

Z. GROWING-UP. MULTIPARTY SESSIONS (HONDA ET AL. '08)

3. MID-LIFE CRISIS: CANONICITY? (DARDHA ET AL '17) (CAIRES + PFENNING '10, WADLER '12)

* META-THEMES, DISCUSSION TO WRAP UP * ADDITIONAL RESOURCES & WORK RELATED TO DISCUSSION AT END

LOTS OF TALK
CITATIONS, HYPE
HARD TO FOLLOW THREAD (INCONSISTENT TERMS, IDEAS, NOTATION)
SOME BIG MISTRIKES

- NATIVE SCRIBBLE, RAST, ATS, SEPI, SILL, ETC.

- LIBRARIES & EXTENSIONS, C, GO, HASKELL, JAVA, PYTHON, RUST

- DEPLOYED. REDHAT, COGNIZANT, OOI

· GOOD RESEARCH LESSONS (EVEN FOR NON-BELIEVERS)

· KINDA WALKS THE WALK

STEP 0 . CONTEXT
" COMPUTER SCIENCE HAS JERIOUSLY TAKEN UP THE
CHALLENGE TO UNDERSTAD THE BEHAVIOR OF COMMUNICATING
SYSTEMS IN THE SAME WAY AS IT UNDERSTANDS THE
BEHAVIOR OF COMPUTER PROGRAMS" - MILNER '99

CAN TT-CALCOUS BE AS FUNDAMENTAL	
+ UBIQUITOUS A TOOL AS & CALCULUS.	

STEP O- BEHAVIORS. IL-LIKE RECALL: $\Gamma = (\lambda x.x)(\lambda x.x)$ $\Pi = (\lambda_{X,XX})(\lambda_{X,XX})$ $(D \in F)$ $\rightarrow (\chi \chi) [\chi \mapsto (\lambda \chi_{\circ} \chi \chi)]$ (B) $= (\lambda \times \cdot \times \times) (\lambda \times \cdot \times \times)$ (SUBST = .

(UC) (C < HB > 0) $|_{0}^{\prime}(C(x) \cdot O)$ $= (UC) | (C<HB>0) | C<HB>0 | C(x) \cdot \Phi | | (C(x) \cdot \Phi)$ (UC) ((C<HB>0) | O (XHBHB) | ((C(X), 0)) $\equiv (UC) (C < HB > 0) | (C(X), D)$

WE WANT THIS (SERVERS!), BUT MAYBE CONTROLLED

BEHAVIORS . DEADLOCK \propto (VX) X(y). P' L) NEVER STEPS, NON-D (SO LONELY) \nearrow THINK, WHY IS THIS DIFFERENT THAN IN? 0 2 2 1 THIS IS DEFINITELY BAD DEA. AT LEAST TWO PROCESSES PER CHANNEL?

BEHAVIORS. MORE DEADLOCK 2 $(vab) \quad \alpha(x) \cdot b < x > P'$ 1 b (y). a (y >, Q' L> NEVER STEPS, NON D Ь THESE ARE JUST AS BAD, BUT SNEAKIER IDEA. ELIMINATE CYCLES?

STEP 0; OTHER TYPE SYSTEMS

1.	DOES NOT DESCRIBE SEQUENCING OF VALUES
	COMMUNICATED ALONG A CHANNEL
Z.	FOR EXAMPLE, IT CANNOT DESCRIBE
	AN ALTERNATING SEQUENCE
3.	DYNAMIC CONSTRAINTS DIFFICULT TO
	EXPRESS WHILE MAINTAINING THE
	CHARACTERISTICS OF TRADITIONAL TYPE SYSTEMS"
	- PIERCE & SANGIORGI '94 (1/0 TYPES)

BUT WE HAVE CHANNELS LIKE THIS.

C:= make (chan Pinc)

STEP Ia. "TYPES FOR DYADIC INTERACTION" (HONDA 93)

STEP 1a. THE ACTION TYPES

ŶΑ.Β	OUTPUT A, THEN DOB
JA.B	INPUT A, THEN DO B
1	DO NOTHING

Ex. CALC: INUM. JOP. JNUM. TNUM. I

MORES AOB CHOOSE TO DO A OR B (OUTPUT) A&B OFFER TO DO A ORB (INPUT) Ex: SMART CALC. ZZ NEG. INUM. TNUM. 1, PLUS. INUM. INUM. TNUM. I, DIVIDE . I Num. INum. ⇒⊕≸. RESULT: 1 NUM. 1, DIVBYO. 1 ζ 3 HINK . WHAT'S UNREALISTIC ABOUT THIS "SERVER ?"

