Rust Notes: Ownership, Lifetimes, and Borrowing

January 30, 2015

Ownership in C++4
What does the local declaration

vector<int> counts;

mean in C++7 Variable counts denotes an object in memory. For how long?
Until it goes out of scope. So:

void countSheep() {
vector<int> counts; /* counts starts here */

} /¥ counts ends here x/
What if we want to pass counts to another function? Well, we can do that:

void displayCounts(vector<int>);

void countSheep() {
vector<int> counts;

displayCounts(counts) ;

In C++, vectors are passed by value, which results in two potential problems:

e Semantic problem: a function like updateCounts(vector<int>) cannot
modify counts so that countSheep can observe the modification.

e Performance problem: passing a vector by value can mean a lot of copying!
We can fix the first problem by having updateCounts return the modified vector:

vector<int> updateCounts(vector<int>);
void displayCounts(vector<int>);

void countSheep() {
vector<int> counts;

counts = updateCounts(counts) ;
displayCounts(counts) ;

But now we’re copying twice. The standard solution is rather than pass the
vector by value, we pass it by reference using a pointer:

void updateCounts(vector<int>*);
void displayCounts(const vector<int>x*);

void countSheep() {
vector<int> counts;

updateCounts (&counts) ;
displayCounts(&counts) ;

What exactly does &counts mean? It expresses the address of the variable
counts. So how long is that address valid for? The lifetime of counts. This
means we can get into trouble, because it’s possible for the address of counts
to escape—that is, to outlive the storage associated with counts:

vector<int>* countSheep() {
vector<int> counts;

updateCounts (&counts) ;

return &counts;

If the address of counts is accessed after countSheep returns, that’s an
unchecked runtime error, and hence the behavior is undefined.

If we want a more flexible lifetime, we can allocate our object on the heap:

vector<int>* countSheep() {
vector<int>* counts = new vector<int>;

updateCounts(counts) ;

return counts;

This makes it possible for countSheep to legitimately return the pointer, but now
we have another problem, because now we need to explicitly recover the storage
somewhere. Whose responsibility is it? A common pattern for reasoning about
this sort of thing is ownership, where the owner is responsible for deleting the
object. We need to document ownership protocols as parts of APIs and follow
them carefully, because C++ doesn’t understand (except for C++11 moves) or
enforce them, and if we get them wrong, we get undefined behavior.

In the code above, the caller of countSheep takes ownership of counts, so it is
responsible either to delete it or transfer ownership somewhere else, and so on.
How this can mess us up:

o Forget to free: we leak memory and possibly eventually run out. NBD.

o Access after free / double free: anything might live at that address after
the allocator recycles it, and that means nasal demons.

And we haven’t even talked about concurrency yet.

Ownership in Rust

Rust eliminates these problems by ensuring that every object has exactly one
owner at any given time, which gives up ownership either by transferring it (by
passing it to a function, say) or allowing it to go out of scope (which runs its
destructor). Furthermore, it tracks the lifetime of each object, and ensures that
references to that object, which are borrowed from its owner, never outlast the
object’s lifetime.

If we never hand-off ownership, objects are deterministically destructed when
they go out of scope:

fn count_sheep() {
let mut counts = Vec::new(); // counts starts here

} /* assuming we don't transfer ownership, counts ends here and its
*x destructor is run (deterministically!) */
If we do hand-off ownership, we lose access to the object at that point:

fn display_counts(Vec<int> someCounts) ;
fn something_else_with(Vec<int> someCounts) ;

fn count_sheep() {
let mut counts = Vec::new();

display_counts(counts); // gives up counts (moves it!)

something_else_with(counts); // type error because we no
// longer own ~counts’
}
Borrowing

If we want to invoke a function with temporary access to an object, we can
borrow a reference, mutably or immutably:

fn update_counts(&mut Vec<int> someCounts);
fn display_counts(&Vec<int> someCounts);

fn count_cheep() {
let mut counts = Vec::new();

update_counts (&mut counts);
display_counts(&counts);

}

As in C++ this passes a pointer, but unlike C++ the borrowing is checked to
ensure memory safety. The borrower (the callee) has to “return” (statically) the
borrowed reference upon return. It can sub-lend it to other functions, but it
can’t, say, send it over a channel (or do explicit lifetimes make this possible??).

Furthermore, in order to avoid data races, borrowing is restricted to ensure that
mutable objects are not aliased. In particular, the rules (cf. reader-writer locks)
are:

o A reference to a mutable object needs to be unique, so borrowing mutably
suspends access to the original owned object:

{
let mut cref = &mut counts; // borrow here
cref[0] = 5; // okay!
use(counts[0]); // type error here
} // return here

e Immutable references need not be unique, but the original owned object
needs to be immutable as well so long as the borrowed references exist:

{
let mut crefl = &counts; // borrow here
let mut cref2 = &counts; // and borrow here
use (counts[0]); // okay
counts.push(0); // type error

Explicit lifetimes

Borrowing as we’ve seen it so far works provided that borrowed references are
downward-only—passed to functions, but never returned. Is there a way to
return a borrowed reference? For example, in C++, we might want a function
to return a pointer to a member of a data structure:

int* last_ref (vector<int>* v) {
return &v->at(v->size() - 1);

}

What is the lifetime of the returned pointed? It’s valid until the vector is either
freed or mowved, which can happen if it needs to grow.

Can we do this in Rust? Yes, but we need to track the lifetime of the borrowed
reference in such a way as to associate its lifetime with the lifetime of the result.
We do this with lifetime variables:

fn last_ref<'a, T>(vec: &'a mut Vec<T>) -> &'a mut T {
let len = vec.len();
assert! (len > 0);
&mut vec[len - 1]

The function is polymorphic over lifetimes ’a (and the element type T). It says
that it takes a mutable reference to a vector whose lifetime is ’a, and returns a
mutable reference to an element whose lifetime is a. We don’t care and never
get to know what ’a is concretely—what we care about is that the result has
the same lifetime as the argument. (Note that ’a is the lifetime of the borrowed
reference, not the lifetime of the object from which it was borrowed.)

Explicit lifetimes are also useful when talking about data structures and their
contents. We need to make sure that data structures don’t outlive their contents.
Thus we have two possibilities for elements of containers (for example):

e They are owned by the container.
e They are borrowed, with uniform lifetimes.

The ’static lifetime
Typically we work with lifetime variables but not concrete lifetimes. There’s one

exception to this, though: ’static is the lifetime corresponding to the whole
run of the program. It’s used for static data such as strings and global constants:

static GREETING: &'static str = "Hello, CS4620";

	Ownership in C++
	Ownership in Rust
	Borrowing
	Explicit lifetimes
	The 'static lifetime

