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CHAPTER VIII TYPES

Why do languages include a type notation and a type checker?

1 The Pragmatics Question

While a 1970s programming language such as Smalltalk solves the problem
of data representation and functional abstraction, it injects new problems
into the work of software developers. As a Smalltalk program executes
it may try to send a message to an object that does not come with a cor-
responding method. The language implementation’s response is an error
signal telling the user “method not found.” Similarly, a program may try
to retrieve the value of a non-existent field, try to modify such a field, and
so on.

The models of the preceding two chapters reflect these novel problems
via several novel failure cases in the CESK transition function:

• object creation, due to a mismatch between the number of arguments
and fields;

• method call expressions, due to a mismatch between the number of
arguments and parameters;

• method call expressions, due to a lack of the named method;

• field access and modification, due to a lack of the named field; and

• the addition and division operations.

The last one is due to the extension of the set of values with objects. In
addition to the (floating point) numbers of the Core model, the value set
of Classy consists of the union of numbers and objects. Since the model
does not constrain what a variable can stand for, it is therefore possible that
expressions such as (x + y) or (x / y) have to deal with objects as arguments,
which makes no sense.
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(module Polar

(class Polar

(; the angle in degrees,

; counter-clockwise

x

; the distance from (0,0)

; on the angled line

y)

;; rotate ‘this‘ point by ‘ω‘
(method rotate (ω)

(def myX (this --> x))

(def myY (this --> y))

(def angle (ω + angle))

(new Polar (myX angle)))))

(module Cartesian

(class Cartesian

(; the distance (going right)

; on the x axis from (0,0)

x

; the distance (going up)

; on the y axis from (0,0)

y)

; translate ‘this‘ point by

; ‘other‘ point interpreted

; as a vector

(method translate (other)

(def myX (this --> x))

(def myY (this --> y))

(def otherX (other --> x))

(def otherY (other --> y))

(def X (myX + otherX))

(def Y (myY + otherY))

(new Cartesian (X Y)))))

y

x

y

x

(import Polar)

(import Cartesian)

(def one 1.4) ;; (sqrt 2)

(def half 45.0)

(def p (new Polar (half one)))

(def two 2.0)

(def c (new Cartesian (two two)))

(def d (c --> translate(p)))

(def dx (d --> x))

(def dy (d --> y))

(dx + dy)

Figure 45: Logical mistakes due to a lack of an isa check

Run-time errors pose problems to software developers, and they can
cause havoc after deployment. Imagine software for assisting the airplane
pilots. When such a system displays the text “method not found” or “ad-
dition expects numbers, given an object” and goes down during a critical
phase, say take-off, the consequences could be catastrophic. Clearly, end
users of software should experience as few run-time errors as possible.
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The situation is worse than it appears: a system may terminate nor-
mally and output a number, without any indication that anything went
wrong. For an example, consider figure 45. It displays a system in Module
that consists of two independent modules (top) and a main program that
relies on both (bottom). As the data interpretation comments in the module
on the left explain, the module supplies a class for representing a point’s co-
ordinates in polar form; by contrast, the module on the right exports a class
for representing point’s coordinates in Cartesian form. Between them are
two diagrams that illustrate the data interpretation comments.

Let’s take a look at the main program. It imports both modules, and it
constructs an instance each of the two classes:

• The properties of p tell us that its Cartesian coordinates would be near
the coordinate (1,1), because the root of 12 + 12 is close to 1.4 and 45
degrees splits a right angle in half.

• The second instance, c, sits at (2,2), just as its coordinates say.

Furthermore, the call to translate appears to have the goal of creating a point
that is one step up and one step to the right—which is the vector interpre-
tation of p. What we should expect is that the new instance of Cartesian has
the coordinates (3,3) and therefore outputs 6. But, when this program is
linked and run on the CESK machine for Classy, it yields a rather strange
result, namely, 50.4.

Stop! Explain why running the program in figure 45 yields 50.4.
A close look reveals the problem. The translate method expects to receive

an instance of Cartesian, but the method call supplies an instance of Polar.
In this admittedly silly example, the method call doesn’t fail because other
does have x and y fields. Hence, the retrievals of the respective field values
succeed, the rest of the method computes essentially meaningless numbers,
and the final expression creates an instance of Cartesian.

The pragmatic problem is that the language creator has shifted the bur-
den of enforcing this design discipline to the many users of this language.
Every software developer using a language like Classy must use checks
such as (other isa Cartesian) at the entry to methods such as translate. If this
check is omitted, the call may produce numbers and objects without any
meaningful interpretation.

Arguably this kind of problem is worse than the run-time errors dis-
cussed first. When a program signals a run-time error, the developer gets
some information about the program’s problems via the error message. If
the language implementation is constructed to issue informative messages,
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the error signal cuts down the search space for the bug. By contrast, when
a program outputs strange numbers, the developer might not find out.

Deploying such code in real-world settings may cause serious prob-
lems. Consider the software for a pacemaker. If the software crashes due
to a run-time error, the patient may die but a diagnosis may reveal that
the software system issued an error message and trigger further investiga-
tions. If the software causes the instrument to put 500V instead of 5V on
the “wire” neither a doctor nor a developer may suspect the software.

Language creators can accept the responsibility for the prevention of
these run-time errors and logical mistakes. The key is to enrich the lan-
guage with a form of validity checking that classifies how code behaves
before it runs and that informs the developer of potential problems. In
turn, the language creators may impose a different burden on the devel-
oper, namely, the task of massaging the code so that it satisfies these added
validity checks.

1.1 Design Choices

By the 1990s, programming language creators had recognized that a type
system not only helped compiler writers to generate fast code but that a
type system also helped software developers at almost all stages of the en-
gineering process. Roughly speaking, a type system adds a notation to the
language that enables programmers to state claims about the remainder of
the code. Thus, a piece of code may declare that a variable has a numeric
type and therefore always represents a number in its lexical scope. To make
sure that such claims are valid, a type system comes with a type checker.
It is the task of the type checker to ensure that the types and the code are
in sync throughout. For example, if a program states that some variable
always stands for numbers but also contains an assignment statement that
sets this variable to some object, the type checker must reject this program.

For the languages that Classy and Module model, creators developed
three different approaches to type system design and implementation:

• nominal class types;

C++, Java, and similar languages identify the name of a class as the
type of its instances. Thus, if two classes have identical fields and
identical methods, their objects are still of a distinct type.

• structural class types;
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Academic language research tend to favor the alternative idea that if
two objects have the same fields (by name and type) and the same
methods (by name and signature), they have the same type. That is,
the structure of the class definition gives rise to its type, not its name.

• module-global type inference.

In the 1970s, the ML programming language introduced the idea that
programmers could have a type system without having to write down
(all) the types. The OCaml variant of ML includes a class-based lan-
guage and modules not unlike the those in our Module model.

ML’s type system replaces missing types with type variables, uses
the code in a module to set up equations in these type variables, and
attempts to solve the equation system:

– If there is one solution, the variables can be replaced with plain
types, and the compiler can generate conventional code.

– If there are many solutions, the type system assigns polymorphic
types to some of the functions. On occasion, such polymorphic
type assignments are desirable; in other cases, it causes the com-
piler to create slow-running code.

– If there is no solution, type checking fails and the type inference
systems tries to compose an type-error message. To this day,
though, these systems tend to report such errors in terms that
are often difficult to decipher for a software developer.

Note By the early 1990s, Luca Cardelli, a leader of the types research
See “Typeful
Programming,” a
DEC SRC research
report (1989, 1993).community, began to argue that when types are not written down,

several software engineering steps suffer, starting with the systematic
design of data representations and their functionality all the way to
documentation. Many others began to embrace this point of view
and, as a result, module-level type inference experienced a decline in
popularity. Modern languages use local type inference instead.

The remainder of this chapter focuses mostly on the second idea, in prepa-
ration of the next chapter. It ignores module-level type and explains local
type inference as an aside.

No matter which approach is chosen, the creator of a type system must
confront the question whether to ensure that the type checker—which is
essentially is just another validity checker—is supposed to be sound in the
spirit of section 4.1 in chapter IV. While checking whether a variable in
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an expression is declared is essentially trivial, checking types is a rather
complex task. Indeed, in some cases it is so complex that some language
creators opt to “do their best” but make no effort to state or prove a the-
orem about the relationship between the type checker and the language’s
semantics.

If the language creators aim for a mathematical soundness theorem,
they tend to set up a formal model like those of this book, state the theo-
rem for the validity checking and semantic functions of model, and prove
it with logical means. Critically, they do not work with the language imple-
mentation, which tends to support many more linguistic constructs than a
model. As a result, even if the goal is to deliver a typed language that sat-
isfies a type soundness theorem, the implementation may come with bugs
that violate the theorem.

As for their connection to pragmatics, type soundness plays a role but
perhaps not the critical role that language theoreticians ascribe to this theo-
rem. Hence, this chapter presents the relationship between pragmatics and
languages with both sound as well as unsound type systems. Readers in-
terested in type soundness may wish to check out traditional text books on
programming languages.

1.2 Costs and Benefits

Although the dominance of C++ and Java in the marketplace seemed to
have settled the argument in favor nominal types, the emergence of Type-
Script and the addition of similar type systems to other languages resur-
rected the structural-class type idea. Both come with their own costs and
benefits, and it is worth to compare those briefly.

From the perspective of a software developer and plain language user,
the cost of using a type system comes in one form: a reduction in expres-
sive power. A developer notices this loss in two ways: extensibility and
safety/security. Any type system imposes restrictions on code. This state-
ment is a tautology, because the very point of a validity checker is to elim-
inate code that may suffer from mistakes. Due to the undecidable nature
of these problems, the emphasis is on “may” as in “a validity checker may
reject code that, if type checking were disregarded, runs fine and computes
the desired result.”

