research and advances

L)

Check for

updates

DO0I:10.1145/3708981

The rational-programmer method is the first
reasonably general approach for assessing
whether linguistic features and tools can
deliver helpful information with software
development tasks.

| BY CHRISTOS DIMOULAS AND MATTHIAS FELLEISEN

The Rational
Programmer:
Investigating
Programming
Language
Pragmatics

EVERY SO OFTEN, someone creates or changes a
programming language. In the process, these language
creators make a number of design choices. They may
wonder whether to check certain conditions at compile
time or at run-time, they may choose between a simple
error system or a provenance-tracking value system for
sophisticated error reporting, or they may consider an
alternative set of integrated development environment

120 COMMUNICATIONS OF THE ACM | JULY 2025 | VOL.68 | NO.7

(IDE) tools. Their choices directly affect
the software developers who will end
up using these languages and tools;
therefore, creators try to make these
choices with developers in mind.

The Pragmatics of

Programming Languages

To make this concrete, consider the
design of TypeScript,? a typed sibling
of JavaScript.® Its design explicitly aims
to foster interactions between the type-
checked code written in TypeScript and
the untyped code in JavaScript. Hence,
its designers had to make a choice con-
cerning the integrity of type annota-
tions; for example, whether a callback
from JavaScript may apply a function
of argument type number to a string.
While the answer of TypeScript’s cre-
ators is “yes,” academic researchers
who work on similar programming
languages tend to loudly assert, “No,
run-time checks should prevent such
misapplications.”

Making such choices should rest on
solid information from a systematic
evaluation. In turn, this calls for an
evaluation method that can gather in-
formation about the use of a particular
linguistic feature or tool in a specific
situation. One concrete question could
be whether run-time checks for a Type-
Script-like language would help devel-
opers with locating the logical source
of misapplications.

Designers should address such
questions to programming language
researchers, but those just study the
theory and practice of languages. Con-
cretely, researchers have studied the
semantics*=° of mixed-typed languages
and their performance.’* The former
shows that run-time checks are needed
to establish a generalized form of type
safety;* the latter says that run-time
checks are often expensive. Neither
investigation answers the question of
whether and how information from
failing run-time checks helps develop-
ers locate such misapplications. What
the area lacks is a method for assessing
the pragmatics of language features.

Linguists describe pragmatics as

IMAGE BY CYBERMAGICIAN

https://dx.doi.org/10.1145/3708981
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708981&domain=pdf&date_stamp=2025-06-27

LI N TR T N RS b]

SLUAL LR BE DR B T e LN

pioanine g {'“'ﬁl""l':'l:llll'.ll r
I I NS g oo™ 3100 run | BT

oLl S TRIEHIIE L .'l_-:l'l Jr] .=l L
ECOINI O

I -E LSO
Saelma Ol
LI FRN

" IR
o d LI
<%l [}

d " 0 Ry~

= 51"
Lol I [

e '|:|I.:Il

I:-I-:I-:Il- = Td Tl
WO Ly &1r

17 T Bril TR T yrts i FRY
gl ol o .o - 1-¥ULDOUE
gillurd lurl “moun 1 OLma Cd
AL IR I I R e T TR R TRY

LhldFHIIT R IR ik 20 o Jm ! L HIERAS AN

I I LD T ILFER EEFT L] LE
o ILOL] R g io.o Niwl L] CE
o olCiok] of o0l ey oy oibbh S0m B .92k

research and advances

the study of natural-language use in
context. By interpreting “context” as
“work situation,” the definition di-
rectly applies to the study of program-
ming-language use. The above ques-
tion is a concrete instance: Types are
the novel feature of TypeScript, and
finding the source of a mismatch be-
tween a program’s checked type an-
notations and its run-time behavior
is the work situation. An evaluation
method should determine whether
run-time checks provide information
that assists with locating the source of
the mismatch.

Over the past decade, the authors
have developed such a method, dubbed
the rational programmer. Their first,
specific goal was to investigate whether
run-time checks provide helpful infor-
mation, because of their own involve-
ment in a TypeScript-like language. To
their surprise, the results of their ra-
tional-programmer experiments were
highly nuanced: When a correct type
annotation describes buggy untyped
code, the information produced by the
run-time checks is not all that helpful
with finding the source of mismatches;
when the problem is due to mistaken
type annotations, though, the checks
help a lot, and the aspect of checking
that theory research often ignores—
called blame assignment®—produces
the most relevant information. The
authors’ general goal is to understand
pragmatics information—using the
rational programmer as their instru-
ment. The next section addresses what
the rational programmer delivers, how
it works, and what it is not—a human
being.

The Rational Programmer

As Morris® stated in his seminal 1968
dissertation, an investigation of pro-
gramming languages must investigate
syntax, semantics, and pragmatics.
Syntax is a problem whose nature lends
itself to precise mathematical and en-
gineering investigations, and so is se-
mantics. Researchers have therefore
focused on these aspects. By contrast,
pragmatics has been considered a
nebulous concept, because it is about
the concrete tasks developers face
when they use a language. Investigat-
ing pragmatics thus seems to call for
human studies, observing how people
extract information from syntax and

The rational-
programmer
method is the

first reasonably
general approach
for assessing
whether linguistic
features and

tools can deliver
helpful information
with software
development tasks.

122 COMMUNICATIONS OF THE ACM | JULY 2025 | VOL. 68 | NO.7

semantics plus how people use it in dif-
ferent situations.

A close look at this description sug-
gests that jumping to human studies
means taking several steps at once;
that is, (a) checking whether syntax
and semantics produce relevant infor-
mation, (b) programmers understand
this information, and (c) programmers
act on this information. While human-
subject studies are needed to deal with
(b) and (c), it should be possible to in-
vestigate (a) without involving people
as subjects. Indeed, this separation of
concerns suggests that it makes sense
to study whether human programmers
understand the information and act on
it only if an investigation of question (a)
confirms its existence, its accessibility,
and its actionable nature.

