
A Plan for Building Santorini
Version 7.0.0.20

Matthias Felleisen

September 22, 2018

Goal

The goal is to develop a gaming framework for running Santorini tournaments for "AI"
players running on remote computers.

A tournament will pitch every player against every other player in a "best of" game series,
length to be determined. Each game is supervised by a "referee" to ensure compliance with
the rules. A rule-breaking player is eliminated from the tournament, and all of its past games
are awarded to the opponent.

Software Components

The description of Santorini suggests the following software components:

• A player interface to which the creators of external players program. The player
interface must spell out all phases of Santorini:

– how to place workers on the board;

– how to take turns, i.e., the information a player needs to compute a turn and the
information it uses to request an action;

– how/whether to receive information about the end of a game.

As we work out this complex interface specification, we may need to develop addi-
tional concepts.

• Our team should implement at least one player to validate the player interface.

• A referee must supervise a game of two players; it may assume nothing about players
but the existing interface.

• The software framework needs components that represent the physical game pieces:

– board with a number of separate squares

1



– workers, which belong to a specific player

– buildings, which may be as tall as four floors but only three-story buildings can
be occupied for a winning move

• For dealing with an arbitrary number of players, we will need to build a tournament
manager that runs all players against each other.

Building the Components

The first goal of our project has to be a framework for connecting AI players on a monolithic
basis to each other. To this end, we propose to build the above components in the following
order:

• the basic game pieces, because the player and the referee must use the exact same
representation;

• using these we can specify the complete player interface and express the various pieces
of information as data;

• both the referee and the player must be developed to the common interface, so we
might be able to divide the work between two teams;

Note At this point we can demo a prototype to possible sponsors.

• With the above components, implementing a tournament manager should be a
straightforward task, both in a monolithic as well as a distributed form:

– Building the former will probably be most of the work for ...

– .. building the final, distributed product.

A remote-proxy pattern should smoothen the transition from the first to the latter.

2