This decrease in expressive power affects developers in rather differ-
ent ways, depending on whether they use a language with a nominal or
a structural type system. Most importantly, programs in the latter remain
extensible in ways that the former cannot accomplish. When one developer
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programs to a structural type, another developer can create a module with
a structurally equivalent class that comes with a different name. The old
code will work just fine with the new kinds of objects. By contrast, a soft-
ware system in a nominally typed language forces the second developer to
use the actual class to which the first one programmed; if this class isn’t
accessible, the software system is not extensible.

If the type system also supports sub-typing, structural types make func-
tionality even more reusable than nominal typing. As long as an object has
the required fields and methods that some method demands, everything
works out, even if the object has additional fields and methods.

On the flip side of extensibility, software developers are concerned with
safety and security. With a nominal type system, a developer can specify
that only instances of one particular class are welcome inside some piece of
functionality. Given some knowledge about the workings of this class’s
implementation, the developer knows that calling an instance’s method
cannot do any harm. Contrast this situation with a structurally typed lan-
guage. Just because the type signatures of two methods agree does not
mean their behavior agrees. While one may compute the desired result,
another one may raise an exception, violate a security policy, or perform
any other undesirable effect. A developer can know how a method behaves
only its code resides in a particular known class.

This last concern, safety and security, shows that restrictions on the ex-
pressive power come with benefits in terms in reasoning about code. In
this concrete context, while a type system restricts the space of well-formed
and valid code, it empowers the developer to draw firm conclusion about
the general behavior of code, not just about certain concrete runs. And
this holds regardless of whether a language creator chooses a nominal or a
structural type system; a nominal type system just happens to be more re-
strictive than a structural one, and therefore it is a bit easier to reason about
by a language user.

From the perspective of a language creator, the design and implemen-
tation of a typed language require significantly more work than that of an
untyped language:

• The design of a type system involves a modicum of syntactic work,
namely coming with a notation for types.

• Next comes the development of type judgments and rules that es-
tablish such judgments. Theoreticians write down these rules with a
notation borrowed from logic; language creators write them down in
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English so that language users can understand them and, critically,
understand error messages from the type system.

• If the language creators aim for a soundness theorem about the type
system, they need to make mathematical models of both the type sys-
tem and the semantics, develop a relationship, and formulate an ar-
gument as to why this work scales to the full language. Reasonable
language creators tend to leave this work to theoretical language re-
searchers in academia.

• Finally, the validation pass must be implemented. Checking its com-
pliance with the informal rules requires extensive testing work. Com-
pliance means that the informal rules and the actual algorithms are in
sync. And extensive testing is currently the only method for arguing
compliance for a reasonably modern and large language. Further-
more, the implementation will inevitably come with errors that vio-
late the specification. Hence the test suite must be carefully curated
and maintained for this complex piece of code.

Choosing a nominal approach simplifies this work somewhat. Start-
ing with the typing judgments and their rules, designing a nominal type
system is simpler than designing a structural one. Just consider what it
means for types to match: on one side, we have a name comparison and, on
the other, a comparison of complex structures. Unsurprisingly, the transla-
tion of the respective rules into type checking code is more troublesome for
structural systems when compared with nominal ones.

The final consideration concerns the semantics—the generated run-time
code to be precise—of typed languages when compared to languages with-
out type system. When code comes with explicit type specification for
program variables, a compiler can exploit this information for the genera-
tion of code, including the allocation of data structures, the move of data
from one place to another, or the operations that manipulate the data. By
contrast, a compiler for an untyped language must use approximation al-
gorithms to infer comparable information about a given piece of code.

While this assistance for compiler writers motivated type systems in the
early days of programming languages, the discovery of the soundness con-
cept cast some doubt on the use of type information. If the validity checker
for types is unsound, a compiler may generate run-time code that eventu-
ally moves bits from a string into an integer-typed variable or cause similar
problems. As a result, the majority of language creators began to aim for
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type soundness, though to this day, some opt for designing a “usable” type
system without consideration for soundness.

2 Project Language: Types

Turning the Module model into a typed one mostly follows the design and
implementation plan of the preceding section:

• The first step is to design a notation for types and to equip the existing
grammar with type declarations.

• The second step concerns the meaning of “keeping code and types in
sync.” Academic research has come to use judgment rules for this pur-
pose, which provide a concise notation for expressing a relationship.

• Finally, the last step is to create a system of rules that explains how
to judge. Once type theoreticians noticed the relationship between
the study of logics and the study of type systems, these rules have
been stated as derivation rules also known as inference rules. Each
rule states that some piece of code is in sync with its type and relative
to its context—typically called a conclusion—if it is possible to make
some other judgments, called antecedents.

The remaining subsections present these three steps, respectively.

Type ::= REAL | Shape

Shape ::= ((FieldType
˚
) (MethodType

˚
))

FieldType ::= (FieldName Type)

MethodType ::= (MethodName (Type
˚
) Type)

Figure 46: Types: the Notation

2.1 Types: the Notation

Types classify the results and effects of expressions, statements, and so on.
In the context of Module, there are essentially two such properties:

• an expression may yield a number, or
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• an expression may yield an instance of a class.

All other phrases merely play a role in creating one of these outcomes.
Accordingly a type notation must define a type as one of two possibili-

ties: a literal symbol denoting “numeric outcome” (REAL) and a production
describing an object, which we call a Shape: see figure 46. Since an object
consists of fields and methods, the Shapes that describe them consist of two
parts: one describing the types of fields and another describing the types
of methods.

Exercise 50. Explain what kind of objects the following Shapes describe:
( ((x REAL) (y REAL))

((distanceToOrigin () REAL)) )

Define two distinct classes whose instances intuitively have this type.

Note These types, in particular Shapes, describe the structure of an object.
It does not come with any information about the class to which it might
belong. The latter—including a ClassName into the type as a determining
element—is the alternative used in nominal type systems.

2.2 Types: the Grammar

The Types differs from Module in two ways. First, modules use the keyword
tmodule, because we eventually wish to model a programming language
that comes with typed and untyped pieces of code. Marking those with
distinct keywords helps future readers. Second, modules in Types contain
one more piece of code than those in Module: a Shape at the end, which
specifies the type of the objects that the module’s class can generate.

TypedSystem ::= (TypedModule
˚

Import
˚

Declaration
˚

Statement
˚

Expression)

TypedModule ::= (tmodule ModuleName Import
˚

Class Shape)

Figure 47: Types: the Grammar

Here is the BNF of Types: see figure 47. Stop! Compare this BNF with
the one of Module in the previous chapter.
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You might wonder why this grammar does not come with typed vari-
able declarations. In many languages, a developer would have to write def
x : int = 4 to declare an integer variable, but here, variable declarations come
without types.

Following contemporary developments in programming languages, we
instead have the type checker compute the missing type from the right-
hand side of a def construct. In Types, computing this type is feasible and
easy because the expression sub-language is quite simplistic. Language
researchers refer to this process as local type inference. A fair number of con-
temporary programming languages incorporate local type inference for a
number of cases.

Note Local type inference radically differs from the module-global in-
ference mentioned in section 1.1 in this chapter. In our model, computing
the type is always possible. In real-world programming languages, local
inference rarely fails; when it does, generating an appropriate error mes-
sage is straightforward, though repairing the expression so that inference
succeeds rarely is.

Exercise 51. Design an AST data representation for Types. Implement
a parser for Types that maps an S-expression to an instance of AST. Re-use
your solution from exercise 43 as much as possible.

2.3 Types: Validity

The Module comes with a number of validity rules. Adapting those rules
to the new setting, Types, is a matter of ignoring the types. However, these
rules also induce a couple of rules for the model of this chapter:

• Any two FieldNames in the Shape of a module must be distinct.

• Any two MethodNames in the Shape of a module must be distinct.

Clearly, these rules just correspond to the validity rules concerning Classes
in the Module model. To simplify type checking, we impose a third rule:

The FieldNames in the class and those in the type of the class must show
up in the same order.

It is easier to check this constraint than to type-check classes or new expres-
sions with a loose ordering on field names. By contrast, it makes no differ-
ence whether methods and method types are supplied in the same order.
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Hence, to practice program design, consider examples that list methods
and method types in distinct orders.

Exercise 52. Design and implement a validity checker that enforces the
validity rules for Types. The checker consumes error-free ASTs from exer-
cise 51; if it finds errors it annotates the AST appropriately.

3 Type Checking

A type checker is the most sophisticated validity checker. Language re-
searchers have developed a distinct notation for specifying type checkers.
This notation heavily leans on ideas and notations from the study of formal,
also known as mathematical, logic.

Roughly speaking, a type checker judges each kind of phrase in a pro-
gramming language. Since such phrases occur in syntactic contexts and
since judging them usually needs information about this syntactic context,
each judgment consists of at least two parts: information about the context
and the piece of code. For some kind of phrases a judgment also includes a
third part, namely an inferred kind of information.

Let’s make this a bit more concrete in the context of Types. Consider the
case of an expression, say (y + z). Such an addition succeeds only if y and
z are going to evaluate to a number; if either one of them evaluates to an
object, the addition fails. Hence, the type checker needs a classification of
variables, which originates from the context. Furthermore, if the expres-
sion successfully computes a result, it is going to be a number; the type
checker can thus classify the expression as REAL. Here is the formal way of
expressing this judgment:

{type information about y and z} $ (y + z) =!REAL

Mathematics must be pronounced to be comprehended, and this “math-
ematical sentence” is best spelled out as “given type information about y
and z from the program context of (y + z), the type checker classifies the
expression as REAL.”