Questions about the information-
content of language features resemble
the questions economists face when
they began to think about the effective-
ness of interventions in the economy—
the pragmatics of economic policy. In
response, Mill*® decided to construct
and investigate an artificial economic
actor: homo economicus. His idea was
that homo economicus acts rationally,
using all available information to make
beneficial decisions in the realm of eco-
nomics. While Mill’s idea at first sug-
gests striving for benefit means maxi-
mizing profit or minimizing cost, many
economists have revisited and refined
his idea since then; Simon's® ideas of
bounded rationality and of satisficing
profit goals stand out.?

The rational programmer method
is the authors’ response to the ques-
tion on programming-language prag-
matics. A rational programmer is a
software actor that mechanically uses
a linguistic feature to solve a specific
problem. Like homo economicus, a
rational programmer is an idealiza-
tion—an abstraction that does not ex-
ist in the real world. No developer acts
rationally in the sense of this abstract-
ed programmer or even in a bound-
ed-rational manner. But, assuming
bounded rationality with respect to

a Although homo economicus is the foundation
of classic economics, models resting on it ex-
plain only some macroeconomic phenomena
and miss many others. Behavioral economics
starts from the alternative assumption, name-
ly, that economics must study the non-rational
decision-making processes of human beings.

a chosen linguistic feature or tool en-
ables a way of investigating pragmatics
information.

Technically speaking, a rational
programmer is an algorithm that, with
a bounded effort, exploits informa-
tion from one specific language feature
to solve a specific problem. Concretely,
it starts from a program P that suffers
from a problem and acts on informa-
tion to solve the problem; in the pro-
cess, it is likely to edit P to obtain P, a
program variant that represents a so-
lution. In fact, a rational-programmer
experiment may involve a number of
rational programmers; each algorithm
corresponds to a different hypothesis
of the language designers about a lan-
guage feature. Applying all algorithms
to a large representative corpus of
problematic programs may then yield
insight into the value of the informa-
tion that the investigated feature pro-
vides for this problem. Creating the ra-
tional-programmer algorithms as well
as the representative scenario corpus
requires problem-specific research; the
experimental setup, though, remains
the same. See Figure 1 for an overview.

In sum, the rational-programmer
method employs large-scale experi-
mentation with idealized behavior
to check hypotheses about the infor-
mation content of language features.
This article first illustrates the idea
with a concrete example. After sketch-
ing some more uses of the rational
programmer method, the article pres-
ents a general schema. Following this
generalization, it examines the labor
involved in rational-programmer ex-
periments. The final sections of the ar-
ticle relate the rational programmer to
human programmers in two different
ways. The article concludes with a call
to arms.

Pragmatics by Experiment

The rapid development of mixed-typed®
languages over the past decade sets up
a perfect example of how the rational-
programmer method can yield surpris-
ing insights. A mixed-typed language
allows programmers to mix typed and
untyped pieces of code in a single pro-
gram. This mixing can happen in many

b The term “mixed-typed” covers optional type
systems,* plug-in type systems,’® gradual type
systems,* and migratory type systems.*

research and advances

Figure 1. A schematic overview of the rational-programmer experiment.

A rational programmer (RP) experiment consumes two inputs: a corpus of problematic
programs P (in yellow) and a number of distinct RPs (in blue). Each program P exhibits a
specific kind of problem. For example, all programs P in the given corpus exhibit the same kind
of bug or suffer from similar performance bottlenecks. Each RP is an algorithm that extracts
information from a language feature to solve the problem in a given program P. Each RP
attempts to solve the problem by transforming P into a variant P’ (blue arrow). Two different
RPs may act differently on the same extracted information. Or, two RPs may use different
flavors of the feature; doing so affects the information the RPs observe. In this way, each

RP reifies a hypothesis about how the feature can produce helpful information in the given
work situation. The RP experiment applies all RPs to all problematic programs in the corpus
and records the outcomes. Given a problematic problem P and a RP, each outcome is either
a success or a failure. An analysis of the collected outcomes explains how well different RPs
perform. In short, the experiment puts to test and compares a number of hypotheses about
programming-language pragmatics in an automated fashion.

20

100
RP, v 80
_> P P,
— 40
20
[]
0
program| ___ °
corpus
P
[]
100
—> RP, ¥ s
s 18—
40 73‘,}
\
!
\

different ways, but most frequently a
programmer may link a typed piece of
code to an existing untyped library in
the same language or a programmer
may write an untyped script that im-
ports a typed module.

Microsoft’s realization of this idea
in the form of TypeScript has taken the
developer world by storm. Many Web
developers reach for TypeScriptinstead
of JavaScript because they like types
and can easily continue to link to the
many useful, preexisting, and untyped
libraries. On the academic side, Typed
Racket*® is the most robust realization
of the idea. It has found some use in the
real world, has extensive applications
in academia, and provides a solid plat-
form for programming-language inves-
tigations.

The designs of TypeScript and
Typed Racket share similarities and
yet differ in ways that inspire a rational-

programmer experiment. Their type
systems resemble each other closely.
Both use occurrence typing,*” and both
come with sophisticated types for ob-
ject-oriented programming.* Concern-
ing their semantics, they differ in that
they deal with type mismatches rather
differently. A type mismatch occurs
when untyped code and typed code ex-
change values that do not conform to
the specified types.

A reader may wonder how a well-
typed program can possibly go wrong.”
It is of course not the typed code alone
that causes type mismatches but the
mixing of typed and untyped code.
When such a mixture runs, untyped
code can send a value into typed code
that does not match the expected
type. In the TypeScript world, a first,
well-known cause is that the types
imposed on untyped code are flawed.
For example, the DefinitelyTyped re-

JULY 2025 | VOL.68 | NO.7 | COMMUNICATIONS OF THE AcM 123

research and advances

Figure 2. A simple type-mismatch problem between JavaScript and TypeScript.

This simplistic program illustrates a type-mismatch problem. The code in the box on the left is a TypeScript
“module” that implements a simple bank account module. The code in the box on the right is a JavaScript
client "module” that imports the bank account functionality. The first call to deposit supplies a number as an
argument; the follow-up call to printbalance correctly prints ‘balance: 100'. The second call to deposit
supplies the string “pennies”. Neither the code generated by the TypeScript compiler nor the JavaScript VM
signal an error, even though the type specification explicitly requests a number. The final request to see the
balance prints ‘balance: 100 pennies!‘—a wrong answer with which no customer would be happy.

