

How to Use Game Trees

class Player

 GameTree gt;

 IAction takeTurn(GameState currentState, IAction actions[])
 gt = new GameTree(currenState)
 return this.strategy(gt)

Let’s go graphical

class Player

 GameTree gt;

 IAction takeTurn(GameState currentState, IAction actions[])
 gt = new GameTree(currenState)
 return this.strategy(gt)

Assume 3 players:

GameTree gt

class Player

 GameTree gt;

 IAction takeTurn(GameState currentState, IAction actions[])
 gt = new GameTree(currenState)
 return this.strategy(gt)

Assume 3 players,
so each round has
3 actions:

GameTree gt

class Player

 GameTree gt;

 IAction takeTurn(GameState currentState, IAction actions[])
 if (actions.size = 0)
 gt = new GameTree(currenState)
 else
 gt = gt.walkTree(actions)
 return this.strategy(gt)

Assume 3 players,
so each round has
3 actions:

GameTree gt

How to Adapt Players

component R

as (c)

with (cs[])

adapter X

save c

combine with cs

component B

as_with(c,cs[])

Let’s go textual

accept tcp connection into (in, out)
rpp = new RemoteProxyPlayer(in,out)
adp = new AdapterPlayer(rpp)
ref.register(adp)

Server

RemoteProxyPlayer r

IAction placePenguin(GameState gs) { … }

IAction takeTurn(GameState gs) { … }

Adapter

GameState g;

Result runGame()
 ..
 nextAction = player.takeTurn(state)
 g = g.apply(nextAction)
 ..

Referee

Adapter

RemoteProxyPlayer r

GameState previous
Queue<Action> actions = new Queue(player#)
IAction takeTurn(GameState current)
 if (previous.player#() > current.player#)
 actions = new Queue(current.player#)
 else
 IAction step = current.difference(previous)
 actions.enqDeq(step)
 return r.takeTurn(current, actions.toActionsList())

Adapter

#; {GameState GameState -> Action}
;; determine which action takes the old state to the new one, if any
(define (diff-state state-old state-new)
 (define players-old (fishes-players state-old))
 (define players-new (fishes-players state-new))

 (define places-old (apply set (iplayer-places players-old)))
 (define places-new (apply set (iplayer-places players-new)))

 (list (set-first (set-subtract places-old places-new))
 (set-first (set-subtract places-new places-old))))