Now consider an assignment statement, (x = (y + z)). In order to judge
such a statement, the type checker needs to know the types of x, y, and z.
The first one is needed to ensure a type-correct modification of x’s value;
the last two are needed to check the addition expression. In contrast to
expression checking, though, checking a statement does not produce any
new type information. Hence the formal statement is simpler:
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{type information about x, y, and z} $ (x = (y + z))

Some judgments are plain wrong. Take H $ (y + z) =!REAL. This exam-
ple states that without any information about the syntactic program context
of the expression, the type checker should judge the expression as valid and
classify it as REAL. Clearly, this specification would lead to an unsound va-
lidity check for types. So the question is how to come up with a system of
sound judgments.

Following logicians, programming language researchers use so-called
judgment derivation rules also known as type inference rules. We prefer the
former term to avoid any confusion with local or module-global type infer-
ence, which is different concept.

In general, a derivation rule has the following shape:

some contextual information $ one judgment
...
more contextual information $ another judgment

[generic rule]
contextual information $ piece of code ùñ Result

The judgments above the horizontal line are called antecedents. If the use of
the derivation rules can validate all of these antecedents, then the judgment—
called the conclusion—below the line is validated.

[numerical literal]
SClasses, TVar $ n ùñ REAL

x has type REAL $ x ùñ REAL
y has type REAL $ y ùñ REAL

[+]
x and y have type REAL $ (x + y) ùñ REAL

Figure 48: Two examples of judgment derivation rules

An axiom is a derivation rule without antecedents. Take a look at the
first rule in figure 48, which is an axiom. By convention, n is a numeric
literal, and the type checker should classify it as such. The second rule
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in the same figure illustrates what a typical simple derivation rule looks
like. Its antecedents extract from the contextual information that each of
the variables has type REAL, and therefore the addition is going to produce
a REAL, too.

3.1 Contextual Information and Conventions

Just like the specification of an abstract machine, the specification of a type
checker relies on a fair number of notational conventions. The point of
those is to present the specifications in a reasonably concise manner.

meta-variable standing in for
Modules a collection of modules
SClasses Shapes of Classes, a mapping from ClassNames to Shapes
TVar Types of Variables a mapping from Variabless to Types

T any type
S Shape type
Tf the type of a field
Tm the type of a method

sys a system
mod a module
imp an import specification
cls a class
meth a method

Figure 49: Type Conventions

Figure 49 presents the conventions used here for both the statement of
judgments and derivation rules. The first three name the most common
pieces of contextual information: (1) sets of modules, (2) maps from Class-
Names to Shapes, and (3) maps from variables to Types. The remaining ones
are meta-variables for types and pieces of code. As you tackle this section’s
project, keep figure 49 in mind and consult it as needed.

3.2 Type Judgments

Figure 50 presents the complete collection of judgments that the type checker
makes. These judgments are grouped into several collections: (1) for systems-
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level pieces of code, (2) for class-level ones, (3) for the core of the language,
which consists of declarations, statements, and expressions.

The entry point is the very first line, a judgment that merely states that a
complete system is valid. It relies on the three following judgments, which,
in turn, validate:

1. an individual module, given a set of modules as syntactic context;

2. a sequence of import specifications, which produces an SClasses from
a set of modules; and

3. an individual import specification, which given both a set of modules
and an SClasses, adds information to the latter.

All other judgments follow this schema. They either just validate a
piece of code, given some information about the syntactic context in which
they appear. Or, they validate and produce additional information, which
is often added to the context.

For a last example, consider the judgment for validating a method. Its
context consists of three pieces: (1) the mapping from ClassNames to Shapes;
(2) the mapping from Variables to Types; and (3) the signature of the method.
The last piece of information is needed so that the type checker can add
the method’s parameters and their respective types to the given TVar and
compare the type of the return expression with the specified return type.

Exercise 53. Jointly with a programming partner, read the table in fig-
ure 50 and pronounce them out loud.

3.3 Rules for Deriving Type Judgments

Derivation rules make up the final part of the specification of a type system.
As the preceding section explained the derivation rules for Types come in
two distinct flavors and there is a fair number of them.

Figure 51 displays the derivation rules for system-level pieces of code,
excluding the rules for the system’s body. The first one tells a programmer
that a system is valid according to the type checker if n+2 antecedents hold:

• The n modules in the system are valid relative to the modules that
precede each module. Naturally the first module has to be valid in an
empty set of modules.

• Next, the sequence of imports setting for the system’s body must be
valid and produce an SClasses mapping.
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read judgment as the formal judgment

systems and modules
a system is valid $ sys
a module is valid Modules $ mod
a sequence of imports Modules $ imp1 ... impI ùñ SClasses
produces an SClasses
an import adds information Modules, SClasses $ imp ùñ SClasses
to the given SClasses

classes and methods
a class is valid SClasses $ cls
a method is valid SClasses, TVar, ((Ta ...) Tr) $ meth

bodies of blocks, systems, and methods
a program produces a type T SClasses $ def* stmt* exp ùñ T
a block is valid SClasses $ (block def* stmt*)

declarations
a sequence of declaration SClasses, TVar $ def1 ... defd ùñ TVar
produces a TVar
a declaration adds information SClasses, TVar $ (def x exp) ùñ TVar
to the given TVar

statements
a sequence of statements is valid SClasses, TVar $ stmt1 ... stmtn
one statement is valid SClasses, TVar $ stmt

expressions
an expression produces a type T SClasses, TVar $ exp ùñ T

Figure 50: Type judgments

• And finally, the system’s body must type-check, and its result type
must be numeric.

This last antecedent illustrates how the development of such rules is some-
what whimsical. We could easily have allowed the system’s body to return
any type, but focusing on number facilitates the comparison of implemen-
tations. Even real-world type systems incorporate such decisions, though
for different reasons than ours.
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H $ mod1
for all i from 2 to K:

{mod1, ..., modi-1} $ modi
{mod1, ..., modK} $ imp1 ... impI ùñ SClasses
SClasses, H $ def* stmt* exp ùñ REAL

[system]
$ (mod1 ... modK imp1 ... impI def* stmt* exp)

Modules $ imp1 ... impI ùñ SClasses
SClasses [C : S] $ (class C (f ...) meth ...)

[module]
Modules $ (tmodule MN imp1 ... impI (class C (f ...) (meth ...)) S)

SClasses0 = H

for all i from 1 to I:
Modules, SClassesi-1 $ impi ùñ SClassesi

[imports]
Modules $ imp1 ... impI ùñ SClassesI

M is the name of mod in Modules
C is the name of the class defined in mod
S is the Shape of C in mod

[an import]
Modules, SClasses $ (import M) ùñ SClasses [C : S]

Figure 51: Typing rules for systems and modules

The second rule specifies how an individual module is validated. Its
sequence of import specifications produce an SClasses, which is then used to
type-check the (one and only) class in the module. Note how the SClasses is
first extended with an entry for C, the defined class, so that the type checker
knows what the expected the Shape of the class is. It is a classic example of
how syntactic context is incorporated into the contextual information to the
left of the $ symbol in a judgment.

Let’s take the last two rules together. Rule 3 tells us that the type checker
needs a function that turns a set of modules and a series of import speci-
fications into a table from names of classes to their shapes. Starting with
an empty table, the I antecedents gradually build up SClasses, one at a time.
The result analyzing the last import specification, SClassesI is the result for
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the entire sequence of imps. Rule 4 specifies how the type checker must deal
with a single import specification. Given the name of the module, it uses
the given set of modules to retrieve the name of the class and its type: C
and S, respectively. The pair is added to the given table, possibly replacing
an existing entry for C.

SClasses[C] = S
S = (((f1

T Tf1) ... (fgT Tfg)) ((m1
T Tm1) ... (mk

T Tmk)))
f1, ..., fg = f1

T , ... fgT

{NameOf[methi], ..., NameOf[methk]} = {m1
T , ..., mk

T}
for all i from 1 to k:

SClasses, H [this : S] , Tmj $ methi , if NameOf[methi] is mj
[class]

SClasses $ (class C (f1 ... fg) meth1 ... methk)

SClasses, TVar [y1 : Ta
1] , ... , [yn : Tan] $ def* stmt* exp ùñ Tr

[method]
SClasses, TVar, ((Ta

1 ... Tan) Tr) $ (method m (y1 ... yn) def* stmt* exp)

Figure 52: Typing rules for classes and methods

Figure 52 presents the most complex derivation rule for Types. To check
whether a class named C and its type are in sync, the type checker is given
a class-shape table, which contains the type for the to-be-checked class. In
this context, it proceeds as follows according to the antecedents:

1. It retrieves the Shape S of C from the given table.

2. As for fields, C and S must contain the same sequence of FieldNames.

3. As for methods, C and S must contain the same set of MethodNames.

4. Once these two conditions are satisfied, the type checker is going to
deal with each method. Checking a method uses three pieces of con-
text information: (a) the given SClasses; (b) a type-variable table, pop-
ulated with an entry for this/S; and (c) the appropriate method signa-
ture from S.

Stop! Compare this explanation with the mathematical specification in the
first rule of figure 52. Explain 4(b) to a programming partner.
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The second derivation rule in figure 52 shows how to type-check meth-
ods. The type-variable table is extended with one entry per parameter with
its matching type from the given method signature—assuming the two se-
quences are of the same length. Given these two tables, the type checker
uses the judgment for method and program bodies to confirm that the type
of the final expression equals the return type from the method signature.

