
(IDE) tools. Their choices directly affect 
the software developers who will end 
up using these languages and tools; 
therefore, creators try to make these 
choices with developers in mind.

The Pragmatics of 
Programming Languages
To make this concrete, consider the 
design of TypeScript,25 a typed sibling 
of JavaScript.6 Its design explicitly aims 
to foster interactions between the type-
checked code written in TypeScript and 
the untyped code in JavaScript. Hence, 
its designers had to make a choice con-
cerning the integrity of type annota-
tions; for example, whether a callback 
from JavaScript may apply a function 
of argument type number to a string. 
While the answer of TypeScript’s cre-
ators is “yes,” academic researchers 
who work on similar programming 
languages tend to loudly assert, “No, 
run-time checks should prevent such 
misapplications.”

Making such choices should rest on 
solid information from a systematic 
evaluation. In turn, this calls for an 
evaluation method that can gather in-
formation about the use of a particular 
linguistic feature or tool in a specific 
situation. One concrete question could 
be whether run-time checks for a Type-
Script-like language would help devel-
opers with locating the logical source 
of misapplications.

Designers should address such 
questions to programming language 
researchers, but those just study the 
theory and practice of languages. Con-
cretely, researchers have studied the 
semantics35,30 of mixed-typed languages 
and their performance.34 The former 
shows that run-time checks are needed 
to establish a generalized form of type 
safety;39 the latter says that run-time 
checks are often expensive. Neither 
investigation answers the question of 
whether and how information from 
failing run-time checks helps develop-
ers locate such misapplications. What 
the area lacks is a method for assessing 
the pragmatics of language features.

Linguists describe pragmatics as 

E V ERY S O OF T EN,  someone creates or changes a 
programming language. In the process, these language 
creators make a number of design choices. They may 
wonder whether to check certain conditions at compile 
time or at run-time, they may choose between a simple 
error system or a provenance-tracking value system for 
sophisticated error reporting, or they may consider an 
alternative set of integrated development environment 
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the study of natural-language use in 
context. By interpreting “context” as 
“work situation,” the definition di-
rectly applies to the study of program-
ming-language use. The above ques-
tion is a concrete instance: Types are 
the novel feature of TypeScript, and 
finding the source of a mismatch be-
tween a program’s checked type an-
notations and its run-time behavior 
is the work situation. An evaluation 
method should determine whether 
run-time checks provide information 
that assists with locating the source of 
the mismatch.

Over the past decade, the authors 
have developed such a method, dubbed 
the rational programmer. Their first, 
specific goal was to investigate whether 
run-time checks provide helpful infor-
mation, because of their own involve-
ment in a TypeScript-like language. To 
their surprise, the results of their ra-
tional-programmer experiments were 
highly nuanced: When a correct type 
annotation describes buggy untyped 
code, the information produced by the 
run-time checks is not all that helpful 
with finding the source of mismatches; 
when the problem is due to mistaken 
type annotations, though, the checks 
help a lot, and the aspect of checking 
that theory research often ignores—
called blame assignment9—produces 
the most relevant information. The 
authors’ general goal is to understand 
pragmatics information—using the 
rational programmer as their instru-
ment. The next section addresses what 
the rational programmer delivers, how 
it works, and what it is not—a human 
being.

The Rational Programmer
As Morris28 stated in his seminal 1968 
dissertation, an investigation of pro-
gramming languages must investigate 
syntax, semantics, and pragmatics. 
Syntax is a problem whose nature lends 
itself to precise mathematical and en-
gineering investigations, and so is se-
mantics. Researchers have therefore 
focused on these aspects. By contrast, 
pragmatics has been considered a 
nebulous concept, because it is about 
the concrete tasks developers face 
when they use a language. Investigat-
ing pragmatics thus seems to call for 
human studies, observing how people 
extract information from syntax and 

semantics plus how people use it in dif-
ferent situations.

A close look at this description sug-
gests that jumping to human studies 
means taking several steps at once; 
that is, (a) checking whether syntax 
and semantics produce relevant infor-
mation, (b) programmers understand 
this information, and (c) programmers 
act on this information. While human-
subject studies are needed to deal with 
(b) and (c), it should be possible to in-
vestigate (a) without involving people 
as subjects. Indeed, this separation of 
concerns suggests that it makes sense 
to study whether human programmers 
understand the information and act on 
it only if an investigation of question (a) 
confirms its existence, its accessibility, 
and its actionable nature.

Questions about the information-
content of language features resemble 
the questions economists face when 
they began to think about the effective-
ness of interventions in the economy—
the pragmatics of economic policy. In 
response, Mill26 decided to construct 
and investigate an artificial economic 
actor: homo economicus. His idea was 
that homo economicus acts rationally, 
using all available information to make 
beneficial decisions in the realm of eco-
nomics. While Mill’s idea at first sug-
gests striving for benefit means maxi-
mizing profit or minimizing cost, many 
economists have revisited and refined 
his idea since then; Simon's31  ideas of 
bounded rationality and of satisficing 
profit goals stand out.a

The rational programmer method 
is the authors’ response to the ques-
tion on programming-language prag-
matics. A rational programmer is a 
software actor that mechanically uses 
a linguistic feature to solve a specific 
problem. Like homo economicus, a 
rational programmer is an idealiza-
tion—an abstraction that does not ex-
ist in the real world. No developer acts 
rationally in the sense of this abstract-
ed programmer or even in a bound-
ed-rational manner. But, assuming 
bounded rationality with respect to 

a	 Although homo economicus is the foundation 
of classic economics, models resting on it ex-
plain only some macroeconomic phenomena 
and miss many others. Behavioral economics 
starts from the alternative assumption, name-
ly, that economics must study the non-rational 
decision-making processes of human beings.