Bank.ts

Cl

| Bank.ts |
var balance = 0;

balance += amt;

}

console.log("balance:

}

export function deposit(amt: number) {

export function printBalance()
" + balance);

{

const Bank = require('./Bank.js');
// logically correct interaction
Bank.deposit(100);
Bank.printBalance();

// logically incorrect interaction
Bank.deposit(
Bank.printBalance();

ient.js

"pennies!");

pository* collects modules that import
untyped libraries and re-export them
with type specifications so TypeScript
can type-check the importing mod-
ule. In most cases, these adapter mod-
ules are programmed by developers
other than those who created the li-
braries. Unsurprisingly, this results in
flawed type specifications. Research-
ers (for example, Christiani and Thie-
mann,! Feldthaus and Mgller,” Hoeflich
et al.,’® and Kristensen and Mpgller'®)
have investigated this problem and
have found numerous such flaws. A
second cause is dual to the first; the
untyped code suffers from bugs. That
is, the untyped code is supposed to live
up to some type specification, but a bug
occasionally causes a type mismatch at
run-time. See Figure 2 for a TypeScript
example.

Given the possibility of type mis-
matches, a language designer can
choose one of a few alternative check-
ing regimes:

1. Ignore them. The compiler checks
and then erases types as it translates a
program. The resulting code performs
no run-time checks to enforce type in-
tegrity. If, for example, some untyped
library calls an integer function with
"42" the mismatch may never be dis-
covered during execution. The litera-
ture dubs this approach erasure seman-
tics. TypeScript is the most prominent
design using an erasure semantics.

2. Notice them as early as possible.

¢ See https://tinyurl.com/omsgny7

The compiler translates types into run-
time checks that enforce their integ-
rity. When these checks fail, they raise
an exception. Consider an untyped
library that accidentally calls back a
string-typed function with the number
42, The explicit run-time checks of this
second alternative are going to notice
this problem as soon as it happens, and
the exception-associated stack trace is
going to be close to the problem-discov-
ery point.

3. Notice them and try to pinpoint a
source. The Typed Racket compiler can
go even further and associate a mes-
sage with these exceptions that assigns
blame to a specific piece of untyped
code, warning developers that this
blame is useful only if the correspond-
ing type specification is correct.

Given these alternative checking re-
gimes, choosing from them should be
understood as a prototypical question
of language feature pragmatics:

which checking regimes deliver
helpful information for locating the
source of type-mismatch problems?

A rational-programmer investiga-
tion can answer such questions to
some extent. The remainder of this sec-
tion explains how; readers interested
in details should consult the work of
Lazarek et al.**?°

Setting up a truly scientific experi-
ment requires that everything except
for the run-time checking regime of
the investigated language remains the
same. At this point, Typed Racket' is

124 COMMUNICATIONS OF THE ACM | JULY 2025 | VOL. 68 | NO.7

the only language that satisfies this
desiderata because it implements all
three alternative checking regimes.

Equipped with a suitable experimen-
tal environment, preparing a rational-
programmer experiment is a two-step
process. Step 1 calls for the identifica-
tion of a large, representative corpus of
problematic programs. To mechanize
the experiment properly, a problematic
program should be one with a single,
known type-mismatch problem so that
the experimental framework can auto-
matically check the success or failure of
a rational programmer. Furthermore,
the problem should be a mis-specifi-
cation of a type or a bug in an untyped
piece of the program. No such ready-
made corpus exists, but it is possible to
create such a corpus from a represen-
tative collection of correct programs.*
Starting from this collection, apply-
ing appropriate mutation operators®
yields millions of suitable problematic
programs; selecting a representative
sample of tens of thousands supplies
the corpus. For the statistical analysis
of the selection, the reader may wish to
consult the already-mentioned papers.

Step 2 demands the translation of
hypotheses into rational program-
mers. Since the goal is to find out which
checking regimes deliver helpful in-
formation for locating the source of
type-mismatch problems, a rational
programmer should try to strategically
squeeze as much information from
such checks as available.

Each rational programmer imple-

ments the same strategy, parameter-
ized over the checking regime. The
strategy is to run program P until ex-
ecution stops due to an exception and
to then inspect the available infor-
mation from this failure. In one way
or another, these exceptions point to
an untyped piece of code. By equip-
ping this piece with types, a rational
programmer obtains P, which it tries
to compile and run. If type checking
P' fails, the experiment is a success
because the type-mismatch problem
has been discovered statically. Other-
wise, P' type-checks, and running it
again restarts the process. A rational
programmer declares failure when it
cannot act on the available informa-
tion. See Figure 3 for a diagrammatic
summary.

A key detail omitted from the dia-
gram is how the rational programmers
equip untyped pieces of code with
types. As it turns out, each of the pro-
grams in the chosen collection' comes
in two forms: typed and untyped. More-
over, all typed and untyped pieces can
be mixed seamlessly—a property that
the problematic programs in the cor-
pus inherit by construction. Thus, the
rational programmers can easily anno-
tate untyped pieces of code with types
by replacing it with its corresponding
typed version.

The three alternative compiler de-
signs suggest three rational program-
mers:

» Erasing. The erasure semantics
may assign a program with a type-mis-
match a behavior that is seemingly nor-
mal or that triggers an exception from
the underlying virtual machine. Since
such exceptions come with stack trac-
es, the Erasing rational programmer
can inspect this trace and replace the
untyped piece of code closest to its top.

» Exceptions. When Typed Racket's
run-time checks fail, they also display
a stack trace. Like the Erasing rational
programmer, the Exceptions one re-
places the top-most untyped piece of
code with its typed counterpart.

» Blame. The Blame programmer
exploits the blame assignments that
come with Typed Racket's failing run-
time checks. It replaces the blamed
piece of code with its typed version.

All three rational programmers pro-
ceed in the same manner, and thus the
experimental setup may count (S1) how

often the algorithm finds the single,
planted bug, and if it does find it, (S2)
how many replacements are needed.