SClasses, TVar0 $ def* ùñ TVar1
SClasses, TVar1 $ stmt*
SClasses, TVar1 $ exp ùñ T

[body]
SClasses, TVar0 $ def* stmt* exp ùñ T

SClasses, TVar0 $ def* ùñ TVar1
SClasses, TVar1 $ stmt*

[block]
SClasses, TVar0 $ (block def* stmt*)

Figure 53: Typing rules for bodies of blocks, systems, and methods

A system’s body has the same shape as a method’s body; in compari-
son a block lacks the final expression. The derivation rules for these gram-
matical production resemble each other. As figure 53 shows, both require
type-checking the sequence of definitions first, and doing so enriches the
given type-variable table. Next up, this extended table is used to check the
sequence of statements. In the case of system and method bodies, the type
checker also type checks the final expression, and whatever type this check
produces, also becomes the type of the complete body.

By implication, type-checking a sequence of declarations has two dis-
tinct goals. First, the type checker needs to extend the given type-variable
table with the types of the newly declared variables, one declaration at a
times. The “declarations” rule in figure 54 specifies how this step works.
Second, the type checker must ensure that the right-hand side expression
has a type, which is then used as the type of the left-hand side variable. See
the “one declaration” rule in the same figure.

Figure 55 displays the rules for sequences of statements and individual
statements. Unsurprisingly, a sequence of statements is valid if each indi-
vidual statement type checks. To get a sense of how individual statements
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for i from 1 to d:
SClasses, TVari-1 $ (def xi expi) ùñ TVari

[declarations]
SClasses, TVar0 $ (def x1 exp1) ... (def xd expd) ùñ TVard

SClasses, TVar0 $ exp ùñ T
[one declaration]

SClasses, TVar0 $ (def x exp) ùñ TVar0[x : T]

Figure 54: Typing rules for declarations

are type checked, take a look at the “assignment” rule. Its antecedent tells
the implementer of the type checker that the expression on the right-hand
side must type check and that its type must be the same as the type associ-
ated with the left-hand variable in the type-variable table.

Consider the derivation named “loop” next. The CESK semantics of
(while0 tst bdy) runs the loop if the value of the tst is 0; any other value causes
the loop to terminate. In terms of types, the tst expression may have any
type, and bdy must merely type-check as a statement.

Exercise 54. Languages such as Java demand that conditionals and
looping constructs have Boolean-typed expressions in the analogous posi-
tions. Assuming Types came with a Boolean type plus true and false as literal
constants of this type, how would you reformulate the “loop” and “condi-
tional” rules in figure 55?

At this point, we have covered most derivation rules; the ones for ex-
pressions are missing. For the latter, it is best to proceed in two steps, start-
ing with the expressions from Core, followed by those related to Classy.

Figure 56 covers the first set of rules: literal constants, variables, addi-
tions, divisions, and comparison. The first and the last rule are axioms, i.s.
they validate that these expressions produce the type unconditionally. In
both cases, the resulting type is REAL.

Exercise 55. Some typed programming languages do not implement
unconditional comparison operators. Instead their type system ensures
that both sides of == have the same type. Modify the “==” rule in figure 56
to model this kind of type checker.
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for all i from 1 to n:
SClasses, TVar $ stmti

[statements]
SClasses, TVar $ stmt1 ... stmtn

TVar[x] = T; SClasses, TVar $ exp ùñ T
[assignment]

SClasses, TVar $ x = exp

SClasses, TVar $ tst ùñ T
SClasses, TVar $ thn
SClasses, TVar $ els

[conditional]
SClasses, TVar $ (if0 tst thn els)

SClasses, TVar $ tst ùñ T ; SClasses, TVar $ bdy
[loop]

SClasses, TVar $ (while0 tst bdy)

SClasses, TVar $ exp ùñ T
TVar[o] = (((f1

T Tf1) ... (fgT Tfg)) (Tm1
T ... TmK

T))
there exists an i such that

f = fi
T and Tfi = T

[field mutation]
SClasses, TVar $ (o –! f = exp)

Figure 55: Typing rules for statements

The remaining three rules have straightforward explanations. Since the
validity checkers ensure that all variable occurrences refer to some variable
declaration, a variable always type checks and its type is the one from the
given type-variable table. When it comes to addition and division, our

A language such as
Type Script would
allow the addition of
numbers and strings,
and its type checking
rules need to
accommodate this
semantics.

Types model’s semantics demands that both operands are numbers; the two
derivation rules are set up accordingly.

Figure 57 covers the second set of derivation rules, those for expres-
sions that deal with objects. A (new C(x)) expression is going to create an
instance of C and therefore is going to have its shape—if it succeeds. The
antecedents of the “new” rule tell us that SClasses comes with a Shape type S
for C, which in turn, specifies the number and the types of the class’s fields.
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[numerical literal]
SClasses, TVar $ n ùñ REAL

TVar[x] = T
[variable]

SClasses, TVar $ x ùñ T

TVar[x] = REAL; TVar[y] = REAL
[+]

SClasses, TVar $ (x + y) ùñ REAL

TVar[x] = REAL; TVar[y] = REAL
[/]

SClasses, TVar $ (x / y) ùñ REAL

[==]
SClasses, TVar $ (x == y) ùñ REAL

Figure 56: Typing rules for arithmetic expressions

In order for new to succeed, the number of arguments must be the same as
the number of fields, and according to the third antecedent, the types of the
arguments to new must equal the types of the fields specified in S.

When it comes to the derivation rule for isa expressions, a language cre-
ator has to make a choice. Given (o isa C), it is possible to determine the
types of both o and C. Let’s call them So and SC, respectively. Based on this
context, a type-system designer can choose from three alternatives:

1. to add SC = So to the antecedent;

2. to require that both are Shapes but not necessarily identical ones; or

3. to specify that SC is a Shape without imposing any restrictions on o.

In the specific context of Types, alternative 1 make sense. Unless the
two shapes are the same, the instance check is guaranteed to fail; it can
succeed only if the two Shapes are the same and o is an instance of C—which
cannot be decided by the type checker. All class-based languages come
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SClasses[C] = S
S = (((f1

T Tf1) ... (fgT Tfg)) (Tm1
T ... TmK

T))
TVar[a1] = Tf1, ..., TVar[ag] = Tfg

[new]
SClasses, TVar $ (new C (a1 ... ag)) ùñ S

SClasses[C] = SC; TVar[o] = So

[isa]
SClasses, TVar $ (o isa C) ùñ REAL

TVar[o] = (((f1
T Tf1) ... (fgT Tfg)) (Tm1

T ... TmK
T))

there exists an i such that
f = fi

T

[get]
SClasses, TVar $ (o –! f) ùñ Tfi

TVar[o] = ((FT1
T ... FT1

T) ((m1
T Tm1) ... (mk

T Tmk)))
there exists an i such that m = mi,

Tmi = ((T1 ... Tn) Tr), and TVar[a1] = T1, ..., TVar[an] = Tn

[call]
SClasses, TVar $ (o –! m (a1 ... an)) ùñ Tr

Figure 57: Typing rules for object-oriented expressions

with subtyping though, and a model of those setups would invalidate the
rationale for the first choice.

Alternative 2 models a Java-like type check, even though the type sys-
tem for Types is structural in contrast to Java’s nominal one. It is the one
stated in figure 57, because it is widely used. By contrast, alternative 3 re-
sembles what the type system and semantics of Type Script implements.
As long as the type of o is remotely sensible, the type checker validates the

To bridge the gap
between the type
systems of Types and
TypeScript, we would
need to enrich the
former with many
more kinds of values
and their types.

expression and leaves it to the underlying machine to decide whether o is
an instance of the given class.

The derivation rule for get comes with two antecedents: one for retriev-
ing the type of o, the target object; another one for retrieving the type of the
referenced field. Here, the first antecedent provides access to the names and
types of the fields and methods, respectively. Since the only way for o to
come with a shape type is by [class] and [new], we know that its shape comes
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with a set of field names. Hence, the second antecedent may demand that
one element of this set is equal to the FieldName in the expression. The result
type of o –! f is the type of the respective field.

Exercise 56. Explain the last derivation rule, [call], in the style of this
section. Hint This rule combines aspects of [new] and [get].

3.4 Implementing a Type Checker

In the context of a model, an implementation of the derivation rules should
aim for a line-by-line transliteration of the antecedents and consequence.
With the use of auxiliary functions or methods, reaching this goal is straight-
forward. Often these auxiliary methods or functions come in handy in sev-
eral contexts.

Consider the [system] derivation rule from figure 51. While the preced-
ing section correctly suggests n+2 antecedents, a programmer may identify
four groups:

1. checking the base case, namely just the first module;

2. checking the remaining K-1 modules in the context of the preceding
ones;

3. extracting from the imports which classes and their types are avail-
able; and

4. checking the system’s body and ensuring that its result type is REAL.

Recognizing this grouping of antecedents suggests how to organize the cor-
responding type-checking method for a complete system.

Figure 58 sketches a Java implementation of a type checking method
for a complete system. It assumes that each stage comes with its own data
representation. Since the type checker of our model runs after the validity
checker has confirmed a number of basic properties, the AST classes with
the type checker methods represent well-formed and valid ASTs, hence,
the name WFandValidSystem. The key method needed for each such class
is typeCheck. As the purpose statement in figure 58 says, the method type
checks an instance of this system AST, throwing a runtime exception if it
discovers a violation of the [system] rule itself or any of its antecedents.