The rational-
programmer 
method is the 
first reasonably 
general approach 
for assessing 
whether linguistic 
features and 
tools can deliver 
helpful information 
with software 
development tasks.
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Figure 1. A schematic overview of the rational-programmer experiment.
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A rational programmer (RP) experiment consumes two inputs: a corpus of problematic 
programs P (in yellow) and a number of distinct RPs (in blue). Each program P exhibits a 
specific kind of problem. For example, all programs P in the given corpus exhibit the same kind 
of bug or suffer from similar performance bottlenecks. Each RP is an algorithm that extracts 
information from a language feature to solve the problem in a given program P. Each RP 
attempts to solve the problem by transforming P into a variant P’ (blue arrow). Two different 
RPs may act differently on the same extracted information. Or, two RPs may use different 
flavors of the feature; doing so affects the information the RPs observe. In this way, each 
RP reifies a hypothesis about how the feature can produce helpful information in the given 
work situation. The RP experiment applies all RPs to all problematic programs in the corpus 
and records the outcomes. Given a problematic problem P and a RP, each outcome is either 
a success or a failure. An analysis of the collected outcomes explains how well different RPs 
perform. In short, the experiment puts to test and compares a number of hypotheses about 
programming-language pragmatics in an automated fashion.

different ways, but most frequently a 
programmer may link a typed piece of 
code to an existing untyped library in 
the same language or a programmer 
may write an untyped script that im-
ports a typed module.

Microsoft’s realization of this idea 
in the form of TypeScript has taken the 
developer world by storm. Many Web 
developers reach for TypeScript instead 
of JavaScript because they like types 
and can easily continue to link to the 
many useful, preexisting, and untyped 
libraries. On the academic side, Typed 
Racket36 is the most robust realization 
of the idea. It has found some use in the 
real world, has extensive applications 
in academia, and provides a solid plat-
form for programming-language inves-
tigations.

The designs of TypeScript and 
Typed Racket share similarities and 
yet differ in ways that inspire a rational-

a chosen linguistic feature or tool en-
ables a way of investigating pragmatics 
information.

Technically speaking, a rational 
programmer is an algorithm that, with 
a bounded effort, exploits informa-
tion from one specific language feature 
to solve a specific problem. Concretely, 
it starts from a program P that suffers 
from a problem and acts on informa-
tion to solve the problem; in the pro-
cess, it is likely to edit P to obtain P', a 
program variant that represents a so-
lution. In fact, a rational-programmer 
experiment may involve a number of 
rational programmers; each algorithm 
corresponds to a different hypothesis 
of the language designers about a lan-
guage feature. Applying all algorithms 
to a large representative corpus of 
problematic programs may then yield 
insight into the value of the informa-
tion that the investigated feature pro-
vides for this problem. Creating the ra-
tional-programmer algorithms as well 
as the representative scenario corpus 
requires problem-specific research; the 
experimental setup, though, remains 
the same. See Figure 1 for an overview.

In sum, the rational-programmer 
method employs large-scale experi-
mentation with idealized behavior 
to check hypotheses about the infor-
mation content of language features. 
This article first illustrates the idea 
with a concrete example. After sketch-
ing some more uses of the rational 
programmer method, the article pres-
ents a general schema. Following this 
generalization, it examines the labor 
involved in rational-programmer ex-
periments. The final sections of the ar-
ticle relate the rational programmer to 
human programmers in two different 
ways. The article concludes with a call 
to arms.

Pragmatics by Experiment
The rapid development of mixed-typedb 
languages over the past decade sets up 
a perfect example of how the rational-
programmer method can yield surpris-
ing insights. A mixed-typed language 
allows programmers to mix typed and 
untyped pieces of code in a single pro-
gram. This mixing can happen in many 

b	 The term “mixed-typed” covers optional type 
systems,32 plug-in type systems,3 gradual type 
systems,30 and migratory type systems.35

programmer experiment. Their type 
systems resemble each other closely. 
Both use occurrence typing,37 and both 
come with sophisticated types for ob-
ject-oriented programming.33 Concern-
ing their semantics, they differ in that 
they deal with type mismatches rather 
differently. A type  mismatch occurs 
when untyped code and typed code ex-
change values that do not conform to 
the specified types.

A reader may wonder how a well-
typed program can possibly go wrong.27 
It is of course not the typed code alone 
that causes type mismatches but the 
mixing of typed and untyped code. 
When such a mixture runs, untyped 
code can send a value into typed code 
that does not match the expected 
type. In the TypeScript world, a first, 
well-known cause is that the types 
imposed on untyped code are flawed. 
For example, the DefinitelyTyped re-
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the only language that satisfies this 
desiderata because it implements all 
three alternative checking regimes.

Equipped with a suitable experimen-
tal environment, preparing a rational-
programmer experiment is a two-step 
process. Step 1 calls for the identifica-
tion of a large, representative corpus of 
problematic programs. To mechanize 
the experiment properly, a problematic 
program should be one with a single, 
known type-mismatch problem so that 
the experimental framework can auto-
matically check the success or failure of 
a rational programmer. Furthermore, 
the problem should be a mis-specifi-
cation of a type or a bug in an untyped 
piece of the program. No such ready-
made corpus exists, but it is possible to 
create such a corpus from a represen-
tative collection of correct programs.11 
Starting from this collection, apply-
ing appropriate mutation operators5 
yields millions of suitable problematic 
programs; selecting a representative 
sample of tens of thousands supplies 
the corpus. For the statistical analysis 
of the selection, the reader may wish to 
consult the already-mentioned papers.

Step 2 demands the translation of 
hypotheses into rational program-
mers. Since the goal is to find out which 
checking regimes deliver helpful in-
formation for locating the source of 
type-mismatch problems, a rational 
programmer should try to strategically 
squeeze as much information from 
such checks as available.

Each rational programmer imple-

The compiler translates types into run-
time checks that enforce their integ-
rity. When these checks fail, they raise 
an exception. Consider an untyped 
library that accidentally calls back a 
string-typed function with the number 
42. The explicit run-time checks of this 
second alternative are going to notice 
this problem as soon as it happens, and 
the exception-associated stack trace is 
going to be close to the problem-discov-
ery point.

3.	 Notice them and try to pinpoint a 
source. The Typed Racket compiler can 
go even further and associate a mes-
sage with these exceptions that assigns 
blame to a specific piece of untyped 
code, warning developers that this 
blame is useful only if the correspond-
ing type specification is correct.