An experiment needs a control:

» Null. The null-hypothesis pro-
grammer randomly chooses an un-
typed piece of code. This Null rational
programmer always finds the problem
(S1: 100%), because it eventually replac-
es all pieces of code with their typed
versions. But, to get there, it may have
to replace many untyped code pieces
(S2: usually a large count).

Both theoretical investigations and
developer anecdotes suggest that sub-
stantial benefits flow from run-time
checks for locating type mismatches.
Checks should discover mismatches
early to avoid the uncontrolled and
misleading propagation of faulty val-
ues. Furthermore, their stack traces are
closer to the discovery of the problem,
and the blame assignments in their
exception messages seem to represent
particularly useful information.

research and advances

Concerning the search for the source
of type mismatches (S1), the results of
the rational-programmer experiment
are somewhat surprising, however:

» When the bug is located in the
type specification imposed on untyped
code, the conjectured benefits are con-
firmed.

» When the bug is located in the
untyped code, the expected benefits
disappear. While Blame supplies infor-
mation that is somewhat better than
Exceptions and Erasing, the three dif-
fer only a little.

Concerning the effort (S2), all strat-
egies need significantly fewer replace-
ments than Null. Its existence thus con-
firms that the other three algorithms
deliver useful information. Unsurpris-
ingly, Blame fares the best; it needs the
smallest number of replacements.

In sum, Blame provides the most
helpful information for locating the
source of problematic type specifica-
tions for untyped pieces of code. Excep-

Figure 3. How a rational programmer searches for the source of a mismatch.

The experiment confronts a rational programmer (RP) with a problematic program (bottom
left), that is, a program with one known type mismatch (in yellow). The RP runs the program
using its chosen run-time type-checking regime until it raises an exception, whose report
points to an untyped piece of code as the source of the problem. The RP then replaces the
identified untyped piece with its typed counterpart and runs the program again. This process
is repeated until the untyped piece of code that causes the type mismatch becomes typed (top
left), forcing the type checker to signal a type error, or until the problem report does not come
with actionable information for the RP. In the first case, the type error exposes the problem,
and the search succeeds; in the second case, it fails.

CLEE =]

22??

Nk W E kI R

??

EIE3E2 W KA E1/E2

because type-checking fails

¥ identified piece
D problematic piece

typed piece

because the problem report is not actionable

repeat until there is no progress

[] untyped piece

CIGIE =]

replace identified untyped piece with typed piece

v
LI =0

run until exception is raised

IRE

JULY 2025 | VOL.68 | NO.7 | COMMUNICATIONS OF THE AcM 125

research and advances

tions is essentially only as helpful as
Erasing. For bugs in untyped code that
cause type mismatches, the advantage
of Blame over the others shrinks sub-
stantially.

The rational programmer versus
theory. The results are particularly sur-
prising when compared to the predic-
tions of programming languages the-
ory. Theoretical investigations predict
that the run-time checking semantics
finds every type-mismatch problem
that the erasure semantics discovers—
and finds it earlier than the erasure
semantics.” The results of the rational-
programmer experiment point out that
this theoretical prediction does not di-
rectly translate into practice. Indeed,
there are two problems:

1. Theoretical publications on
mixed-typed languages focus on run-
time checking. But, the investigation
indicates that, for a broad variety of
type mismatches and benchmarks, a
language using an erasure semantics
discovers and locates most of the type-
mismatch problems anyways.

2. Many theoretical papers ignore
the blame assignment part of run-time
checking. But, the investigation shows
that it is the key element to making
run-time checks informative. Readers
should interpret these two observa-
tions as blind spots of theoretical in-
vestigations in this research area.

Caveats. While these large-scale
simulations look impressive, their in-
terpretation must take into account
that they apply only to Typed Racket. Its
underlying untyped language, Racket,
enforces strict preconditions for each
of its primitives, which has significant
implications for when and how the era-
sure semantics delivers information.
By contrast, JavaScipt, the language
underlying TypeScript, enforces lax
preconditions. In all likelihood, lax en-
forcement in the underlying language
will make a run-time checking regime
more effective than in a Racketlike
setting. The only way to check this con-
jecture is to reproduce the experiment
with TypeScript.

As for every empirical investigation,
the rational experiment described in
this section comes with technical cave-
ats, such as whether the corpus is truly
representative, whether the statistical
sampling is appropriate, or whether
the presence of more than one bug af-

fects the search and how. To mitigate
them, the design of the experiment
comes with an array of checks and con-
trols. For instance, the experiment’s
corpus originates from correct pro-
grams written by different developers
for different purposes and exhibit a
variety of programming styles. They
also vary in terms of language fea-
tures, complexity, and size. Moreover,
the mutants of these correct programs
that form the experiment’s corpus
have been mechanically analyzed to
confirm their suitability; they contain
a wide range of non-straightforward
type mismatches that structurally
resemble issues reported by Typed
Racket programmers. For an account
of how the experimental design miti-
gates the technical caveats, the reader
may wish to consult the papers by Laz-
arek et al.'¥2¢

Concerns of Pragmatics

Are Ubiquitous

The preceding section illustrates the
rational-programmer method through
the investigation of one concern: the
various semantics of mixed-typed pro-
grams and the problem of finding the
source of type-mismatch problems. Its
results partially contradict and partial-
ly confirm hypotheses based on theo-
retical research.

This section reports some of the
authors’ experience with related prag-
matics concerns and sketches how to
go beyond. Concerns of pragmatics
exhibit tremendous variability: the
linguistic features considered, the
work situations, and the chosen pro-
gramming language. Given how de-
velopers tend to consider the available
software tools as part of the chosen
language, it is even natural to inves-
tigate the pragmatics information in
alternative tool sets.

Here is avariant of the concern from
the preceding section:

do assertions and contracts
deliver helpful information for
locating the source of different
classes of logical bugs?

The point of assertions and con-
tracts* is to detect problems as early
as possible. Once detected, the prac-
tical question is how to fix the prob-
lem, and the question of pragmatics is
whether the violation of the specifica-

126 COMMUNICATIONS OF THE ACM | JULY 2025 | VOL. 68 | NO.7

tion provides developers with helpful
information.

