

Adapting Existing Components to
New Interfaces: Logical, Remote

component R component P

as (c)

with (cs[])

component R component P

as (c)

with (cs[])

wire

component R component P

as (c)

with (cs[])

sim. R for Psim. P for R

as (c)

with (cs[])

(define (as_is c)
 (send-on-wire (c-to-json c))

(define (with c-list)
 (send-on-wire (map c-to-json c-list)))

simulate P for R

simulate R for P

(define (simulate-R)
 (define in (read-from-wire))
 (cond
 [(is “as” in)
 (as P (c-from-json in)))]
 [(is “with” in)
 (with P (map c-from-json in))])))

(loop-with simulate-R)

component R component P

as (c)

with (cs[])

component A component B

as_with(c,cs[])

W
an

t t
o

U
se

 R
 w

ith
 B

component R

as (c)

with (cs[])

adapter X

save c

combine with cs

component B

as_with(c,cs[])