Given these alternative checking re-
gimes, choosing from them should be 
understood as a prototypical question 
of language feature pragmatics:

which checking regimes deliver 
helpful information for locating the 
source of type-mismatch problems?

A rational-programmer investiga-
tion can answer such questions to 
some extent. The remainder of this sec-
tion explains how; readers interested 
in details should consult the work of 
Lazarek et al.19,20

Setting up a truly scientific experi-
ment requires that everything except 
for the run-time checking regime of 
the investigated language remains the 
same. At this point, Typed Racket10 is 

positoryc collects modules that import 
untyped libraries and re-export them 
with type specifications so TypeScript 
can type-check the importing mod-
ule. In most cases, these adapter mod-
ules are programmed by developers 
other than those who created the li-
braries. Unsurprisingly, this results in 
flawed type specifications. Research-
ers (for example, Christiani and Thie-
mann,4 Feldthaus and Møller,7 Hoeflich 
et al.,15  and Kristensen and Møller16) 
have investigated this problem and 
have found numerous such flaws. A 
second cause is dual to the first; the 
untyped code suffers from bugs. That 
is, the untyped code is supposed to live 
up to some type specification, but a bug 
occasionally causes a type mismatch at 
run-time. See Figure 2 for a TypeScript 
example.

Given the possibility of type mis-
matches, a language designer can 
choose one of a few alternative check-
ing regimes:

1.	 Ignore them. The compiler checks 
and then erases types as it translates a 
program. The resulting code performs 
no run-time checks to enforce type in-
tegrity. If, for example, some untyped 
library calls an integer function with 
"42", the mismatch may never be dis-
covered during execution. The litera-
ture dubs this approach erasure seman-
tics. TypeScript is the most prominent 
design using an erasure semantics.

2.	 Notice them as early as possible. 

c	 See https://tinyurl.com/omsgny7

Figure 2. A simple type-mismatch problem between JavaScript and TypeScript.

var balance = 0;
export function deposit( amt: number ) {
	 balance += amt;
}

export function printBalance() {
	 console.log("balance: " + balance);
}

Bank.ts

const Bank = require('./Bank.js');

// logically correct interaction
Bank.deposit( 100 );
Bank.printBalance();

// logically incorrect interaction
Bank.deposit( "pennies!" );
Bank.printBalance();

Client.js

This simplistic program illustrates a type-mismatch problem. The code in the box on the left is a TypeScript 
“module” that implements a simple bank account module. The code in the box on the right is a JavaScript 
client “module” that imports the bank account functionality. The first call to deposit supplies a number as an 
argument; the follow-up call to printbalance correctly prints ‘balance: 100‘. The second call to deposit 
supplies the string “pennies”. Neither the code generated by the TypeScript compiler nor the JavaScript VM 
signal an error, even though the type specification explicitly requests a number. The final request to see the 
balance prints ‘balance: 100 pennies!‘—a wrong answer with which no customer would be happy.
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Concerning the search for the source 
of type mismatches (S1), the results of 
the rational-programmer experiment 
are somewhat surprising, however:

	˲ When the bug is located in the 
type specification imposed on untyped 
code, the conjectured benefits are con-
firmed.

	˲ When the bug is located in the 
untyped code, the expected benefits 
disappear. While Blame supplies infor-
mation that is somewhat better than 
Exceptions and Erasing,  the three dif-
fer only a little.

Concerning the effort (S2), all strat-
egies need significantly fewer replace-
ments than Null. Its existence thus con-
firms that the other three algorithms 
deliver useful information. Unsurpris-
ingly, Blame fares the best; it needs the 
smallest number of replacements.

In sum, Blame provides the most 
helpful information for locating the 
source of problematic type specifica-
tions for untyped pieces of code. Excep-

often the algorithm finds the single, 
planted bug, and if it does find it, (S2) 
how many replacements are needed.

An experiment needs a control:
	˲ Null. The null-hypothesis pro-

grammer randomly chooses an un-
typed piece of code. This Null rational 
programmer always finds the problem 
(S1: 100%), because it eventually replac-
es all pieces of code with their typed 
versions. But, to get there, it may have 
to replace many untyped code pieces 
(S2: usually a large count).

Both theoretical investigations and 
developer anecdotes suggest that sub-
stantial benefits flow from run-time 
checks for locating type mismatches. 
Checks should discover mismatches 
early to avoid the uncontrolled and 
misleading propagation of faulty val-
ues. Furthermore, their stack traces are 
closer to the discovery of the problem, 
and the blame assignments in their 
exception messages seem to represent 
particularly useful information.

ments the same strategy, parameter-
ized over the checking regime. The 
strategy is to run program P until ex-
ecution stops due to an exception and 
to then inspect the available infor-
mation from this failure. In one way 
or another, these exceptions point to 
an untyped piece of code. By equip-
ping this piece with types, a rational 
programmer obtains P', which it tries 
to compile and run. If type checking 
P'  fails, the experiment is a success 
because the type-mismatch problem 
has been discovered statically. Other-
wise, P'  type-checks, and running it 
again restarts the process. A rational 
programmer declares failure when it 
cannot act on the available informa-
tion. See Figure 3 for a diagrammatic 
summary.

A key detail omitted from the dia-
gram is how the rational programmers 
equip untyped pieces of code with 
types. As it turns out, each of the pro-
grams in the chosen collection11 comes 
in two forms: typed and untyped. More-
over, all typed and untyped pieces can 
be mixed seamlessly—a property that 
the problematic programs in the cor-
pus inherit by construction. Thus, the 
rational programmers can easily anno-
tate untyped pieces of code with types 
by replacing it with its corresponding 
typed version.

The three alternative compiler de-
signs suggest three rational program-
mers:

	˲ Erasing. The erasure semantics 
may assign a program with a type-mis-
match a behavior that is seemingly nor-
mal or that triggers an exception from 
the underlying virtual machine. Since 
such exceptions come with stack trac-
es, the Erasing rational programmer 
can inspect this trace and replace the 
untyped piece of code closest to its top.

	˲ Exceptions. When Typed Racket's 
run-time checks fail, they also display 
a stack trace. Like the Erasing rational 
programmer, the Exceptions one re-
places the top-most untyped piece of 
code with its typed counterpart.

