

Good Morning. I am the Emperor.

And this is your semester when

the Empire Strikes Back.

Hemann/Felleisen

CS 4500: Software Development
Welcome

Learning Outcomes
In this course you will learn:

1. To scale the technical skills from your F1, F2, OOD, and (ideally) Logic:

• technical design skills

• human interaction skills

2. Pick up some “ephemeral skills” that otherwise fall through the cracks:

• git, IDEs, another PL, practical work with JSON, TCP, command line arguments, STDIN/OUT

Learning Process
In this course, you will

1. first explore the capabilities of your TAHBPL:

• whether it lives up to the requirements of the anticipated project

2. second build a software system over the course of 10 weeks:

• plan milestones

• design interfaces, specify software components

• implement the instructors’ designs

3. while routinely presenting your code in class and reviewing the code of others

Hemann/Felleisen

CS 4500: Software Development
The Costs of Software

MaintainDeployTestDevelop

Prototype

HardenPrototype

If your software survives the cradle …

• the monetary cost of creation and maintenance

• the people-time cost

• the cost of people’s lives

It costs time and money

MaintainDeployTestDevelopHardenPrototype

software is a message from you to a future programmer

… and that future programmer must decode this message

The most expensive part of
SDLC is maintenance

Koskinen, 2004

IEEE Guide to the Software Engineering Body of Knowledge, 2004

 40% to 60% of the maintenance effort is
devoted to understanding the software to be
modified

It costs lives

• Therac-25

• Intel FDIV “Pentium Bug”

• Knight Capital

• Mariner 1

• Stanislav Petrov and SAD

• Mars Climate Orbiter

• Ariane 5 Flight 501

• Boeing 737 Max

• Uber Self-driving Cars

• Panama Cancer Institute

• 2003 North American Blackout

• KAL Flight 801

• ILOVEYOU virus

• Toyota Acceleration Recalls

Not to name names …

• Therac-25

• Intel FDIV “Pentium Bug”

• Knight Capital

• Mariner 1

• Stanislav Petrov and SAD

• Mars Climate Orbiter

• Ariane 5 Flight 501

• Boeing 737 Max

• Uber Self-driving Cars

• Panama Cancer Institute

• 2003 North American Blackout

• KAL Flight 801

• ILOVEYOU virus

• Toyota Acceleration Recalls

Not to name names …

• Therac-25

• Intel FDIV “Pentium Bug”

• Knight Capital

• Mariner 1

• Stanislav Petrov and SAD

• Mars Climate Orbiter

• Ariane 5 Flight 501

• Boeing 737 Max

• Uber Self-driving Cars

• Panama Cancer Institute

• 2003 North American Blackout

• KAL Flight 801

• ILOVEYOU virus

• Toyota Acceleration Recalls

Not to name names …

To recap:

• the life of a software system is likely to exceed the life span of its creator

• it thus becomes a message from now into the (near or distant) future

• .. deciphering this message takes time and thus costs money

• .. may cost lives at any point, now or far into the future

The core programming courses address this “message” problem two ways:

• systematic software construction — because slow and steady works

• collaborating with others — because compilers don’t really think

Hemann/Felleisen

CS 4500: Software Development
Systematic Software Design

The Predictions of a Wise Man

"There is no single development, in either
technology or management technique,
which by itself promises even one order-of-
magnitude improvement within a decade in
productivity, in reliability, in simplicity.”

Fred Brooks, No Silver Bullet, 1986

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

• High(er) level languages

• OOP

• AI

• Expert systems

• Program Synthesis

• Graphical Programming

• Program Verification

• Environment/Tools/Workstations

What academic should not, and this course will not, teach:

• specific, currently fashionable tools (CI, bugs, tickets)

• the hottest language and IDE on Earth

• fashionable processes (agile 1, agile 2, agile 3)

Steady, Unspectacular Progress

• Buy v. Build (COTS)

• Prototyping & Refining Requirements

• Incremental Development

• Cultivate Great Designers

What are the Attributes of Systematic Program Design

• design strategy: step by step, iterative refinement

• canonical outcomes: from problems to solutions

• continuous process:

• small changes to the problem statement result in small changes to the

solution in a predictable manner

data def

purpose

examples

template

code!

test

atomic enumer. structs rechier. union mut. rec.

Structural Design: Forms of Data

Pr
oc

es
s

St
ep

s

D
om

ai
n

no
w

le
dg

e

Where CS Works

Hemann/Felleisen

CS 4500: Software Development
The Human Element: Management 101

“Soft Skills” are hard!

“Egoless Programming”

See Readings:

The Psychology of Computer Programming, Weinberg 1971, one chapter

How to be a good manager
(employee, friend …)

• Be frank, be honest, be direct

• Be warm, kind and
compassionate

• The book, the podcast, the blogs,
the talks

Our approach:

The Feedback Sandwich

Meaningful Feedback

The Feedback Sandwich

Waste

Waste

Meaningful Feedback

The Feedback Sandwich

• An order of magnitude more code than you’ve ever written

• Complexity scales super-linearly

• Review time already limited

How the Course Will Be Run in F’20

https://www.ccs.neu.edu/home/matthias/4500-f20/index.html

go to my CCIS homepage (google), follow the link

