the only class, and it is the name of method m’s only
parameter. The scoping rules of Class demand only that C is a defined class
in an expression such as (new C ...), which it is. Similarly, the scoping rules
of Class require that a name in a constructor expression such as (new ... (C))
refer to a defined variable, which in this example it does. If so, the CESK
machine for Class can evaluate such an expression without any problems.

What this admittedly odd example shows is that the Class model im-
plicitly introduced Java-style namespaces: one for ClassNames and one for
ordinary variables. Indeed, arguably the names of fields and methods form
a third namespace, though in terms of scope this space is irrelevant.

Our Module model adds yet another namespace, namely, the names of
modules. Fortunately, all these spaces are easy to keep separate because
there are only a few places where most names may appear:

• ModuleNames set up a region when they are used in module defini-
tions, and they show up only in import specifications are references to
(existing) modules.

• ClassNames are used to name a class, and references to class names
show up in just two expressions: new and isa.

• All other names, with the exception of FieldNames and MethodNames,
which aren’t scoped, denote ordinary program variables.

The existence of separate spaces of names is a convenience, not a necessity.
Our model would work equally well if all names existed in just one space.

Exercise 45. Draw the lexical region for each binding occurrence

((module A

(class A (A)

(method A (A)

A)))

(import A)

1.0 )



44
00

: 11
/11

Project Language: Module 137

2.3 Module: Validity

A validity checker enforces scoping rules. That is, it is a translation of the
rules into an algorithm that works for every well-formed module system.
For the models of the preceding chapters, this translation is a straightfor-
ward process, because the scoping rules spell out explicit constraints. In the
case of Module, we will need to make some implicit assumptions explicit.

For example, the preceding section implies that two sequences of name-
binding linguistic constructs call for two distinct treatments. On one hand,
the sequence of modules sets up nested scopes so you might think that it
should be treated like a sequence of variable declarations. Concretely, if
two modules have the same name, the second one in the sequence shad-
ows the first one. But, consider this sketch of a module sequence and its
corresponding program:

A Module system fragment ... and its “unwrapping”
(module M (class C ... ))

...

(module M (class C ... ))

...

(class M.C ... ))

...

(class M.C ... ))

...

A straightforward unwrapping of this system yields an invalid Class pro-
gram. The unwrapping, and thus the semantics, of module systems would
have to become a sophisticated process. We therefore rule out that the sys-
tem may contain two modules with the same name.

Note The simplicity of the model makes the constraint look silly. It
seems like we lifted the unique-name constraint from the class level to the
module level. Keep in mind, though, that a real module, or say package,
would contain many classes. Hence, the constraint is truly a help to teams
who split up their work via interfaces, each of which may demand a real-
ization with many classes.

On the other hand, a sequence of imports, which also forms a sequence
of nested scopes, can easily accommodate the injection of two classes with
identical names. The nesting tells us that the second one shadows the first.
In short, importing two classes with the same name might call for a warn-
ing but it is consistent with the informal ideas behind our model.

Exercise 46. One aspect of managing names in Module is to allow devel-
opers to use the same name for different classes in distinct modules. Unlike
in Module, though, existing programming languages allow programmers to
import and use a class into a module even if it has the same name as one of



44
00

: 11
/11

138 Section 3

the internally defined classes. They support this name resolution via a no-
tation that distinguishes the imported class from the internal one. Design
such a notation for Module.

Putting these two thoughts together suggests that the validity checker for
Module has to enforce the following two constraints:

• No two modules in a system may have the same ModuleName.

• Every import specification must refer to a ModuleName that is defined
in the preceding sequence of modules. This includes the import speci-
fications in the body of the system.

In addition, the specification of scoping rules impose two more constraints:

• Each module must be closed.

• The system’s body must be closed.

Recall that “closed” means all variable occurrences point back to a specific
declaration or a method’s parameter. Furthermore, all ClassNames refer to
the module-defined class or an imported class.

Exercise 47. Design and implement a validity checker that enforces the
validity rules for Module. The checker consumes error-free ASTs from exer-
cise 43; if it finds errors it annotates the AST appropriately.

3 Linking Modules into Programs

The language-related software tools of the preceding chapters fall into two
classes: those related to syntax and others related to semantics. A parser or
a validity checker belong to the first kind. A load function or a runMachine
function belong to the second kind.

By contrast, a linker is neither a syntax-related tool nor a semantics-
related one. It exists to related ASTs for one language, Module, to ASTs
of a second one, Class. The point of such a translation is to explain the
meaning of the first kind of AST via the second kind. From the perspective
of a language creator or a model maintainer, the linker avoids the need to
revise the intricate workings of the CESK machine for Class.

The functional purpose of a linker is to translate a well-formed and valid
Module system into (the AST of) a well-formed and valid Class program. As
indicated already, this translation is accomplished via a two-step transfor-
mation:



44
00

: 11
/11

Linking Modules into Programs 139

• First, the linker replaces all occurrences of ClassName with their fully-
qualified names:

– If class C is defined inside of module M, then its fully-qualified
name is M.C.
As mentioned in the preceding section, this name that is illegal
in the surface syntax, but since the linker operates on ASTs, we
can accept this loosening of constraints on acceptable names.

– The replacement of the defining ClassName is easy.
– The replacement of any other occurrence must account for its

binding.

• Second, the linker strips the module and import forms from the AST.

The resulting linked program is well-formed and valid because each module
contains a single class, meaning any two classes have distinct names and
all other names are left alone.

a Module system the corresponding Class program
(module M (class C ... ))

...

(module K

(import M)

(class C ... C ... ))

...