Again, the results of running a ra-
tional-programmer experiment are
somewhat surprising. While an early
variant of the RP experiment seemingly
validated the folklore wisdom behind
software contracts,? it lacked a NULL
hypothesis. A subsequent reproduction
run of the experiment with a NULL-hy-
pothesis rational programmer appears
to weaken the evidence.'

Mixed-typed languages also sug-
gest investigations into the pragmatics
of tools. Concretely, a mixed-type lan-
guage with run-time checking tends to
create performance problems, frictions
between the typed and untyped parts
of the program. The problem was dis-
covered in the context of Typed Racket
almost a decade ago** and confirmed
in other settings." Since profiling tools
are one way to debug performance
problems, and since Racket comes with
two of them?—each of which supplies
different feedback information—tool
designers are confronted with a con-
cern of pragmatics. When tools are
concerned, the question is not just
which one to pick but also how to use
it. In other words, exploring the infor-
mation delivery of a tool involves us-
age strategies, meaning the question
becomes

Which combination of profiling
tool and strategy delivers

useful information for debugging
performance problems in
mixed-type languages?

Running appropriate rational-pro-
grammer experiments confirms that
one of the two profiling tools produces
more valuable information in general;
the surprise lurks in which strategies
are successful and which ones are not.
The interested reader can find the de-
tails of these results in a forthcoming
paper by Hejduk et al.**

While the first two examples of ex-
periments confirm the usefulness of
the rational programmer within the
linguistic environment of Racket,
pragmatics questions arise whenever
a language evolves and can be ad-
dressed with rational-programmer ex-
periments. Consider the evolution of
the Rust programming language and
specifically the borrow-checking part
of its type checker. This algorithm has

changed in significant ways over the
past decade. Hence, a question to be in-
vestigated is

whether the choice of
borrow-checking algorithm affects the
expressive power of the Rust language.

A plausible rational-programmer
experiment tailored to this question
could turn hypotheses about how
borrow-checking algorithms affect
expressive power into strategies of
semantics-preserving transforma-
tions. The rational programmers
would apply such transformations to
a corpus of Rust programs that dif-
fer in whether two borrow-checking
algorithms accept or reject them. A
rational programmer would succeed
if its transformation convinces the re-
jecting borrow-checking algorithm to
admit the programs. Moreover, if the
proportion of simple local transforma-
tions over global ones is high for a suc-
cessful rational programmer, then the
two borrow-checking algorithms may
not affect the expressive power® of the
language in a significant manner. Evi-
dently, the details of the rational pro-
grammers and the corpus of programs
are the two key challenges for turning
this sketch into an actual experiment.

The structure of rational-program-
mer experiments remains similar
across the presented spectrum of prag-
matics concerns. For each of them, the
experimenter must answer the follow-
ing questions:

» Do variants of the same feature or
tool exist?

» Is it possible to create rational pro-
grammers for each of the hypotheses
about the information that the investi-
gated feature or tool produces?

» Is the success for these rational
programmers decidable?

» Does a representative corpus of
problematic programs exist or can it be
generated? (Each member of this cor-
pus should exhibit one known relevant
problem.)

This common structure also sug-
gests the adaptation of the presented
experiments to other language con-
texts: The experiment from the pre-
ceding section clearly applies to Type-
Script; an experiment with executable
specifications in Java should shed light
on the pragmatics information result-
ing from violations, and exploring the

Successful RP
experiments

do not replace
human studies.

In fact, rational-
programmer
experiments and
human studies are
complementary.

JULY 2025 | VOL.

research and advances

expressiveness of type system variants
may apply beyond Rust.

Rational Pricing of Pragmatics
Rational-programmer experiments are
costly in terms of human labor. These
costs come in three different flavors: al-
ternative implementations of features
and tools, the experimental platform,
and intellectual innovations in the in-
vestigated domain.

First, an experiment usually re-
quires the implementation of two or
more variants of a language feature or
tool. When such implementations do
not exist, new implementations for the
sake of the experiment rarely need to
meet production-level standards; pro-
totypes tend to suffice. When multiple
production implementations already
exist, asis often the case with tools, this
cost reduces to prototyping the space
of usage strategies. In other words, this
costis analogous to the labor expended
by designers and engineers in other
fields when they create prototypes to
test design hypotheses.

Second, the construction of the ex-
perimental framework requires labor.
The size of the experimental corpus,
the number of the rational program-
mers, and the complexity of the usage
strategies call for a sophisticated infra-
structure. Specifically, the infrastruc-
ture should assist with breaking the ex-
periment into piecemeal tasks so thata
run of an experiment can take advan-
tage of clusters to execute tasks in par-
allel. As a run produces information,
it should be possible to automatically
perform validity checks so problems
with an experiment are discovered as
early as possible.

Although the workflows and tasks
of rational-programmer experiments
vary, the authors’ experience indicates
that different classes of experiments
can share large pieces of the infrastruc-
ture—as long as it is carefully grown
and properly organized. In this regard,
the design of an optimized software
framework for rational-programmer
experiments seems like a promising
way of mitigating these infrastructure-
related costs and effectively managing
the resources needed for running a ra-
tional-programmer experiment.

Third, each experiment poses two
intellectual challenges: turning hy-
potheses into rational programmers

68 | NO.7 | COMMUNICATIONS OF THE ACM 127

research and advances

and constructing the experimental
corpus. For the first challenge, if two
experiments share an aspect of their
combination of feature and work situ-
ation—such as the authors’ investiga-
tions into mixed-typed languages and
contracts—it is possible to reuse some
ideas. For instance, the authors reused
the idea of strengthening boundaries
between pieces of code for the two in-
vestigations. For the second challenge,
the authors were also able to reuse a
carefully curated starter collection of
programs for multiple experiments.
Moreover, they reused the idea of mu-
tation to generate a corpus of problem-
atic programs from this collection, al-
beit the operators significantly differed
between experiments. Since languages
nowadays come with such representa-
tive starter collections of programs,
running rational-programmer experi-
ments in alternative language contexts
should benefit from those.