Next take a look at the signature of the typeCheck method. It matches the
format of the [system] judgment. For judgments such as this one, the method
consumes no inputs, because the judgment has no contextual information
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class WFandValidSystem {
WFandValidModules modules = ...;

WFandValidImports imports = ...;

WFandValidBody body = ...;

// check the type of ‘this‘ complete system

// EFFECT throw an exception if a violation is discovered

void typeCheck() throws TypeError {
this.modules.select(1).typeCheck(this.selectPreceding(0));

for(i = 2; i <= modules.size(); i++) {
this.modules.select(i).typeCheck(this.selectPreceding(i-1));

}

SClasses sc = this.imports.typeCheck(this.modules);

Type actual = this.body.typeCheck(sc,new TVar());

if (!actual.equals(TypesAST.REAL)) // the type for numbers

throw new TypeError("wrong result type for system body");

//

return ;

}

// create a container from the first ‘i‘ modules in ‘this‘ system

Container<WFandValidModule> selectPreceding(int i) {
...

}

}

Figure 58: A Java-style implementation of the [system] derivation rule

to the left of $; since it does not produce a result, the typeCheck method has
a result type of void in Java. By contrast, for judgments such as [imports] that
do require information about the context and that do produce a result, the
signature of the corresponding method specifies inputs and outputs types.
In the case of imports.typeCheck, the method must have access to the (well-
formed and valid) ASTs of all modules so that it can create a mapping from
ClassNames to their types, and its result is going to be the mapping. The
boxed expression in figure 58 displays an illustrative call to this method.

With all these ideas in place, matching the method body of typeCheck
with the judgment derivation rule is straightforward. Like the rule itself,
the method body consists of four pieces. The horizontal rule in a comment
indicates the separation of the antecedents from the part of the conclusion



44
00

: 1/
9

170 Section 3

that is the result of the judgment. Blank lines separate the four transliter-
ations of the antecedents from each other. Each block corresponds to one
of the antecedents. The last one uses three lines to explicate the steps in-
volved in the use of this judgment: (1) compute the actual, derived type;
(2) compare it with the expected type; and (3) signal an error if this com-
parison fails. This last part is implied in judgment derivation rules—when
antecedent judgments do not hold, the conclusion cannot hold either. An
implementation may turn this implicit idea into an exception. In this ex-
ample, it is the only exception that the method raises directly; all other
exceptions would come from calls to the auxiliary type-checking methods.

While the method clearly mirrors the specification—the [system] rule—
this programming style comes with a cost. Notice how the method calls
the (local and private) selectPrecedingModule method as many times as it type-
checks an individual module. The purpose of the method is to create a con-
tainer from the first i modules in this instance of the class. Although imple-
menting this method poses no problem, calling it creates an inefficiency—
acceptable for a programmer who creates an executable model, but unac-
ceptable for a developer who creates an efficient type checker for Types.

Exercise 57. Can the first two blocks of typeCheck in figure 58 be merged?
If so, how? If not, why not?

Exercise 58. How would you go about eliminating the inefficiency of
repeatedly calling selectPrecedingModule? How would this distort the rela-
tionship between the specification via a rule and the implementation?

Figure 59 sketches the implementation of the [imports] rule. Recall its
purpose: it specifies how a sequence of imports creates an instance of SClasses,
a mapping from ClassNames to Shapes. As the purpose statement of the class
says, the type-checking method for [imports] is located in the representation
of such sequences. In Java, such a class may delegate to a collection class,
say ArrayClass; this kind of detail does not matter here.

Like the judgment for [imports] itself, which assumes knowledge about
all modules in the context of the imports sequence, the typeCheck method in
WFandValidImports consumes one value: a container of modules. Its signa-
ture tells a future reader that it computes an instance of SClasses.

The method body of typeCheck consists of two blocks, each of which im-
plements one of the antecedents in the corresponding derivation rule. Also
notice how these two pieces are of the same size as the corresponding an-
tecedents. With the first block, the method creates an empty instance of
SClasses. The second block of code uses a Java-style for each loop to iterate
through the sequence of import specifications, type checking one at a time.
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// represents a sequence of import specifications

class WFandValidImports {
WFandValidImports imports = ...;

// check the type of ‘this‘ sequence of imports

// EFFECT throw a runtime exception if a violation is discovered

SClasses typeCheck(WFandValidModules modules) throws TypeError {
SClasses sc = new SClasses();

for(WFandValidImport oneImport : this.imports) {
sc = oneImport.typeCheck(modules, sc);

}

return sc;

}
}

Figure 59: A Java-style implementation of the [imports] derivation rule

From the corresponding derivation rule, we know that the method for type
checking a single import consumes two pieces of contextual situation—the
collection of modules plus the mapping of from ClassNames to Shape—and
returns such a mapping. Once the method has dealt with all imports, the
full mapping, sc, is returned as the result of the method. Note how this
last part corresponds to the right of the ==! arrow in the conclusion of the
derivation rule.

Exercise 59. While the method in figure 59 uses a for each loop, the one
in figure 58 uses an index-based for loop. Could it use a for each loop? If so,
re-factor the code; otherwise explain why not.

Figure 60 displays one last example of a typeCheck method that imple-
ments a judgment derivation rule. It illustrates how type checking works
for the data representation of a well-formed and valid expression. Fol-
lowing the pattern for the previous two examples, the method consumes
some pieces of contextual information and produces a data representation
of Types, because this is the shape of a generic expression type judgment.

The two blocks inside of the method body correspond to the two an-
tecedents; the return statement realizes the confirmation to the right of the
==! in the conclusion. Each of the two blocks retrieves the type of an
operand of the addition expression and compares this type to Number. Un-
less this comparison succeeds, the antecedent fails to hold, causing the
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// represents an addition expression

class WFandValidAddition {
Variable leftOperand = ...;

Variable rightOperand = ...;

// check the type of ‘this‘ expression

// EFFECT throw a runtime exception if a violation is discovered

Type typeCheck(SClasses sc, TEnv tenv) throws TypeError {
Type leftType = tenv.lookup(this.leftOperand);

if (!leftType.equals(TypeAST.REAL))

throw new TypeError("wrong argument type for + [left]");

Type rightType = tenv.lookup(this.rightOperand);

if (!rightType.equals(TypeAST.REAL))

throw new TypeError("wrong argument type for + [right]");

return TypeAST.REAL;

}
}

Figure 60: A Java-style implementation of the [+] derivation rule

method to signal an error.

Exercise 60. The two blocks of code resemble each other and call for an
abstraction. Design the abstraction systematically so that each antecedent
becomes just one simple line.

Exercise 61. Why is it guaranteed that the lookup method of tenv finds a
type for the two Variables?

3.5 Types: Type Checking

At this point, we have everything in place to complete the model for Types:
the parser for the Types language (exercise 51), the validity checker (exer-
cise 52), and the ideas for translating the judgment derivation rules into
code (for an object-oriented data representation of the syntax).

Exercise 62. Design a complete type-checking pass for Types. The im-
plementation should adhere closely to the shape of the rule-based specifi-
cation so that small changes to the specification directly translate to small
changes in the code. Have your type checker signal an exception when it
discovers a type violation. Try to formulate error messages that assist the
Types programmer with the task of repairing type errors.
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Exercise 63. An implementation of a type checker inside of an IDE can-
not just signal an exception when it discovers a rule violation. Instead, it
pretends to repair the AST so that it checks and adds a node to the AST—or
mutates an AST node—so that the IDE can highlight several such violations
at once.

Design a variant of your solution to exercise 62 that lives up to this stan-
dard. When checking an expression fails, use the type Number. Although
this substitution is a simplistic repair, it gives you a first idea of how such
an IDE-integrated type checker may work.

Exercise 64. Design and implement a pass that turns the AST of a well-
formed and well-typed Types system into a Module AST so that the linker
from exercise 48 can create a Classy program. The resulting program can
then be run on the CESK machine.

Note Depending on your chosen implementation language and your
choice of AST data representation, your linker might already work for Typed
ASTs or you might find it easy to adapt the linker so that it works this way.

Exercise 65. Adapt the main function from exercise 49 so that it can
run the entire process of parsing, validating, type checking, linking, and
determining its meaning.

The function should issue error strings in the following order:

• ”syntax error” if the parser discovers any mistakes;

• ”duplicate module name” if the Types-specific validity checker finds two
modules with the same name;

• ”import of non-existing module” if the Types-specific validity checker dis-
covers an import specification that does not refer to an already-existing
module;

• ”duplicate name error” if the Types-specific validity checker encounters
a class with two identical field names, or a class with two identical
method names;

• ”undeclared name error” if the validity checker encounters an undeclared
ClassName or variable;

• ”type error” if the type checker encounters a type violation; or

• ”runtime error” if the CESK transition function stops due to a final state
with an error in its C register.

If running the machine delivers a value, it will be a number. Why? The
main function prints this number.
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4 Static Types Eliminate More Dynamic Checks

Checking the types of a Types program simplifies the CESK machine. Con-
cretely, it renders a fair number of run-time checks superfluous and thus
eliminates the corresponding transitions. The purpose of these checks is
to catch inconsistencies between computational operations and arguments.
For example, consider the transition for addition in figure 31. The figure
specifies two transitions for an addition expression: one if the value of both
variables are numbers and one if either one of them is an object. For sev-
eral other expressions, the CESK machine for Classy comes with pairs of
transitions for their evaluation: a “success” and a “failure” case.

The addition of types to the language and a type checker to the model
before the program is handed to the abstract machine ensures that these con-
sistency conditions on the transitions never matter. Compare the transition
for + in figure 31 with the implementation of typeCheck in figure 60. Notice
how typeCheck compares the type of each variable with Number and how the
side condition on the machine transition confirms that the same fact. Since
typeCheck is run before the program is (linked and) loaded onto the machine,
the case-distinction is superfluous.