(module L

(import M)

(class D ... C ... D))

(import K)

(import M)

... C ... C ...

(class M.C ... )

...

(class K.C ... K.C ...)

...

(class L.D ... M.C ... L.D))

... M.C ... M.C ...

Figure 43: Linking a Module system into a Class program

Figure 43 displays a system fragment and its corresponding program.
It illustrates a couple of key properties of the linking process. First, every
definitional name of a class is prefixed in the process. Second, if a module
such as K imports a class that has the same name as the internally defined
one, all occurrences of this ClassName point back to the local one in the re-
sulting program. In contrast, if the imported class has a different name,



4
4
0
0
:

1
1
/
1
1

140 Section 4

as is the case for module L, the imported class is visible via its fully quali-
fied name. Finally, the system’s body resolves class names according to the
scoping rules concerning sequences of import specifications.

Exercise 48. Design and implement a linker for Module. The linker
should map an AST of a Module system to a Class program. Use your solu-
tions from exercises 43 and 47 and the project from Chapter VI.

4 Pragmatics: Computability vs Expressive Power

In the 1930s, Church and Turing settled on the hypothesis that all algorith-
mic languages can compute the exact same set of functions on the natural
numbers, namely, the set of partial recursive functions. People such as Post,
Smullyan, and some others tried to develop alternative computing systems,
but all of them turned out to be equivalent to Church’s lambda calculus and
Turing’s machines. Equivalent means that every algorithm in a computing
system can be translated into an expression in an alternative one such that
both provably compute the same function. From this perspective, all pro-
gramming languages are the same.

Programmers know better, however. Instinctively they argue that some
languages are “better” at some task than others. The simplest reason might
be that a particular platform (hardware, browser) does not support some
language, so another one must be used to implement an algorithm.

This chapter offers a natural example to ask the question in a scien-
tific manner, because the two models—Module and Class—differ in just one
way: the first has modules, the second doesn’t. Hence the question is
whether one can express “more” computations than the other. If so, we
have a first idea of how to judge languages systematically.

Stop! Write a simple Class program that Module cannot directly express.
You may wonder what “directly” means in this context. Given our

naive understanding of Module systems as Class programs and given the
linker, which translate the former into the latter, the interpretation of “di-
rectly” should be straightforward: wrap each class definition in a module
and add import specifications as needed.

Stop! Now that “directly” is understood, try your hands at the above
exercise again.

Here is one such program:

(class C () (method m (x) (x isa D)))

(class D () (method m (x) (x isa C)))

(def c (new C()))



44
00

: 11
/11

Pragmatics: Computability vs Expressive Power 141

(def d (new D()))

(c --> m(d))

Due to global scope of the two class names—C and D—the two classes refer
to each other in a valid manner. However, if we were to directly embed
these classes into modules, the result would be a well-formed but invalid
system:

(module M (class C () (method m (x) (x isa D))))

(module K (import M) (class D () (method m (x) (x isa C))))

(import M)

(import K)

(def c (new C()))

(def d (new D()))

(c --> m(d))

Since modules may import just those modules that precede them, it is im-
possible to resolve the (boxed) name D in M. Generally speaking, setting up
mutually recursive classes is impossible in the module-based model lan-
guage.

All programming languages come with such weaknesses, and when a
language exhibits a weakness, developers create workarounds. In this case,
the workaround consists of the definition of a third module that comes with
the desired functionality:

(module K (class C () (method m (x o) (o --> isaD(x)))))

(module L (class D () (method m (x o) (o --> isaC(x)))))

(module M

(import K)

(import L)

(class CD ()

(method isaC (x) (x isa C))

(method isaD (x) (x isa D))))

(import K)

(import L)

(import M)

(def c (new C()))

(def d (new D()))

(def cd (new CD())) ;; <--- an instance of CD

(c --> m(d o)) ;; <--- m is modified to accept cd

Once the system is equipped with this synthetic module and class, an in-
stance of the latter can be created and passed along to method calls on
instances of the original classes, C and D.



44
00

: 11
/11

142 Section 4

Figure 44: The indirections needed for the Module workaround

Taking a step back and a close look reveals the problem with workarounds.
Our way of overcoming the weakness of Module is to impose a usage pro-
tocol on the entire system:

• Someone must create a synthetic module that can provides the needed
functionality.

• The system’s body must create an instance.

• Worst of all, the other team members must modify the method defi-
nitions and method calls so that, when needed, they accept and use
instances of the synthetic module.



44
00

: 11
/11

Pragmatics: Computability vs Expressive Power 143

In short, the weakness of a programming language affects developers when
they need a certain piece of functionality, and workarounds may impose a
significant system-wide usage protocol with a non-trivial number of levels
of indirections. See figure 44 for the latter.

The idea of comparing two languages that essentially differ in just one
linguistic construct is due to Felleisen. It provides a well-founded argu-
ment for the rejection of the Church-Turing hypothesis as a relevant idea
in the area of software development. For our purposes—understanding
how programming languages (don’t) support developers in certain work
situations—it sets up a theoretical approach to evaluating the pragmatic
information of a language construct. Sadly, it is a limited tool and further
progress is needed to broaden this theoretical approach to pragmatics.

Note When Church and Turing claim that any two full-fledged lan-
guages are equivalent, they rely on translations that map code in one lan-
guage to the other and vice versa. For their purposes, any translation
from the entire space of functions between these languages is a good one.
By contrast, Felleisen restricts the space of functions to those that require
just local changes. This restriction corresponds to the idea that one team
member cannot force all other team members to change their modules,
classes, and methods just because some system-wide protocol would fix
a programming-language weakness.


