
Don’t program defensively. Use contracts instead.

A contract describes the behavior of functions and methods in terms of
code, often just boolean assertions or function “types” with boolean
assertions. Contracts supplement conventional type systems and can
also be used on their own.

#; {type Results = List Rankings [Listof Player]]}
;; the second list represents all those players that cheated or failed

#; {type Rankings = [Listof [Listof Player]]}
;; Rankings represents all players ranked in first place, second place, etc.

(provide
 #; {Natural Natural Natural [Listof Player] -> Results}
 referee)

;; ---
;; [Listof Player]
;; cheaters and failing players for a run of referee
(define *failures '[])

(define (referee row col fish# players)

 (unless (and (integer? row)
 (integer-in MIN-ROW row MAX-ROW))
 (error 'referee "wrong number of rows demanded: ~a" row))

 (unless (and (integer? col)
 (integer-in MIN-COLUMN col MAX-COLUMN))
 (error 'referee "wrong number of columnss demanded: ~a" col))

 (unless (and (integer? fish#)
 (integer-in MIN-FISH fish# MAX-FISH))
 (error 'referee "wrong number of fishs demanded: ~a" fish#))

 (unless (integer-in MIN-PLAYERS (length players) MAX-PLAYERS)
 (error 'referee "wrong number of fishs demanded: ~a" fish#))

 (inform players 'starting)
 (start-game-with-placements players)
 (define rankings (run-movement players))
 (inform players 'game-over)
 (list (map (λ (r) (remove* *failures r)) rankings) *failures))

interface for clients

defensive programming

actual computation

co
nv

en
tio

na
l p

ro
gr

am
m

in
g

Problem: defensive programming obscures the actual purpose of the
function. In many cases, the defensive code is even co-mingled with
the proper functionality —- making the problem even worse.

#; {type Results = [List Rankings [Listof Player]]}
;; the second list represents all those players that cheated or failed

#; {type Rankings = [Listof [Listof Player]]}
;; Rankings represents all players ranked in first place, second place, etc.

(provide
 #; {Natural Natural Natural [Listof Player] -> Results}
 referee)

;; ---

(define (referee row col fish# players)
 (referee-contract row col fish# players)

 (inform players 'starting)
 (start-game-with-placements players)
 (define rankings (run-movement players))
 (inform players 'game-over)
 (list (map (λ (r) (remove* *failures r)) rankings) *failures))

(define (referee-contract row col fish# players)

 (unless (and (integer? row)
 (integer-in MIN-ROW row MAX-ROW))
 (error 'referee "wrong number of rows demanded: ~a" row))

 (unless (and (integer? col)
 (integer-in MIN-COLUMN col MAX-COLUMN))
 (error 'referee "wrong number of columnss demanded: ~a" col))

 (unless (and (integer? fish#)
 (integer-in MIN-FISH fish# MAX-FISH))
 (error 'referee "wrong number of fishs demanded: ~a" fish#))

 (unless (integer-in MIN-PLAYERS (length players) MAX-PLAYERS)
 (error 'referee "wrong number of fishs demanded: ~a" fish#)))

interface for clients

separate checker

actual computation

H
tD

P
ch

ec
ke

d
fu

nc
tio

ns
 d

es
ig

n

check first, then compute

Problem: the author of a client module must still read the internals
of the module to figure out the checking and potential errors.

(define ranking/c [listof [listof player/c]])
;; Rankings represents all players ranked in first place, second place, etc.

(define results/c [list/c ranking/c [listof player/c]])
;; the second list represents all those players that cheated or failed

(provide
 (contract-out
 [referee
 (-> (integer-in MIN-ROW MAX-ROW)
 (integer-in MIN-COLUMN MAX-COLUMN)
 (integer-in MIN-FISH MAX-FISH)
 (compose (integer-in MIN-PLAYERS MAX-PLAYERS) length)
 results/c)]))

;; ---
;; [Listof Player]
;; cheaters and failing players for a run of referee
(define *failures '[])

(define (referee row col fish# players)
 (inform players 'starting)
 (start-game-with-placements players)
 (define rankings (run-movement players))
 (inform players 'game-over)
 (list (map (λ (r) (remove* *failures r)) rankings) *failures))

interface for clients
who no longer need to
read any module code

actual computationpr
og

ra
m

 d
es

ig
n

w
ith

 c
on

tra
ct

s

Another advantage: once programmers use contracts, it is easy to
strengthen the contract with additional elements to protect against
accidental misuses and catch them early.

(define ranking/c [listof [listof player/c]])
;; Rankings represents all players ranked in first place, second place, etc.

(define results/c [list/c ranking/c [listof player/c]])
;; the second list represents all those players that cheated or failed

(provide
 (contract-out
 [referee
 (->i
 ([row (integer-in MIN-ROW MAX-ROW)]
 [col (integer-in MIN-COLUMN MAX-COLUMN)]
 [fish (integer-in MIN-FISH MAX-FISH)]
 [plrs (compose (integer-in MIN-PLAYERS MAX-PLAYERS) length)])
 #:pre/name (row col plrs) "enough spots" (<= (avatar# plrs) (* row col))
 (r results/c))]))
;; ---
;; [Listof Player]
;; cheaters and failing players for a run of referee
(define *failures '[])

(define (referee row col fish# players)
 (inform players 'starting)
 (start-game-with-placements players)
 (define rankings (run-movement players))
 (inform players 'game-over)
 (list (map (λ (r) (remove* *failures r)) rankings) *failures))

interface for clients
who no longer need to
read any module code

actual computationpr
og

ra
m

 d
es

ig
n

w
ith

 c
on

tra
ct

s

strengthen invariant