Ultimately though, these intellec-
tual challenges and their solutions are
tied to the domain of pragmatics con-
cerns at hand. Even for the experiment
concerning mixed-typed languages,
two different sets of mutation opera-
tors were needed: one for injecting
bugs while respecting the type disci-
pline and another for modifying type
specifications while preserving the
ability to run the program. In the end,
rational-programmer experiments do
ask for ingenuity and creativity.

From Pragmatics to Action
Preceding sections sketch how ratio-
nal-programmer experiments can vali-
date that particular uses of language
features deliver intrinsic, task-specific
information. Once this validation is
available, the question arises as to what
can be done with it. Two obvious ideas
come to mind: Language designers can
use this information as one factor in
making decisions, and university in-
structors can leverage the information
for course designs.

Language designers tend to weigh
design alternatives against each other.
The creators of TypeScript in all likeli-
hood considered the most basic choice,
namely, whether the integrity of type
annotations should be enforced at
run-time. They chose not to add run-
time checks because they imagined a
work situation in which developers are

While the original
design rationale

is justified by
performance
considerations,
the implications of
a RP experiment
will help students
understand and
contrast alternative
design choices in
light of other work
situations.

128 COMMUNICATIONS OF THE ACM | JULY 2025 | VOL. 68 | NO.7

focused on performance. If they con-
sider the work situation of finding the
source of type-mismatch problems in
DefinitelyTyped libraries instead, they
might wish to reproduce the previously
discussed rational-programmer ex-
periment. Assuming this reproduction
were to yield similar results, it would
suggest making run-time checks avail-
able as an optional debugging aid.

In general, rational-programmer
experiments can become an integral
part of the feedback loop governing
language design and implementation.
When designers and implementers
face a dilemma concerning syntactic
or semantic choices, the rational-pro-
grammer offers a new instrument for
evaluating the alternatives. They can:

» Prototype the variants of the corre-
sponding feature or tool.

» Turn their ideas about task-specif-
ic information of the variants into ra-
tional programmers to run an experi-
ment.

» Use positive results to enrich the
documentation or to construct tools
that support proper usage strategies.

» Feed negative results into a rede-
sign step.

Concisely put, rational-programmer
experiments can help designers avoid
premature commitments to design al-
ternatives.

University instructors tend to pres-
ent syntactic and semantic concepts
in typical courses on the principles of
programming languages—sometimes
informally, other times via implemen-
tations or formal models. But, they
know they should also teach about
pragmatics concerns, which is what
the typical lectures on lexical versus dy-
namic scope for variable declarations
illustrate: It is easy to explain how lexi-
cal scope enables modular reasoning
about variable references and dynamic
scope interferes with it.

When students return from intern-
ships or co-ops, at least some will have
experienced type-mismatch problems
in the context of TypeScript. An in-
structor can take this experience as
a motivation to contrast the official
design rationale of TypeScript—it is
JavaScript once types are checked and

d Offering both may be necessary because the
run-time checking implementation occasion-
ally imposes a large performance penalty.*

erased—with the results of rational-
programmer experiments. While the
original design rationale is justified by
performance considerations, the im-
plications of a rational-programmer
experiment will help students under-
stand and contrast alternative design
choices in light of other work situa-
tions, in particular, the benefits of run-
time checks when developers wish to
locate the source of mistakes in type
annotations. More generally, present-
ing the results of rational-programmer
experiments may help students under-
stand design alternatives and design
decisions, plus the rationales behind
them, in concrete terms.

From Rational to Human
Programmers
The authors know that human stud-
ies may be needed to understand how
results from rational-programmer ex-
periments relate to human actions or
entail concrete suggestions for human
programmers. Such studies might start
with training one set of participants in
the systematic application of success-
ful rational-programmer strategies.
Based on this training, observations
of a group of trained programmers
and a control group could determine
how well programmers can apply their
training and whether doing so makes
them more effective at the particular
task than untrained programmers.
The general point is that success-
ful rational-programmer experiments
do not replace human studies. In fact,
rational-programmer experiments and
human studies are complementary as
they investigate related but distinct
facets of how programming language
ideas can benefit developers. While
the rational programmer is concerned
with the presence of potentially useful
information in features and tools in a
given work situation, human studies
examine whether human developers
can extract, interpret, and effectively
use that information. In a sense, the
relationship between the two can be
viewed as analogous to the relation-
ship between classic and behavioral
economics:*® Human studies can con-
tradict some of the predictions based
on rational-programmer experiments
and thus help researchers identify
weaknesses in classic models. Strictly
speaking, rational-programmer experi-

ments directly suggest human studies
by refining hypotheses, corresponding
usage strategies, and a corpus of pro-
grams to examine from a human-fac-
tors perspective.

In some cases, researchers do not
need rational-programmer experi-
ments. They can intuit that language
features deliver pragmatics informa-
tion that entails an obvious use and
can evaluate their intuitions with
simple experiments. Key is that such
intuitions can be translated into a tool
designed around highly structured,
limited dialogues with the developer.
Consider the interactive fault local-
ization tool of Li et al.?? The developer
asks the tool to help find a bug in a pro-
gram, and the tool responds with facts
about the most suspicious parts of the
code. The developer reacts to the facts
by marking them as expected or unex-
pected. The tool uses this feedback to
refine its fact generation until, after a
number of dialogue steps, it produces
a single fact that directly identifies the
bug. The limited, structured way devel-
opers interact with such tools points to
the way for evaluating them via simula-
tion. Specifically, Li et al. simulate the
usage of their tool with an oracle that
provides always-perfect feedback as a
substitute for user reactions. Similarly,
to evaluate their tool for locating faults
in spreadsheets, Lawrence et al.’” con-
struct a stochastic model of user reac-
tions based on data collected from hu-
man users.