Control Environment Store Kontinuation
evaluate an addition
before: (y + z) e s k
after: (+ yn zn) e s k

where yl = e[y]
and zl = e[z]
and yn = s[yl]
and zn = s[zl]

Figure 61: The CESK transition function for Types: simplified addition

Exercise 66. Inspect the CESK transitions in figures 31 through 36 and
create a list of conditions that distinguish success and failure cases.

With this list of conditions in hand, inspect the derivation rules in this
chapter to determine which of these conditions type checking renders su-
perfluous. Mark the corresponding specifications in figures 31 through 36.
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4.1 The Final Bit of Theory: Type Soundness

The elimination of run-time checks from the CESK machine for Classy de-
mands trust in the type checking rules and its implementation. From the
perspective of theory, the relationship raises the following question con-
cerning the relationship between type-checking on one hand and the CESK
machine on the other:

does the type checker eliminate all cases in which a Types program may
apply a computational operation to the wrong kind of value?

Here “computational operation” refers to those cases in the CESK transition
function that come with success conditions:

• + and / are obvious candidates, because both can process numbers
only;

• new must match the number of arguments to the number of fields;

• o –! f and o –! f = e succeed only if o is an object and this object comes
with a field named f; and

• o –! m(a ...) needs three conditions to hold for a successful transition:
(1) o is an object, (2) it has a method named m, and (3) the number of
arguments agrees with the number of m’s parameters.

As far as the type checker is concerned, we need to adapt the basic
idea from section 4.1 in chapter IV: A bad type checker can accept ill-typed
systems. Take a look at the following typeCheck method for a Types system:

class WFandValidSystem {
...

void typeCheck() throws TypeError {
return ;

}
...

}

It does not inspect any of its pieces; instead it accepts the existing (well-
formed and valid) system AST as type correct. And this kind of type checker
is not going to help a language implementer with the elimination of run-
time checks.

Following the pattern of the preceding sections on theory, we can state
a theorem that expresses how the type checker must relate to the CESK
machine to be sound. To this end, we think of the CESK semantics as a
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mathematical function, and we also consider the type checker sketched in
this chapter as a function called typeCheck. Using these conventions, the
so-called Typed Soundness Theorem has the following shape:

Some people use the
phrase “type safety”

instead.
For all well-formed and valid systems S in the Types model, if
typeCheckSystem(S) holds and if runMachineCESK(P) = R, then R
is either a number or a division-by-zero Exception.

Here P is the program that results from erasing types from S
and linking the resulting untyped system.

In other words, runMachine does not signal an exception due to any of the
conditions listed concerning success-failure pairs of transitions. A corol-
lary is that the corresponding failure cases in the transition function are
superfluous.

If you followed this far, you may now wonder what such a theorem
really means. As is, the statement concerns the mathematical nature of the
judgment derivation rules and the CESK machine. Critically, it does not say
anything about the implementation of the type checker or the CESK machine.

Seen this way, you may wonder whether a language implementer can
truly rely on this theorem. Theoreticians tend to think so, because they
assume that implementers faithfully follow the specification. Practitioners
know that the chosen implementation language or algorithmic concerns of-
ten necessitate a deviation from the specification. Unsurprisingly, they ac-
cept that implementations come with bugs, that is, differences to the speci-
fied behavior of either the type checker or the run-time machinery.

Exercise 67. Figure 61 shows how an implementer who trusts the type
checker may collapse the pair of cases in the specification of the CESK tran-
sition function into one. Use the result of exercise 66 to comment out the

These cases will be
needed again in the

next chapter. cases of the CESK transition function that are superfluous due to the type
system.

5 The Pragmatics of Types

The addition of a type system to a programming language raises one of the
most complex questions of pragmatics. Gaining a solid understanding of
the pragmatics of a type system is only possible after a complete model has
been developed. And the development of the model in this section shows
that a type system comes with costs and benefits for both consumers and
producers of a language.
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5.1 The Costs and Benefits for the Language Creator

As the preceding sections indicate, the design and implementation of a type
system imposes a significant effort on the language creators. In addition,
types shift property checking from semantics to syntax, which simplifies
the machine. Let’s look at these various issues, one at a time.

Designing a type system starts from a goal and must then work through
the collection of linguistic features with this goal in mind. Consider the
type system in this chapter, whose goal could be formulated as

eliminate the compatibility checks from the CESK machine, listed in
the preceding section.

At first glance, this goal just means checking that the variables in an addi-
tion expression always stand for numbers. But, an addition expression may
appear inside of a method and involve the method’s parameters. Hence it
is necessary to consider methods, that is, how values flow from the sys-
tem body into methods. Conversely, a variable declaration may contain
a method call instead of a numeric constant, meaning the type system also
has to consider how values flow out of methods. More generally, every item
in the list of section 4.1 forces a type-system designer to study which role
each linguistic feature plays in moving such a constraint from the machine
into the type system.

Once the type-system designer has written up the type judgments and
the judgment derivation rules, the language implementer’s task is to turn
these rules into code. Section 3.4 illustrates with a few cases how this
works, and it indicates how much work this translation of rules into code is.
What it fails to show is the work involved in the design of auxiliary meth-
ods so that the typeCheck methods mirror the derivation rules as clearly as
possible. Aiming for such an implementation is important because type
systems evolve, and realizing such changes is simplest when the imple-
mentation is structured according to the specification.

All this work pays off when it comes to “selling” the language. Every
compatibility check performed at run time slows down program execu-
tion. Conversely, the elimination of every check speeds up the execution.
Furthermore, types assist language implementers in other dimensions too,
including space-efficient representations of surface data as machine-level
data and energy-efficient arrangement of instructions. In short, the cre- Both topics are out

scope for this book.
ators of a typed programming language can “brag” more easily about its
performance than those who create untyped languages.
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Besides performance, language creators tend to advertise that type sys-
tems accelerate bug discovery. That is, the language implementation can in-
form a software developer about incompatible operations and values dur-
ing the creation of code instead of when the program runs and the given
inputs force the code to exercise these operations. Given that such failed
compatibility checks stop the program execution, accelerated bug discov-
ery appears to provide another sales point for a language. After all, no
developer wants the control software for an airplane to fail because it tried
to add a number to an object.

Like all advertising, this last one needs a close look. Unless the lan-
guage creators establish type soundness—both on theory side and the im-
plementation side—this claim is patently false. The problem is that

if a language does not satisfy the type-soundness property and if its
semantics does not perform run-time checks to ensure compatibility
between operations and values, the code may perform entirely nonsen-
sical computations.

Take the example of an addition operation again and consider that both a
number and an object are represented as a some fixed number of bits in
an actual hardware machine. While the bit-level representation may dis-
tinguish numbers and objects, the machine’s add instruction can, and will,
add any two bunch of bits—except that this addition produces a meaning-
less result. In the best case, such meaningless calculations eventually result
in so-called segmentation faults—but this may happen long after the add
instruction used the bits of an object representation. In the worst case, the
program execution terminates normally without much of a hint that some-
thing went wrong.

Establishing type soundness is a lot of work. Language creators typi-
cally perform this work in two phases. First, they develop mathematical
models of the type checker and the semantics, like those presented in this
book. Then they validate with a careful analysis of all cases in the semantics
that the type system and the semantics are related in the desired manner at
every step of the way. Even if the language creators perform all this work of
establishing theoretical type soundness and carefully translate the deriva-
tion rules into type-checking methods, the implementation may still suffer
from bugs due to a number of reasons. Most importantly, theory work cov-
ers a model, and a key attribute of a model is its simplicity compared to the
actual language.

Second, to close this gap between mathematical models and the full-
fledged language, language creators also derive extensive test suites from
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the language grammar and the full-fledged type-system specification. These This specification is
often formulated in
structured English
based on the type
judgments and
derivation rules.

test suites must cover language constructs excluded from the model plus
the corresponding judgments and derivation rules. Critically, these tests
do not just ensure that the type checker works properly and the semantics
works properly, separately; they must ensure that the combination works.

Clearly, this kind of work is extensive and complicated. Unsurprisingly,
software developers discover problems with type-soundness claims long
after a language implementation has hit the market. Language creators
with the ambition of maintaining type soundness will react with new re-
leases when such bugs are discovered. It should be equally unsurprising
that many language creators do not bother with type soundness, leaving
their consumers in the dark as to how safe the language is.

5.2 The Benefits for the Software Developer

A software developer faces many more work situations than those covered
in the preceding chapters of this book. It starts with the design of software
and goes all the way to its maintenance over time. Types affect almost all of
these situations, so it is time to take an expansive look at the combination
of those and types.

Figure 62 presents a table whose rows describe work situations and
whose three columns list the three kinds of languages we can imagine: one
without a type system, an idealized one with a sound type system, and one
with an unsound one. Each cell corresponds to a work situation combined
with an approach to types in a programming language.

By filling in these cells, we get a comprehensive picture of the pragmat-
ics of types. We start with just a few examples of row-specific and even
cell-specific benefits. Consider these examples illustrative, and keep them
in mind for the exercises at the end of this section.

Designing Code When developers design software, types assists with
almost all steps, but definitely with the first and most important one: how
to choose a data representation for the information that the code is going
to process. A language of types describes the forms of available data, and
it is only those forms that a developer can use to represent information.
Once the data representation is chosen, the formulation of a data definition
heavily relies on the type notation too (plus comments that interpret what
each piece denotes).