	˲ Blame. The Blame programmer 
exploits the blame assignments that 
come with Typed Racket's failing run-
time checks. It replaces the blamed 
piece of code with its typed version.

All three rational programmers pro-
ceed in the same manner, and thus the 
experimental setup may count (S1) how 

Figure 3. How a rational programmer searches for the source of a mismatch.

???
τ τ τ τ τ τ???

τ τ τ τ τ τ

because the problem report is not actionable

τ τ τ τ τ τ

because type-checking fails

repeat until there is no progress

τ τ τ

replace identified untyped piece with typed piece

τ τ

run until exception is raised

τ τ

τ

identified piece

problematic piece

typed piece

untyped piece

The experiment confronts a rational programmer (RP) with a problematic program (bottom 
left), that is, a program with one known type mismatch (in yellow). The RP runs the program 
using its chosen run-time type-checking regime until it raises an exception, whose report 
points to an untyped piece of code as the source of the problem. The RP then replaces the 
identified untyped piece with its typed counterpart and runs the program again. This process 
is repeated until the untyped piece of code that causes the type mismatch becomes typed (top 
left), forcing the type checker to signal a type error, or until the problem report does not come 
with actionable information for the RP. In the first case, the type error exposes the problem, 
and the search succeeds; in the second case, it fails.
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tion provides developers with helpful 
information.

Again, the results of running a ra-
tional-programmer experiment are 
somewhat surprising. While an early 
variant of the RP experiment seemingly 
validated the folklore wisdom behind 
software contracts,21  it lacked a NULL 
hypothesis. A subsequent reproduction 
run of the experiment with a NULL-hy-
pothesis rational programmer appears 
to weaken the evidence.18

Mixed-typed languages also sug-
gest investigations into the pragmatics 
of tools. Concretely, a mixed-type lan-
guage with run-time checking tends to 
create performance problems, frictions 
between the typed and untyped parts 
of the program. The problem was dis-
covered in the context of Typed Racket 
almost a decade ago33  and confirmed 
in other settings.13 Since profiling tools 
are one way to debug performance 
problems, and since Racket comes with 
two of them2—each of which supplies 
different feedback information—tool 
designers are confronted with a con-
cern of pragmatics. When tools are 
concerned, the question is not just 
which one to pick but also how to use 
it. In other words, exploring the infor-
mation delivery of a tool involves us-
age strategies, meaning the question 
becomes

Which combination of profiling  
tool and strategy delivers  
useful information for debugging 
performance problems in 
mixed-type languages? 

Running appropriate rational-pro-
grammer experiments confirms that 
one of the two profiling tools produces 
more valuable information in general; 
the surprise lurks in which strategies 
are successful and which ones are not. 
The interested reader can find the de-
tails of these results in a forthcoming 
paper by Hejduk et al.14

While the first two examples of ex-
periments confirm the usefulness of 
the rational programmer within the 
linguistic environment of Racket, 
pragmatics questions arise whenever 
a language evolves and can be ad-
dressed with rational-programmer ex-
periments. Consider the evolution of 
the Rust programming language and 
specifically the borrow-checking part 
of its type checker. This algorithm has 

fects the search and how. To mitigate 
them, the design of the experiment 
comes with an array of checks and con-
trols. For instance, the experiment’s 
corpus originates from correct pro-
grams written by different developers 
for different purposes and exhibit a 
variety of programming styles. They 
also vary in terms of language fea-
tures, complexity, and size. Moreover, 
the mutants of these correct programs 
that form the experiment’s corpus 
have been mechanically analyzed to 
confirm their suitability; they contain 
a wide range of non-straightforward 
type mismatches that structurally 
resemble issues reported by Typed 
Racket programmers. For an account 
of how the experimental design miti-
gates the technical caveats, the reader 
may wish to consult the papers by Laz-
arek et al.18-20

Concerns of Pragmatics 
Are Ubiquitous
The preceding section illustrates the 
rational-programmer method through 
the investigation of one concern: the 
various semantics of mixed-typed pro-
grams and the problem of finding the 
source of type-mismatch problems. Its 
results partially contradict and partial-
ly confirm hypotheses based on theo-
retical research.

This section reports some of the 
authors’ experience with related prag-
matics concerns and sketches how to 
go beyond. Concerns of pragmatics 
exhibit tremendous variability: the 
linguistic features considered, the 
work situations, and the chosen pro-
gramming language. Given how de-
velopers tend to consider the available 
software tools as part of the chosen 
language, it is even natural to inves-
tigate the pragmatics information in 
alternative tool sets.

Here is a variant of the concern from 
the preceding section:

do assertions and contracts 
deliver helpful information for 
locating the source of different 
classes of logical bugs?

The point of assertions and con-
tracts24 is to detect problems as early 
as possible. Once detected, the prac-
tical question is how to fix the prob-
lem, and the question of pragmatics is 
whether the violation of the specifica-

tions is essentially only as helpful as 
Erasing. For bugs in untyped code that 
cause type mismatches, the advantage 
of Blame over the others shrinks sub-
stantially.

The rational programmer versus 
theory. The results are particularly sur-
prising when compared to the predic-
tions of programming languages the-
ory. Theoretical investigations predict 
that the run-time checking semantics 
finds every type-mismatch problem 
that the erasure semantics discovers—
and finds it earlier than the erasure 
semantics.13 The results of the rational-
programmer experiment point out that 
this theoretical prediction does not di-
rectly translate into practice. Indeed, 
there are two problems:

1.	 Theoretical publications on 
mixed-typed languages focus on run-
time checking. But, the investigation 
indicates that, for a broad variety of 
type mismatches and benchmarks, a 
language using an erasure semantics 
discovers and locates most of the type-
mismatch problems anyways.

2.	 Many theoretical papers ignore 
the blame assignment part of run-time 
checking. But, the investigation shows 
that it is the key element to making 
run-time checks informative. Readers 
should interpret these two observa-
tions as blind spots of theoretical in-
vestigations in this research area.