In other cases, the existence of prag-
matics information is clear, and hu-
man-subject studies can directly help
understand how developers can ben-
eficially react to the pragmatics infor-
mation. The work of Marceau et al.** is
a good example. It exposes a direct re-
lationship between the quality of error
messages of some instructor-chosen
teaching language and the process of
eliminating errors by novice program-
mers. Concretely put, they report how
subjects fix mistakes in programs
much more quicklywhen the error mes-
sages use the same terminology as the
text book and explain themselves (via a
color scheme) in terms of pieces of the
students’ code. Similarly, Alimadady
et al.! study the value of a new debug-
ger for understanding asynchronous
JavaScript code via the observation of
professional developers. Their work

research and advances

shows that developers fix code much
more quickly with the help of the novel
tool when compared to a control group
without access.

Pragmatics, the

Neglected Question

Returning to the point of a scientific in-
vestigation of pragmatics, searching for
pragmatic information in a feature or
tool means focusing on one feature, ob-
serving its role in one task, and extract-
ing as much information as possible
from this combination. The rational-
programmer method fits this specifica-
tion: It replaces the human program-
merwith an algorithmic approximation
that uses a feature as systematically
as possible, it runs this algorithm on
as many task-specific problems as fea-
sible, and it measures progress toward
the goal of the specific task.

From this angle, the rational pro-
grammer is a model. Language re-
searchers know that despite their
simplified nature, models have an il-
luminating power, in both theory and
practice. When the typical paper at a
Principles of Programming Languages
(POPL) conference states a theorem
about, say, the soundness of a type sys-
tem, it does not claim that it applies
to a language implementation and its
vast set of libraries. Instead, the paper
simplifies this system down to a small
mathematical model, and the theorem
applies to just this model. Yet, despite
this simplification, theory has provided
valuable guidance to language design-
ers. Similarly, when the typical paper
at a Programming Language Design
and Implementation (PLDI) conference
reports run-time measurements for a
new compiler optimization, the authors
have highly simplified models of pro-
gram execution in mind. As Mytkowicz
etal.”report, ignorance of these simpli-
fications can produce wrong data—and
did so for decades. Despite this prob-
lem, the simplistic performance model
acted as a compass that helped com-
piler writers improve their product sub-
stantially over the same time period.

In the same way, rational-program-
mer experiments of pragmatics can
confirm the presence of potentially
useful information in language fea-
tures and tools. They do yield results
of different qualities depending on
the specifics of their rational program-

JULY 2025 | VOL.68 | NO.7 | COMMUNICATIONS OF THE AcM 129

research and advances

mers. In some experiments, a rational
programmer acts radically differently
from a human programmer. While the
first exclusively exploits the addition of
types to the program to gain informa-
tion about the type-mismatch location,
the second is in all likelihood going to
use many different sources, including
plain hunches. The experiment does
indicate that human programmers
might benefit from adding types if they
are willing to spend the effort of formu-
lating them, and if the bug is located
in type specifications. By contrast, for
other experiments, both the rational
and the human programmer are cer-
tain to take some similar steps react-
ing to a problem—for instance, when
facing a performance problem both
rational and human programmers are
likely to use a profiling tool to under-
stand the problem. In such cases, as
indicated by this article's previous brief
discussion on the pragmatics of profil-
ing, the experiment can suggest which
tool human developers should use and
how they should use it to benefit from
the pragmatics information.

The rational-programmer method
cannot confirm the absence of useful
information. By its very definition, a
pragmatics experiment is about the
use of features and tools in specific sit-
uations. Hence, the data gathered con-
cerns a specific use case. While gener-
alizing from this use case would violate
basic principles of science, such a lack
of pragmatics information in an exper-
iment still enables language designers
and instructors to draw valuable les-
sons about use strategies and to check
into the improvement of features and
the construction of supporting tools.

For now, the rational-programmer
method is the first reasonably general
approach for assessing whether lin-
guistic features and tools can deliver
helpful information with software de-
velopment tasks. The authors’ hope is
that others will be inspired to conduct
similar experiments, to reflect on the
question of pragmatics, and to develop
additional evaluation methods for this
central concern of developers and lan-
guage creators.

Acknowledgments

The authors thank Robby Findler, Ben
Greenman, Nathaniel Hejduk, Alexis
King, Caspar Popova, and especially

Lukas Lazarek for their collaboration
on early rational-programmer projects.
Stephen Chang contributed the exam-
ple of a type mismatch in TypeScript.
The National Science Foundation has
partially supported this research with
several grants (SHF 2007686, 2116372,
2315884, 2412400 and 2237984).

References

1. Alimadadi, S., Meshah, A., and Pattabiraman, K.
Understanding asynchronous interactions in full-stack
JavaScript. In Proceedings of the Intern. Conf. on
Software Engineering. ACM (2016), 1169-1180.

2. Andersen, L., St-Amour, V., Vitek, J., and Felleisen, M.
Feature-specific profiling. In Trans. on Programming
Languages and Systems 41, 1, Article 4 (2019), 34.

3. Bracha, G. and Griswold, D. Strongtalk: Typechecking
Smalltalk in a production environment. In Proceedings
of the ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages and Applications.
ACM (1993), 215-230.

4. Cristiani, F. and Thiemann, P. Generation of TypeScript
declaration files from JavaScript code. In Proceedings
of the Intern. Conf. on Managed Programming
Languages and Runtimes. ACM (2021), 97-112.

5. DeMillo, RAA, Lipton, R.J., and Sayward, F.G. Hints
on test data selection: Help for the practicing
programmer. Computer 11, 4 (1978), 34—41.

6. ECMA International. ECMA-262: ECMAScript
Language Specification (16™ ed.). European
Association for Standardizing Information and
Communication Systems (2025); https://tc39.es/
ecma262/.

7. Feldthaus, A. and Mgller, A. Checking correctness
of TypeScript interfaces for JavaScript libraries. In
Proceedings of the ACM SIGPLAN Conf. on Object-
Oriented Programming Systems, Languages and
Applications. (2014), 1-16.

8. Felleisen, M. On the expressive power of programming
languages. Science of Computer Programming 17,1
(1991), 35-75.

9. Findler, R.B. and Felleisen, M. Contracts for higher-
order functions. Proceedings of the ACM SIGPLAN
Intern. Conf. on Functional Programming. ACM (2002),
48-59.

10. Greenman, B. Deep and shallow types for gradual
languages. In Proceedings of the ACM SIGPLAN
Conf. on Programming Language Design and
Implementation. ACM (2022), 580-593.