In the context of a typed programming language—sound or unsound—
a developer does not have much of a choice. The type notation and the type
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work situation language
without with sound with unsound

type system
design code
keyboard code
— create
— refactor
— evolve
— migrate
testing
debugging
documentation
deployed code
— bug diagnosis
maintenance
— port to different PL

Figure 62: Work situations and the role of types systems

rules are baked into the language, and they have to be used as is. A devel-
oper who has to work with an untyped language should still choose to fol-
low a type discipline; but this developer can choose a type discipline that
fits the problem. As the next chapter shows, these usually implicit choices
still dictate a certain programming discipline and result in a reasonably
small number of idioms.

The final question concerning this first row is whether a type checker is
helpful. Only the right-most two columns in figure 62 combine a type sys-
tem with this tool; the point of an untyped language is that programmers
are allowed to violate the imagined rules of their type system—as long as
they know what they are doing. Based on posts in a wide variety of fo-
rums, mailing lists, blog posts, and so on, it is clear that the vast majority
of developers think that a type checker helps, though in all likelihood they
conflate design with code creation inside of an IDE.

Creating Code The use of integrated development environments syn-
thesizes code design—the creative act of thinking through the problem and
coming up with a solution—with code creation—the act of keyboarding.
Developers design as they keyboard, and they keyboard as they design. A
typed, object-oriented setting supports keyboarding to the point where it
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assists with some part of the design—if the data representation is chosen
carefully. If so, it often boils down to the act of choosing the proper menu
item after entering “o.” into the editor.

Having clarified this much, we can turn to the question of what enables
the IDE to offer a menu of possible completions for the “o.” sequence of
keystrokes. And the answer is the type system, of course. The very moment
when a programmer enters the dot, the IDE has determined the type of
the o via some background computation. As this chapter shows, the type
contains the names of all methods and fields for an object.

As a matter of fact, if the developer selects a method m to continue from
“o.”, the IDE has type information about the shape of the method call. Us-
ing this information, the IDE can present a template for the method call that
the programmer then fills in. In sum, having a type system is extremely
helpful in this case of an object-oriented language, which partly explains
the success of this kind of language.

The picture looks a bit different for typed functional or procedural lan-
guages. An IDE can still provide more support for keyboarding code than
for an untyped one, but the support is less helpful than for an object-oriented
language. Most importantly, the IDE catches type errors as the program-
mer adds characters to the program text, and this form of alert is useful to
prevent design and code creation errors.

Testing and Debugging Let’s skip some rows to analyze the pragmatics
of testing and debugging. Here the three cells differ radically.

As noted, a typed language signals that an operation, say field access,
is incompatible with the given value(s) during program creation, that is, as
the programmer enters text into an IDE’s editor. This observation clearly
separates the first cell from the other two. Separating the second cell from
the third requires a reminder of the role that type soundness plays.

When a sound type system validates code, the programmer knows that
most semantic compatibility checks cannot fail. In the context of Types,
a programmer may experience only one kind of semantic error: division
by zero. By contrast, when an unsound type system validates code, it is
still possible that programmers run into semantic mistakes during testing.
Recall, however, that a language semantics does not have to perform these
run-time checks at all. A language creator can remove them with or without

It is rare that the
semantics of an
untyped language
comes without
compatibility checks.

arguing type soundness. In this case, a program may terminate and output
results as if every operation had worked properly.

From this point of view, a developer may observe the following out-
comes during test runs in the context of an unsound type system:
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• A test run may terminate with the correct result. While improba-
ble, it is possible that the execution misapplied operations but that
the observable outputs do not give any hint that things went wrong.
Clearly, this is the worst possible outcome, though luckily it is rare.

• A test run may terminate with an incorrect result. In turn, the devel-
oper must search for a mistake but does not know whether this is a
semantic mistake or a logical mistake. The good news is that the de-
veloper is aware of a problem; the bad news is that the search space
for the bug is large, due to lacking language support.

• A test run may terminate with a segmentation fault, because a misap-
plied operation causes a (bit-level) violation of an operating system
or hardware constraint. At this point, the developer knows that the
program execution used a primitive computational operation with
the wrong values. Sadly, the developer cannot know when this mis-
application took place during execution nor to which operation in the
source code it relates.

This list of testing scenarios and related debugging work clarifies how type

This list significantly
simplifies the set of

possible scenarios, but
it suffices to make the

point about dangers
with unsound type

systems.

soundness pays off. Yes, establishing type soundness imposes a significant
amount of work on the small team of language implementers, but at the
same time, the vast number of language users benefit a lot.

Exercise 68. Analyze how a type system may assist programmers who
have to modify existing code so that it can deal with new variants of data.
In your experience with procedural and object-oriented programming, is
this task easier in one or the other?

Exercise 69. Analyze how a type system may assist software developers
who must modify a program so that it can compute additional results for
the existing forms of data. In your experience with procedural and object-
oriented programming, is this task easier in one or the other?

Exercise 70. C# and Java come with so-called nominal type systems. By
contrast, TypeScript has a structural type system, similar to the one of our
Types model. In your experience, is a nomimal type system as accommodat-
ing as a structural one for the extensibility tasks described in the preceding
two exercises?

Exercise 71. Analyze how a type system may assist with documenting
the interface of a software component.

Exercise 72. Does the existence of a type system help with the task of
porting software from one language to another?
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5.3 How to Defeat a Programming Language

Even without filling in all of the cells of the table in figure 62, you can see
that a language with a sound type system comes with tremendous bene-
fits in many working situations. From a pragmatics perspective, such a
language is the best choice. Experience demonstrates, however, that devel-
opers can miss out on all these benefits unless they work with the language
and its tools, not against it.

To start with, a developer’s choice of data representation matters most.
Consider the “choose a data representation ” exercises that show up in all of
the chapter of this book. Every programming language offers an infinitude
of choices. As demonstrated at the beginning of chapter VI, a developer
could, in principle, encode any form of information as a number. Realis-
tically, programmers often choose strings to represent information, even if
the information suggests structure.

In the case of an abstract syntax tree, the represented information has
two sources: the program text and the language grammar. While the first
usually consists of either just a sequence of (Unicode) characters or a semi-
structured collection of characters, the second is a highly structured form of
information. A good data representation mirrors this information structure
and accommodates pieces of the program text as needed.

Figure 63 displays a choice of data representation for Module ASTs. Here
is what the creator of this data representation writes to represent an occur-
rence of the VariableName x in a Module system:

new AST("variable", new AST[0], "x")

Now imagine using this Java class to represent modules, import specifica-
tions, (Module) classes, methods, variable declarations, or an expression. So
here is a representation of a Module module-free system:

AST xvar = new AST("variable", new AST[0], "x");

AST one = new AST("number", new AST[0], 1.0);

AST x1[] = xvar, one;

AST decl = new AST("declaration", x1, "");

AST de[] = decl;

AST st[] = new AST[0];

AST expr = xvar;

AST bd[] = de, st, expr;

AST sys = new AST("system", bd);

Stop! Before reading on, imagine designing one of these methods for this
data representation.
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// represents an AST node of Module
class AST {
String kind; // the BNF production ‘this‘ represents

AST[] pieces; // ... its pieces

String name = ""; // ... if it has a name

double value = 666.0; // ... if it represents a literal number

AST(String kind, AST[] pieces) {
this.kind = kind;

this.pieces = pieces;

}

AST(String kind, AST[] pieces, String name) {
...

}

// no two modules have the same name

AST noDuplicateModules();

...

// all occurrences of a variable name refer to a declaration

AST closed();

}

Figure 63: An ill-suited data representation of Module ASTs in Java

Obviously, a data representation for ASTs such as the one in figure 63
fails a developer in many ways. Most importantly from the perspective of
this chapter, it fails to take advantage of Java’s type system in many differ-
ent ways. For example, when the developer enters “xvar.” into the IDE,
the drop-down menu contains the entry “noDuplicateModules” because it
is one of the many methods that AST implements. But invoking the noDupli-
cateModules method on the data representation of a variable makes no sense.
Similarly, in order to check whether the modules of a Module system come
with distinct names, the noDuplicateModules has to iterate over all pieces, al-
though only the first elements of this array should represent modules:

AST noDuplicateModules() {
for(AST ast: pieces) {
if (ast.kind == "module") {

...

}
}

}
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Furthermore, as the sketch indicates the method must compare strings to
find out whether any particular instance of AST is a module. Only then
it make sense to check the name field of the instance and process it as a
ModuleName.

Contrast this first data representation, with an approach that uses dis-
tinct Java classes to represent modules, import specifications, classes (those
in Module), methods, variable declarations, and so on. In such a data rep-
resentation, a system would come with one container that represents all of
its modules. This container would be the only Java class that would need
a noDuplicateModules method, meaning this method name would not pollute
any drop down menus when the developer enters “someVariable.” into the
IDE. And, it is easy to see how this method can uniformly access all of the
modules’ names—without any further conditionals.

A good core college curriculum on programming focuses on the very
principles that help you reap pragmatic benefits from programming lan-
guages. Such a curriculum conveys an understanding of software develop-
ment as a systematic design activity tailored to the underlying philosophy
of several different languages. This approach naturally introduces students
to IDEs that properly assist with both syntactic validation and program ex-
ecution. If your college course didn’t not come with such a curriculum, the
best course of action is to observe yourself (and others) interacting with the
IDE, stop to reflect on these interactions, and experiment on how to get the
best feedback from the IDE and the chosen language.

5.4 The Costs for the Software Developer

Benefits do not come for free. Most importantly, it is impossible to equip
many well-behaved Module systems with types so that they can be run as
Types systems. That is, Types comes with less expressive power than Module.

Figure 64 illustrates this point. Consider the Module code on the left
side. This module defines a class, Coordinate, which comes with two fields, x
and y, and one method, move. A mathematically inclined developer might
have named this method translate, because it realizes a geometric transla-
tion of one point relative to another, interpreted as a vector. Critically, the
method does not mutate this instance but creates a new one; it is a “func-
tional” method.