Caveats. While these large-scale 
simulations look impressive, their in-
terpretation must take into account 
that they apply only to Typed Racket. Its 
underlying untyped language, Racket, 
enforces strict preconditions for each 
of its primitives, which has significant 
implications for when and how the era-
sure semantics delivers information. 
By contrast, JavaScipt, the language 
underlying TypeScript, enforces lax 
preconditions. In all likelihood, lax en-
forcement in the underlying language 
will make a run-time checking regime 
more effective than in a Racket-like 
setting. The only way to check this con-
jecture is to reproduce the experiment 
with TypeScript.

As for every empirical investigation, 
the rational experiment described in 
this section comes with technical cave-
ats, such as whether the corpus is truly 
representative, whether the statistical 
sampling is appropriate, or whether 
the presence of more than one bug af-
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expressiveness of type system variants 
may apply beyond Rust.

Rational Pricing of Pragmatics
Rational-programmer experiments are 
costly in terms of human labor. These 
costs come in three different flavors: al-
ternative implementations of features 
and tools, the experimental platform, 
and intellectual innovations in the in-
vestigated domain.

First, an experiment usually re-
quires the implementation of two or 
more variants of a language feature or 
tool. When such implementations do 
not exist, new implementations for the 
sake of the experiment rarely need to 
meet production-level standards; pro-
totypes tend to suffice. When multiple 
production implementations already 
exist, as is often the case with tools, this 
cost reduces to prototyping the space 
of usage strategies. In other words, this 
cost is analogous to the labor expended 
by designers and engineers in other 
fields when they create prototypes to 
test design hypotheses.

Second, the construction of the ex-
perimental framework requires labor. 
The size of the experimental corpus, 
the number of the rational program-
mers, and the complexity of the usage 
strategies call for a sophisticated infra-
structure. Specifically, the infrastruc-
ture should assist with breaking the ex-
periment into piecemeal tasks so that a 
run of an experiment can take advan-
tage of clusters to execute tasks in par-
allel. As a run produces information, 
it should be possible to automatically 
perform validity checks so problems 
with an experiment are discovered as 
early as possible.

Although the workflows and tasks 
of rational-programmer experiments 
vary, the authors’ experience indicates 
that different classes of experiments 
can share large pieces of the infrastruc-
ture—as long as it is carefully grown 
and properly organized. In this regard, 
the design of an optimized software 
framework for rational-programmer 
experiments seems like a promising 
way of mitigating these infrastructure-
related costs and effectively managing 
the resources needed for running a ra-
tional-programmer experiment.

Third, each experiment poses two 
intellectual challenges: turning hy-
potheses into rational programmers 

changed in significant ways over the 
past decade. Hence, a question to be in-
vestigated is

whether the choice of  
borrow-checking algorithm affects the 
expressive power of the Rust language.

A plausible rational-programmer 
experiment tailored to this question 
could turn hypotheses about how 
borrow-checking algorithms affect 
expressive power into strategies of 
semantics-preserving transforma-
tions. The rational programmers 
would apply such transformations to 
a corpus of Rust programs that dif-
fer in whether two borrow-checking 
algorithms accept or reject them. A 
rational programmer would succeed 
if its transformation convinces the re-
jecting borrow-checking algorithm to 
admit the programs. Moreover, if the 
proportion of simple local transforma-
tions over global ones is high for a suc-
cessful rational programmer, then the 
two borrow-checking algorithms may 
not affect the expressive power8 of the 
language in a significant manner. Evi-
dently, the details of the rational pro-
grammers and the corpus of programs 
are the two key challenges for turning 
this sketch into an actual experiment.

The structure of rational-program-
mer experiments remains similar 
across the presented spectrum of prag-
matics concerns. For each of them, the 
experimenter must answer the follow-
ing questions:

	˲ Do variants of the same feature or 
tool exist?

	˲ Is it possible to create rational pro-
grammers for each of the hypotheses 
about the information that the investi-
gated feature or tool produces?

	˲ Is the success for these rational 
programmers decidable?

	˲ Does a representative corpus of 
problematic programs exist or can it be 
generated? (Each member of this cor-
pus should exhibit one known relevant 
problem.)

This common structure also sug-
gests the adaptation of the presented 
experiments to other language con-
texts: The experiment from the pre-
ceding section clearly applies to Type-
Script; an experiment with executable 
specifications in Java should shed light 
on the pragmatics information result-
ing from violations, and exploring the 

Successful RP 
experiments 
do not replace 
human studies. 
In fact, rational-
programmer 
experiments and 
human studies are 
complementary. 
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focused on performance. If they con-
sider the work situation of finding the 
source of type-mismatch problems in 
DefinitelyTyped libraries instead, they 
might wish to reproduce the previously 
discussed rational-programmer ex-
periment. Assuming this reproduction 
were to yield similar results, it would 
suggest making run-time checks avail-
able as an optional debugging aid.d

In general, rational-programmer 
experiments can become an integral 
part of the feedback loop governing 
language design and implementation. 
When designers and implementers 
face a dilemma concerning syntactic 
or semantic choices, the rational-pro-
grammer offers a new instrument for 
evaluating the alternatives. They can:

	˲ Prototype the variants of the corre-
sponding feature or tool.

	˲ Turn their ideas about task-specif-
ic information of the variants into ra-
tional programmers to run an experi-
ment.

	˲ Use positive results to enrich the 
documentation or to construct tools 
that support proper usage strategies.

	˲ Feed negative results into a rede-
sign step.

Concisely put, rational-programmer 
experiments can help designers avoid 
premature commitments to design al-
ternatives.

University instructors tend to pres-
ent syntactic and semantic concepts 
in typical courses on the principles of 
programming languages—sometimes 
informally, other times via implemen-
tations or formal models. But, they 
know they should also teach about 
pragmatics concerns, which is what 
the typical lectures on lexical versus dy-
namic scope for variable declarations 
illustrate: It is easy to explain how lexi-
cal scope enables modular reasoning 
about variable references and dynamic 
scope interferes with it.