11. Greenman, B. GTP benchmarks for gradual typing
performance. In Proceedings of the ACM Conf.
on Reproducibility and Replicability. ACM (2023),
102-114.

12. Greenman, B., Felleisen, M., and Dimoulas, C.
Complete monitors for gradual types. Proceedings
of the ACM on Programming Languages 3, Object-
Oriented Programming Systems, Languages and
Applications (2019), 122:1-122:29.

13. Greenman, B. and Migeed, Z. On the cost of type-tag
soundness. In Proceedings of the ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based
Program Manipulation. ACM (2018), 30-39.

14. Hejduk, N., Greenman, B., Felleisen, M., and Dimoulas,
C. How profilers can help navigate type migration.
(2024). unpublished manuscript; submitted for review.

15. Hoeflich, J., Findler, R.B., and Serrano, M. Highly
illogical, Kirk: Spotting type mismatches in the large
despite broken contracts, unsound types, and too
many linters. Proceedings of the ACM on Programming
Languages 6, Object-Oriented Programming Systems,
Languages and Applications (2022), 142:1-142:26.

16. Kristensen, E.K. and Maller, A. Type test scripts
for TypeScript testing. Proceedings of the ACM
on Programming Languages 1, Object-Oriented
Programming Systems, Languages and Applications
(2017), 90:1-90:25.

17. Lawrance, J., Abraham, R., Burnett, M., and Erwig, M.
Sharing reasoning about faults in spreadsheets: An
empirical study. In Proceedings of the IEEE Symp.
on Visual Languages and Human Centric Computing.
IEEE (2006), 35-42.

18. Lazarek, L. An Investigation of the Pragmatics of
Debugging With Contracts and Gradual Types. Ph.D.
Dissertation. Northwestern University, 2024.

19. Lazarek, L., Greenman, B., Felleisen, M., and Dimoulas,
C. How to evaluate blame for gradual types.

130 COMMUNICATIONS OF THE ACM | JULY 2025 | VOL.68 | NO.7

Proceedings of the ACM on Programming Languages
5, Intern. Conf. on Functional Programming (2021),
68:1-68:29.

20. Lazarek, L., Greenman, B., Felleisen, M., and Dimoulas,
C. How to evaluate blame for gradual types,
part 2. Proceedings of the ACM on Programming
Languages 7, Intern. Conf. on Functional
Programming (2023), 194:1-194:28.

21. Lazarek, L. et al. Does blame shifting
work? Proceedings of the ACM on Programming
Languages 4, Symp. on Principles of Programming
Languages (2020), 65:1-65:29.

22. Li, X,, Zhu, S., dAmorim, M., and Orso, A. Enlightened
debugging. In Proceedings of the Intern. Conf. on
Software Engineering. ACM (2018), 82-92.

23. Marceau, G, Fisler, K., and Krishnamurthi, S.
Measuring the effectiveness of error messages
designed for novice programmers. In Proceedings of
the 427 ACM Technical Symp. on Computer Science
Education. ACM (2011), 499-504.

24, Meyer, B. Design by contract. Advances in Object-
Oriented Software Engineering. Prentice Hall, Upper
Saddle River, NJ, USA, (1991), 1-50.

25. Microsoft Corporation. TypeScript: JavaScript with
Syntax for Types. 2025; https://tinyurl.com/
pcmuvnc,

26. Mill, J.S. Essays on Some Unsettled Questions of
Political Economy. Longmans, Green, Reader, and
Dyer, London, UK. (1874).

27. Milner, R. A theory of type polymorphism in
programming. J. of Computer and System Sciences 17,
3(1978), 348-375.

28. Morris, J.H. Lambda-Calculus Models of Programming
Languages. Ph.D. dissertation. Massachusetts
Institute of Technology (1968).

29. Mytkowicz, T., Diwan, A., Hauswirth, M., and Sweeney,
P.F. Producing wrong data without doing anything
obviously wrong! In Proceedings of the ACM Intern.
Conf. on Architectural Support for Programming
Languages and Operating Systems. ACM (2009),
265-276.

30. Siek, J.G. and Taha, W. Gradual typing for functional
languages. In Workshop on Scheme and Functional
Programming. University of Chicago (2006), 81-92.
TR-2006-06.

31. Simon, H.A. Administrative Behavior. MacMillan
Publishers, New York, NY (1947).

32. Steele, G.L. Jr. Common Lisp (2nd ed.). Digital Press,
Woburn, Mass, (1990).

33. Takikawa, A. et al. Is sound gradual typing dead? In
Proceddings of the ACM SIGPLAN Symp. on Principles
of Programming Languages. ACM (2016), 456-468.

34. Takikawa, A. et al. Gradual typing for first-class
classes. In ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages and Applications.
ACM (2012), 793-810.

35. Tobin-Hochstadt, S. and Felleisen, M. Interlanguage
migration: From scripts to programs. In Proceedings
of the Dynamic Languages Symp. ACM (2006),
964-974.

36. Tobin-Hochstadt, S. and Felleisen, M. The design and
implementation of typed scheme. In Proceedings
of the ACM SIGPLAN Symp. on Principles of
Programming Languages. ACM (2008), 395-406.

37. Tobin-Hochstadt, S. and Felleisen, M. Logical types for
untyped languages. Proceedings of the ACM SIGPLAN
Intern. Conf. on Functional Programming. ACM (2010),
117-128.

38. Tversky, A. and Kahneman, D. Advances in prospect
theory: Cumulative representation of uncertainty. J. of
Risk Uncertainty 5, (1992), 297-323.

39. Wright, A.K. and Felleisen, M. A syntactic approach to
type soundness. Information and Computation 115, 1
(1994), 38-94.

Christos Dimoulas is an assistant professor, Department
of Computer Science, McCormick School of Engineering,
Northwestern University, Evanston, IL, USA.

Matthias Felleisen is a trustee professor, College

of Computer and Information Science, Northeastern
University, Boston, MA, USA.

This work is licensed under a

[Creative Commons Attribution
International 4.0 License.
© 2025 Copyright held by the owner/author(s).