Stop! Try to write down a Shape that describes Coordinate as a type.
Problem is, the types notation does not allow a programmer to refer to

a Shape by name. In particular, a Shape for Coordinate would have to refer
to itself, because move returns another instance of the class—meaning its
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(module Cartesian

(class Coordinate

(; going right horizontally:

x

; going up vertically:

y)

(method move (delta)

(def myX (this --> x))

(def myY (this --> y))

(def deltaX (delta --> x))

(def deltaY (delta --> y))

(def nuX (myX + deltaX))

(def nuY (myY + deltaY))

(new Coordinate (nuX nuY)))))

class Coordinate {

double x;

double y;

Coordinate(double x, double y) {
this.x = x;

this.y = y;

}

Coordinate move(Coordinate delta) {
double myX = this.x;

double myY = this.y;

double deltaX = delta.x;

double deltaY = delta.y;

double nuX = myX + deltaX;

double nuY = myY + deltaY;

return new Coordinate (nuX, nuY);

}
}

Figure 64: The loss of expressive power due to type constraints (1)

return type is the Shape we are in the process of writing down. Technically
speaking, language researchers say that the type system of the Types model
lacks recursive types.

The designers of type systems for real-world languages try to overcome
this loss of expressive power with additional complexity. For example,
Java’s type system accommodates recursive class types. Take a look at
the right side of figure 64, which displays a Java-style implementation of
an equivalent class. As the boxed Coordinate in Java a method’s signature
shows, the name of a class is in scope of all its method types. Hence, it is
possible to equip a functional method such as move with a signature.

Exercise 73. Add a system body to the code on the left side of figure 64
so that you can run it in your implementation of Module. The example
should enable you to observe an output related to the processing of a Coor-
dinate via move.

Exercise 74. If you have experience with Java, complete the code on the
right side of figure 64 in the same manner as your solution of exercise 73.
Run the program and compare the output to the one of your Module system.

Support for generics—occasionally called parametric polymorphism—
in typed class-based, object-oriented languages makes this point as clearly
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(module Null

(class Null ()

(method map ()

this)))

(module Cons

(import Null)

(class Cons (one rem)

(method map ()

(def one (this --> one))

(def fone (one --> f()))

(def rem (this --> rem))

(def frem (rem --> map()))

(new Cons (fone frem)))))

interface WithF<T> {
WithF<T> f();

}

interface IList<T extends WithFC> {
IList<T> map();

}

class Null<T extends WithF>

implements IList<T> {
public IList<T> map() {
return this;

}
}

class Cons<T extends WithF>

implements IList<T> {
WithF<T> one;

IList<T> rem;

Cons(WithF<T> one, IList<T> rem) {
this.one = one;

this.rem = rem;

}

public IList<T> map() {
WithF<T> fone = this.one.f();

IList<T> frem = this.rem.map();

return new Cons<T>(fone, frem);

}
}

Figure 65: The loss of expressive power due to type constraints (2)

as possible. While Java and any typed object-oriented language with a type
system supports recursive types, it initially lacked generics. Indeed, it took
the Java team a decade to add this extremely useful feature to the type sys-
tem. During this time, several researchers designed and explored a number
of variants, meaning both theoretical and practical properties. In the end,
the Java team selected an unsound alternative, mostly to stay backwards-
compatible. By contrast, Microsoft’s C# designers, who had also released
the language without generics, opted for a sound alternative and modified
the underlying virtual machine to accommodate this choice.

Figure 65 displays an example that demonstrates the need for generics
and simultaneously documents another loss of expressive power. The left
side of the figure presents an untyped Module system fragment. It consists
of two modules, Null and Cons, which jointly create a linked-list data repre-
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sentation. Using the exported classes, a Module programmer can form lists
that contain distinct kinds of objects, that is, instances from distinct classes.
As long as each of these classes supports a method named f, the program-
mer can also request a map over these lists. Here are two such classes:

(module F

(class F (x)

(method f()

this)))

(module G

(class G (x)

(method f()

(def x (this --> x))

(def y 2.0)

(x + y))))

Key is that the programmer knows that the result of this use of map is a list
with the same kinds of objects, that is, instances of the respective classes. In
the above example this would mean a list of Fs and a list of Gs, respectively.
Since Module lacks a type system, however, the programmer cannot use the
language’s validity checkers to confirm this thought.

Neither could a Java programmer until 2004. Instead, the programmer
would use Java’s Object type to encode the fact that a list can accommodate
all kinds of objects plus casts to confirm the result type. A cast tells the
type system to accept a programmer’s claim without checking it, and it
informs the semantics to perform a run-time check. Hence, a pre-2004 Java
programmer could confirm this thinking only with unit tests, not while
editing the program in an IDE.

The right side of figure 65 displays a Java version of the Module frag-
ment that uses generics. Critically, the programmer can express the thought
“every class that has a method f” in the type system—see the boxed code—
and the type system validates this thought across the entire program. In
particular, it confirms that the map method inside of Cons may use f. Since

Technically, the type
checker replaces the

type variable T for
each call to method
with the type of the

list elements.
the IList interface also specifies that the result of map is IList"T!, the type
checker confirms that each application of map returns the kind of list on
which it is invoked.

Exercise 75. Using the two classes above, add a system body to the code
on the left side of figure 65 so that you can run it in your implementation
of Module. The example should enable you to observe an output related to
the processing of these lists via map.

Exercise 76. If you have experience with Java, complete the code on
the right side of figure 65 so that you can run the program and observe an
output related to the processing of two distinct ILists via map.

While the addition of complex features, like generics, to a type system
solves one problem, it creates another one. As the complexity of a type
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system increases so does the slope of the learning curve. Yes, complex
type systems enable developers to articulate their thinking about code as
code and have the type checker confirm it. But, language designers must
acknowledge that doing so slows down the learning process, potentially
frustrates novices, and occasionally injects new pitfalls into the language.

Consider Java’s generics. On one hand, they replace the Object and casts
with useful pieces of code. On the other hand, Java’s generics break the
soundness theorem that applied to its initial releases. As mentioned in pre-
ceding sections, this lack of soundness reduces the trust into the program’s
results. Fortunately in Java’s case the problem remains minor.

Similarly, the replacement of generics instead of Object and casts is not
straightforward. It requires a thorough understanding of a non-trivial type
notation and of the meaning of parametric type expressions. To get to the
point where writing programs such as those in figure 65 comes easy, a de-
veloper is likely to get frustrated with efforts to get get code to conform to
the type system.

Exercise 77. A structural type system, such as the one of the Types
model, greatly simplifies the extension of a code base with new forms of
data and additional pieces of functionality. If some functionality exists, say
map, that applies to any object with a method f, a programmer can re-use
this functionality with new classes.

How can this reuse endanger the code’s integrity at run time?
How does a nominal type system, such as C#’s or Java’s, prevent such

novel uses?
The answer to these questions demonstrates that the design of a type

system adds to the tension between the security of a piece of code and its
extensibility.

6 The Costs and Benefits of Types: A Warning

Software developers began to understand the expressive power of type sys-
tems in the 1990s. They recognized that type systems enabled them to ex-
press intricate thoughts and have them checked; and they recognized that
by doing so, sound type systems could thus guarantee the absence of cer-
tain run-time failures.

In response, academics decided to explore additional ways to add ex-
pressive power to type systems. They advertised types as theorems about
code and type checkers as proof assistants that established the validity of
these theorems. Enabling developers to state more theorems and prove
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them correct would eliminate more run-time problems. Deployed software
would suffer from fewer problems. These researchers seemed to overlook,
however, that powerful type systems create a steep learning curve and that
in such settings, developers have to work so much harder to sync their code
with their types.

As this chapter’s cost-benefit sections point out, the design of a type
system is not a mathematical exercise but an engineering task. Engineers
know that they maximize a benefit subject to resource constraints; or they
minimize cost subject to safety constraints. Put differently, engineering is
an optimization process. Engineers do not go for ideals, such as total safety.
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Figure 66: The Laffer curve of type systems

One way to illustrate this point is the use of the Laffer curve from eco-
nomics. A Laffer curve records the benefits of some project over its re-
sources. For simplicity, let’s say the benefits of a type system is the preven-
tion of bad behavior at run time, and let’s similarly and equally naively say
that the resource is the power of the type system to invalidate code.

While this setup is somewhat vague, it allows us to draw the first two
points of the Laffer curve of types: see the left-most curve in figure 66. The
point near the origin represents a type system that accepts every piece of
code. Clearly such a type system comes without any benefits; all problems
are (at best) discovered by the semantics. By contrast, the “extremist” type
system on the right side of the graph rejects all programs. Although this
guarantees that no program behaves badly at run time, it really means that
no program can ever be run. Once again, it is appropriate to assign this type
system a score of 0 effectiveness. After all, effectiveness implies developers
get programs to run easily and behave well.
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This chapter, and empirical evidence, shows that there are effective type
systems with the kind of benefits that developers appreciate. Let’s record
this observation as red dots between the two extreme ones; see the graph in
the middle of figure 66. For example, many programmers consider Java’s
type system expressive and reasonably safe. Academics may instead point
to OCaml’s type system or Haskell’s; both of these bestow more benefits on
developers than Java.

In short, we may wish to imagine a continuous graph of the effective-
ness function of types as presented in the right-most part of figure 66.
Given this understanding of the type-system design task, the goal of types
researchers and type systems designers ought to be the discovery of opti-
mal points, or as stated above, points on this curve that facilitate program
design and yet make the resulting code reasonably safe.