When students return from intern-
ships or co-ops, at least some will have 
experienced type-mismatch problems 
in the context of TypeScript. An in-
structor can take this experience as 
a motivation to contrast the official 
design rationale of TypeScript—it is 
JavaScript once types are checked and 

d	 Offering both may be necessary because the 
run-time checking implementation occasion-
ally imposes a large performance penalty.33

and constructing the experimental 
corpus. For the first challenge, if two 
experiments share an aspect of their 
combination of feature and work situ-
ation—such as the authors’ investiga-
tions into mixed-typed languages and 
contracts—it is possible to reuse some 
ideas. For instance, the authors reused 
the idea of strengthening boundaries 
between pieces of code for the two in-
vestigations. For the second challenge, 
the authors were also able to reuse a 
carefully curated starter collection of 
programs for multiple experiments. 
Moreover, they reused the idea of mu-
tation to generate a corpus of problem-
atic programs from this collection, al-
beit the operators significantly differed 
between experiments. Since languages 
nowadays come with such representa-
tive starter collections of programs, 
running rational-programmer experi-
ments in alternative language contexts 
should benefit from those.

Ultimately though, these intellec-
tual challenges and their solutions are 
tied to the domain of pragmatics con-
cerns at hand. Even for the experiment 
concerning mixed-typed languages, 
two different sets of mutation opera-
tors were needed: one for injecting 
bugs while respecting the type disci-
pline and another for modifying type 
specifications while preserving the 
ability to run the program. In the end, 
rational-programmer experiments do 
ask for ingenuity and creativity.

From Pragmatics to Action
Preceding sections sketch how ratio-
nal-programmer experiments can vali-
date that particular uses of language 
features deliver intrinsic, task-specific 
information. Once this validation is 
available, the question arises as to what 
can be done with it. Two obvious ideas 
come to mind: Language designers can 
use this information as one factor in 
making decisions, and university in-
structors can leverage the information 
for course designs.

Language designers tend to weigh 
design alternatives against each other. 
The creators of TypeScript in all likeli-
hood considered the most basic choice, 
namely, whether the integrity of type 
annotations should be enforced at 
run-time. They chose not to add run-
time checks because they imagined a 
work situation in which developers are 

While the original 
design rationale 
is justified by 
performance 
considerations, 
the implications of 
a RP experiment 
will help students 
understand and 
contrast alternative 
design choices in 
light of other work 
situations. 
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shows that developers fix code much 
more quickly with the help of the novel 
tool when compared to a control group 
without access.

Pragmatics, the 
Neglected Question
Returning to the point of a scientific in-
vestigation of pragmatics, searching for 
pragmatic information in a feature or 
tool means focusing on one feature, ob-
serving its role in one task, and extract-
ing as much information as possible 
from this combination. The rational-
programmer method fits this specifica-
tion: It replaces the human program-
mer with an algorithmic approximation 
that uses a feature as systematically 
as possible, it runs this algorithm on 
as many task-specific problems as fea-
sible, and it measures progress toward 
the goal of the specific task.

From this angle, the rational pro-
grammer is a model. Language re-
searchers know that despite their 
simplified nature, models have an il-
luminating power, in both theory and 
practice. When the typical paper at a 
Principles of Programming Languages 
(POPL) conference states a theorem 
about, say, the soundness of a type sys-
tem, it does not claim that it applies 
to a language implementation and its 
vast set of libraries. Instead, the paper 
simplifies this system down to a small 
mathematical model, and the theorem 
applies to just this model. Yet, despite 
this simplification, theory has provided 
valuable guidance to language design-
ers. Similarly, when the typical paper 
at a Programming Language Design 
and Implementation (PLDI) conference 
reports run-time measurements for a 
new compiler optimization, the authors 
have highly simplified models of pro-
gram execution in mind. As Mytkowicz 
et al.29 report, ignorance of these simpli-
fications can produce wrong data—and 
did so for decades. Despite this prob-
lem, the simplistic performance model 
acted as a compass that helped com-
piler writers improve their product sub-
stantially over the same time period.

In the same way, rational-program-
mer experiments of pragmatics can 
confirm the presence of potentially 
useful information in language fea-
tures and tools. They do yield results 
of different qualities depending on 
the specifics of their rational program-

ments directly suggest human studies 
by refining hypotheses, corresponding 
usage strategies, and a corpus of pro-
grams to examine from a human-fac-
tors perspective.

In some cases, researchers do not 
need rational-programmer experi-
ments. They can intuit that language 
features deliver pragmatics informa-
tion that entails an obvious use and 
can evaluate their intuitions with 
simple experiments. Key is that such 
intuitions can be translated into a tool 
designed around highly structured, 
limited dialogues with the developer. 
Consider the interactive fault local-
ization tool of Li et al.22 The developer 
asks the tool to help find a bug in a pro-
gram, and the tool responds with facts 
about the most suspicious parts of the 
code. The developer reacts to the facts 
by marking them as expected or unex-
pected. The tool uses this feedback to 
refine its fact generation until, after a 
number of dialogue steps, it produces 
a single fact that directly identifies the 
bug. The limited, structured way devel-
opers interact with such tools points to 
the way for evaluating them via simula-
tion. Specifically, Li et al. simulate the 
usage of their tool with an oracle that 
provides always-perfect feedback as a 
substitute for user reactions. Similarly, 
to evaluate their tool for locating faults 
in spreadsheets, Lawrence et al.17 con-
struct a stochastic model of user reac-
tions based on data collected from hu-
man users.

In other cases, the existence of prag-
matics information is clear, and hu-
man-subject studies can directly help 
understand how developers can ben-
eficially react to the pragmatics infor-
mation. The work of Marceau et al.23 is 
a good example. It exposes a direct re-
lationship between the quality of error 
messages of some instructor-chosen 
teaching language and the process of 
eliminating errors by novice program-
mers. Concretely put, they report how 
subjects fix mistakes in programs 
much more quickly when the error mes-
sages use the same terminology as the 
text book and explain themselves (via a 
color scheme) in terms of pieces of the 
students’ code. Similarly, Alimadady 
et al.1 study the value of a new debug-
ger for understanding asynchronous 
JavaScript code via the observation of 
professional developers. Their work 

erased—with the results of rational-
programmer experiments. While the 
original design rationale is justified by 
performance considerations, the im-
plications of a rational-programmer 
experiment will help students under-
stand and contrast alternative design 
choices in light of other work situa-
tions, in particular, the benefits of run-
time checks when developers wish to 
locate the source of mistakes in type 
annotations. More generally, present-
ing the results of rational-programmer 
experiments may help students under-
stand design alternatives and design 
decisions, plus the rationales behind 
them, in concrete terms.

