
Questions?

About final code walks

How do we get started?
There are two parts to the system:
xclients and xserver. Each of
them serves as a starting point into
your final code base. Is the whole code base fair game?

Yes. While you didn’t write it, you
need to know it well enough to have
built Remote/ and that means all
pieces in Common/.

How is it graded?
On a scale from 10 to 0.
10 is total mastery of interactions
with a panelist. 0 means you don’t
show up.

It has been my custom for a decade and more
to throw out one grade from the homework to
maximize your final average. I will do this again.

About grades

I don’t assume a priori that anyone can
get a 100%. Professors should admit
this. A rock-solid A starts at 95%.

There is no curve. Everybody can get A,
and everybody can get an F.

Other Questions?

Socially Responsible Software Development
The big picture ideas we tried to teach

By the law of the excluded middle, Poet is the author of this “fire” code or isn’t:

case 1, he is:

case 2, he is not:

All of you produced anti-amazing code,
and one of you dumped it on Poor Poet.

Poor Poet dumped his anti-amazing code
on you, and you need to clean it up.

US: amazing, great

Where does socially responsible behavior start?

Give to charity.

Join companies that
give to your favorite

causes.

Work for
compani
es that
do no
evil.

Go to an NGO that
does “good” work.

Volunteer with a soup
kitchen.

Help a homeless
with a 20 or a

lunch.

Socially responsible behavior starts with you
and how you relate to your immediate “neighbors”.

It’s never easy because it demands
spending your time and energy on
people whom you may never meet
and who may never say “thank you.”

Socially responsible software development starts with you.

— did you work in a responsible manner with your partner

— did you work in a responsible manner with your sw arch

— did you work in a responsible manner for your successors?

Socially responsible software development starts with you.

Solid
Technical

Work

Collaborative
Reflection
& Action

Collaborative Reflection & Action

A program is your thinking, systematically organized and
expressed, so that others can understand and appreciate it.

Don’t do it alone. Program in Pairs.

Did you come prepared?

Did you pay attention? The entire time?

Did you switch control back and forth?

Did you raise an alarm when your partner’s
externalized thinking was opaque?

Did you address partner trouble in a timely manner?

Present it to others.

Did you reflect on the TAs’ feedback? Did you act on it?

Did you take listen when your partner presented? Take notes?

Did you compare your notes w/ your memo?

Did you reflect on this feedback? Right or wrong?
React to it?

Actively engage when presented with code.

Did you think “this could be my code base tomorrow”?

Did you engage? Ask questions when you didn’t understand?

Did you not interrupt because it’s impolite? Affects grades?

Did you not interrupt because it’ affects grades?

Solid Technical Work

A program is your thinking, systematically organized and
expressed, so that others can understand and appreciate it.

Pick a data representation. Make sure you understand it.

Can you translate the data into “reality”?

Can you translate “reality” into data?

Does it express “contains” relationships properly?

What is information at one level, can be data at the next one.game board

JSON rep.

hashmap rep.

Did you describe the data representation?

Break down complex tasks into simple ones. Compose.

Can you enumerate the tasks that a method performs?

If it is more than one, each needs a name and it’s too large.

Can you “align” basic tasks with the data they process?

If so, good. Otherwise, clarify the
relationship for your successor.

Properly group data representations and functions around data representations.

Does every function “sit” with the proper data representation?

If not, what will changing the data representation do?

Are the data representation in the right place?

Do they belong to the common ontology
or to a distinct and separate part of the
architecture?

The Firehose of “Things”. Don’t drown in them.
The many concrete concepts you acquired

— command-line arguments are String[]

— *NIX scripts start with #! (see Posix)

— JSON: don’t deal with it manually

— TCP: it’s really just I/O streams

— are your GUIs portable?

— make and Makefiles are cool

— there are more data structures than hash
maps; Trees and caches; minimax

— in a distributed world, processes work
independently, that is, until they communicate

— resources are finite; make sure to shut
down threads, not to overload the GC, etc.

So?

concrete things abstract principles

multiple perspectives

Good Bye and Good Luck