From Rational to Human 
Programmers
The authors know that human stud-
ies may be needed to understand how 
results from rational-programmer ex-
periments relate to human actions or 
entail concrete suggestions for human 
programmers. Such studies might start 
with training one set of participants in 
the systematic application of success-
ful rational-programmer strategies. 
Based on this training, observations 
of a group of trained programmers 
and a control group could determine 
how well programmers can apply their 
training and whether doing so makes 
them more effective at the particular 
task than untrained programmers.

The general point is that success-
ful rational-programmer experiments 
do not replace human studies. In fact, 
rational-programmer experiments and 
human studies are complementary as 
they investigate related but distinct 
facets of how programming language 
ideas can benefit developers. While 
the rational programmer is concerned 
with the presence of potentially useful 
information in features and tools in a 
given work situation, human studies 
examine whether human developers 
can extract, interpret, and effectively 
use that information. In a sense, the 
relationship between the two can be 
viewed as analogous to the relation-
ship between classic and behavioral 
economics:38  Human studies can con-
tradict some of the predictions based 
on rational-programmer experiments 
and thus help researchers identify 
weaknesses in classic models. Strictly 
speaking, rational-programmer experi-

JULY 2025  |   VOL.  68  |   NO.  7   |   COMMUNICATIONS OF THE ACM     129

research and advances



Proceedings of the ACM on Programming Languages 
5, Intern. Conf. on Functional Programming (2021), 
68:1–68:29.

20.	 Lazarek, L., Greenman, B., Felleisen, M., and Dimoulas, 
C. How to evaluate blame for gradual types, 
part 2. Proceedings of the ACM on Programming 
Languages 7, Intern. Conf. on Functional 
Programming (2023), 194:1–194:28.

21.	 Lazarek, L. et al. Does blame shifting 
work? Proceedings of the ACM on Programming 
Languages 4, Symp. on Principles of Programming 
Languages (2020), 65:1–65:29.

22.	 Li, X., Zhu, S., d’Amorim, M., and Orso, A. Enlightened 
debugging. In Proceedings of the Intern. Conf. on 
Software Engineering. ACM (2018), 82–92.

23.	 Marceau, G., Fisler, K., and Krishnamurthi, S. 
Measuring the effectiveness of error messages 
designed for novice programmers. In Proceedings of 
the 42nd ACM Technical Symp. on Computer Science 
Education. ACM (2011), 499–504.

24.	 Meyer, B. Design by contract. Advances in Object-
Oriented Software Engineering. Prentice Hall, Upper 
Saddle River, NJ, USA, (1991), 1–50.

25.	 Microsoft Corporation. TypeScript: JavaScript with 
Syntax for Types. 2025; https://tinyurl.com/
pcmuvnc.

26.	 Mill, J.S. Essays on Some Unsettled Questions of 
Political Economy. Longmans, Green, Reader, and 
Dyer, London, U.K. (1874).

27.	 Milner, R. A theory of type polymorphism in 
programming. J. of Computer and System Sciences 17, 
3 (1978), 348–375.

28.	 Morris, J.H. Lambda-Calculus Models of Programming 
Languages. Ph.D. dissertation. Massachusetts 
Institute of Technology (1968).

29.	 Mytkowicz, T., Diwan, A., Hauswirth, M., and Sweeney, 
P.F. Producing wrong data without doing anything 
obviously wrong! In Proceedings of the ACM Intern. 
Conf. on Architectural Support for Programming 
Languages and Operating Systems. ACM (2009), 
265–276.

30.	 Siek, J.G. and Taha, W. Gradual typing for functional 
languages. In Workshop on Scheme and Functional 
Programming. University of Chicago (2006), 81–92. 
TR-2006-06.

31.	 Simon, H.A. Administrative Behavior. MacMillan 
Publishers, New York, NY (1947).

32.	 Steele, G.L. Jr. Common Lisp (2nd ed.). Digital Press, 
Woburn, Mass, (1990).

33.	 Takikawa, A. et al. Is sound gradual typing dead? In 
Proceddings of the ACM SIGPLAN Symp. on Principles 
of Programming Languages. ACM (2016), 456–468.

34.	 Takikawa, A. et al. Gradual typing for first-class 
classes. In ACM SIGPLAN Conf. on Object-Oriented 
Programming Systems, Languages and Applications. 
ACM (2012), 793–810.

35.	 Tobin-Hochstadt, S. and Felleisen, M. Interlanguage 
migration: From scripts to programs. In Proceedings 
of the Dynamic Languages Symp. ACM (2006), 
964–974.

36.	 Tobin-Hochstadt, S. and Felleisen, M. The design and 
implementation of typed scheme. In Proceedings 
of the ACM SIGPLAN Symp. on Principles of 
Programming Languages. ACM (2008), 395–406.

37.	 Tobin-Hochstadt, S. and Felleisen, M. Logical types for 
untyped languages. Proceedings of the ACM SIGPLAN 
Intern. Conf. on Functional Programming. ACM (2010), 
117–128.

38.	 Tversky, A. and Kahneman, D. Advances in prospect 
theory: Cumulative representation of uncertainty. J. of 
Risk Uncertainty 5, (1992), 297–323.

39.	 Wright, A.K. and Felleisen, M. A syntactic approach to 
type soundness. Information and Computation 115, 1 
(1994), 38–94.

Christos Dimoulas is an assistant professor, Department 
of Computer Science, McCormick School of Engineering, 
Northwestern University, Evanston, IL, USA.

Matthias Felleisen is a trustee professor, College 
of Computer and Information Science, Northeastern 
University, Boston, MA, USA.

Lukas Lazarek for their collaboration 
on early rational-programmer projects. 
Stephen Chang contributed the exam-
ple of a type mismatch in TypeScript. 
The National Science Foundation has 
partially supported this research with 
several grants (SHF 2007686, 2116372, 
2315884, 2412400 and 2237984). 

References
1.	 Alimadadi, S., Mesbah, A., and Pattabiraman, K. 

Understanding asynchronous interactions in full-stack 
JavaScript. In Proceedings of the Intern. Conf. on 
Software Engineering. ACM (2016), 1169–1180.

2.	 Andersen, L., St-Amour, V., Vitek, J., and Felleisen, M. 
Feature-specific profiling. In Trans. on Programming 
Languages and Systems 41, 1, Article 4 (2019), 34.

3.	 Bracha, G. and Griswold, D. Strongtalk: Typechecking 
Smalltalk in a production environment. In Proceedings 
of the ACM SIGPLAN Conf. on Object-Oriented 
Programming Systems, Languages and Applications. 
ACM (1993), 215–230.

4.	 Cristiani, F. and Thiemann, P. Generation of TypeScript 
declaration files from JavaScript code. In Proceedings 
of the Intern. Conf. on Managed Programming 
Languages and Runtimes. ACM (2021), 97–112.

5.	 DeMillo, R.A., Lipton, R.J., and Sayward, F.G. Hints 
on test data selection: Help for the practicing 
programmer. Computer 11, 4 (1978), 34–41.

6.	 ECMA International. ECMA-262: ECMAScript 
Language Specification (16th ed.). European 
Association for Standardizing Information and 
Communication Systems (2025); https://tc39.es/
ecma262/.

7.	 Feldthaus, A. and Møller, A. Checking correctness 
of TypeScript interfaces for JavaScript libraries. In 
Proceedings of the ACM SIGPLAN Conf. on Object-
Oriented Programming Systems, Languages and 
Applications. (2014), 1–16.

8.	 Felleisen, M. On the expressive power of programming 
languages. Science of Computer Programming 17, 1 
(1991), 35–75.

9.	 Findler, R.B. and Felleisen, M. Contracts for higher-
order functions. Proceedings of the ACM SIGPLAN 
Intern. Conf. on Functional Programming. ACM (2002), 
48–59.

10.	 Greenman, B. Deep and shallow types for gradual 
languages. In Proceedings of the ACM SIGPLAN 
Conf. on Programming Language Design and 
Implementation. ACM (2022), 580–593.

11.	 Greenman, B. GTP benchmarks for gradual typing 
performance. In Proceedings of the ACM Conf. 
on Reproducibility and Replicability. ACM (2023), 
102–114.

12.	 Greenman, B., Felleisen, M., and Dimoulas, C. 
Complete monitors for gradual types. Proceedings 
of the ACM on Programming Languages 3, Object-
Oriented Programming Systems, Languages and 
Applications (2019), 122:1–122:29.

13.	 Greenman, B. and Migeed, Z. On the cost of type-tag 
soundness. In Proceedings of the ACM SIGPLAN 
Workshop on Partial Evaluation and Semantics-Based 
Program Manipulation. ACM (2018), 30–39.

14.	 Hejduk, N., Greenman, B., Felleisen, M., and Dimoulas, 
C. How profilers can help navigate type migration. 
(2024). unpublished manuscript; submitted for review.

15.	 Hoeflich, J., Findler, R.B., and Serrano, M. Highly 
illogical, Kirk: Spotting type mismatches in the large 
despite broken contracts, unsound types, and too 
many linters. Proceedings of the ACM on Programming 
Languages 6, Object-Oriented Programming Systems, 
Languages and Applications (2022), 142:1–142:26.

16.	 Kristensen, E.K. and Møller, A. Type test scripts 
for TypeScript testing. Proceedings of the ACM 
on Programming Languages 1, Object-Oriented 
Programming Systems, Languages and Applications 
(2017), 90:1–90:25.

17.	 Lawrance, J., Abraham, R., Burnett, M., and Erwig, M. 
Sharing reasoning about faults in spreadsheets: An 
empirical study. In Proceedings of the IEEE Symp. 
on Visual Languages and Human Centric Computing. 
IEEE (2006), 35–42.

18.	 Lazarek, L. An Investigation of the Pragmatics of 
Debugging With Contracts and Gradual Types. Ph.D. 
Dissertation. Northwestern University, 2024.

19.	 Lazarek, L., Greenman, B., Felleisen, M., and Dimoulas, 
C. How to evaluate blame for gradual types. 

mers. In some experiments, a rational 
programmer acts radically differently 
from a human programmer. While the 
first exclusively exploits the addition of 
types to the program to gain informa-
tion about the type-mismatch location, 
the second is in all likelihood going to 
use many different sources, including 
plain hunches. The experiment does 
indicate that human programmers 
might benefit from adding types if they 
are willing to spend the effort of formu-
lating them, and if the bug is located 
in type specifications. By contrast, for 
other experiments, both the rational 
and the human programmer are cer-
tain to take some similar steps react-
ing to a problem—for instance, when 
facing a performance problem both 
rational and human programmers are 
likely to use a profiling tool to under-
stand the problem. In such cases, as 
indicated by this article's previous brief 
discussion on the pragmatics of profil-
ing, the experiment can suggest which 
tool human developers should use and 
how they should use it to benefit from 
the pragmatics information.

The rational-programmer method 
cannot confirm the absence of useful 
information. By its very definition, a 
pragmatics experiment is about the 
use of features and tools in specific sit-
uations. Hence, the data gathered con-
cerns a specific use case. While gener-
alizing from this use case would violate 
basic principles of science, such a lack 
of pragmatics information in an exper-
iment still enables language designers 
and instructors to draw valuable les-
sons about use strategies and to check 
into the improvement of features and 
the construction of supporting tools.

For now, the rational-programmer 
method is the first reasonably general 
approach for assessing whether lin-
guistic features and tools can deliver 
helpful information with software de-
velopment tasks. The authors’ hope is 
that others will be inspired to conduct 
similar experiments, to reflect on the 
question of pragmatics, and to develop 
additional evaluation methods for this 
central concern of developers and lan-
guage creators.
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