STEP Ia. COMPATIBILITY

HOW DO WE ENSURE PROCESSES AGREE ON PROTOCOL?

Ex: CALC: UNUM. JOP. UNUM. TNUM. I CLIENT: TNUM. TOP. TNUM. UNUM. I

CAN'T BE ANYTHING ELSE .

IDEA. PROTOCOL FROM ONE POU COMPLETELY	
DETERMINES THE OTHER	

STEP Ia. RECAP

- I'M ON THE HOOK FOR · PROGRAMS?? · SESSIONS?? · LINEARITY??
- · TYPE SAFETY ??

FLAW: UNREALISTIC PROGRAMMING MODEL

THE NEW · TYPE OF CHANNEL & PROTOCOL IN MIND · DUALITY => COMPATABILITY · CHOICE (AS A PRIMITIVE)

STEP 15: IS THIS SAFE? REMEMBER BEHAVIORS. > Z PROLESSES ON CHANNEL => INTERFERENCE XEP: ÎINT. JBOOL. 1 X XQQ: /INT. TBOOL. 1 XQR: JINT. TBOOL. IL $S \propto 1 \text{ INT}$ XQP: JBOOL. 1 R WAS LEFT BEHIND! XQQ. PBOOL. I XQR. JINT. 1BOOL. I S X T BOOL RUNTIME ERROR . EXPECTED INT, GOT BOOL

IDEA: ENSURE EACH ENDPOINT IS AT I PROCESS

STEP ID: LINEAR CHANNELS (SIMPLIFICO EXCERPT) A + P ALL CHANNELS IN A MUST BE USED - FOLLOW PROTOCOL! *1. CHANNEL ENDPOINT CAN'T GO TO TWO PROCESSES $\frac{\Delta_1 + P}{\Delta_1 + \Delta_2} + P | Q = P | Q$ 7 . CHANNEL "TAKES A STEP" $\Delta, k:B \vdash P \vdash v:A$ $\Delta, k:TA:B \vdash k < v > P$ 3. ALL CHANNELS ARE USED UP BY THE END DONE \heartsuit \vdash \bigcirc 4. CHANNELS MUST BE USED IN ANY CASE A, K: A+P A, K: B+Q OFFER $\triangle, k^{\circ}, A\&B \vdash k.CASE(P,Q)$

STEP ID' RECAP THE NEW · SESSIONS (PRIVATE, LINEAR) VS. SHARED NAMES · PROGRAMMING FACULTIES TO HELP ORGANIZE THE OLD · ACTION TYPES > SESSION TYPES · DUALITY · LINEARITY (BUT NEW FOR YOU) FLAWS · NO SESSION MOBILITY · (STILL) NO RECURSION

STEP 1 C . "LANGUAGE PRIMITIVES + TYPE DISCIPLINE FOR STRUCTURED COMMUNICATION-BASED PROGRAMMING" (HONDA ET AL. 98)

STEP 1° ATM EXAMPLE

ATM 1. VALIDATE PIN 2. OFER DEPOSIT, WITHDRAW, HELP, OR QUIT 3. MULTIPLE TRANSACTIONS PER VISIT 4. HELP IS DELEGATED TO COSTOMER SERVICE

STEP 1: EVERYTHING SO FAR

THE NEW.

- · SESSION TYPES & PROTOCOL
- · DUALITY ENSURES COMPATIBILITT
- · SYNCHRONIZE ON SHARED NAMES TO ESTABLISH SESSIONS

۱

· CHOICE IS HELPFUL

THE OLD (PRE SESSION TYPES);

- · LINEARITY
- · MOBILITY
- · RECURSION

p	SEHAUORS
0	BASIC TYPE CHECK
0	IL 15 POSSIBLE (SERVERS!)
0	NO INTERFERENCE ON SESSIONS V
	$\int da d d d d d d d d d d d d d d d d d d$

O DEADLOCK

STEP Z. "MULTI PARTY ASYNCHRONOUS SESSION TYPES" (HONDA ETAL. '08)

STEP Z', A TOUR OF MPST

GLOBAL TYPES SPECIFY PROTOCOL WITH ALL PARTIES

STEP Z', ATM REVISITED

GATMI CSERV = backend & Z QUIT: L, HELP backend V KUSEr USTR. USER TSTR> 3

STEP Z. RECAP

THE NEW

· GLOBAL TYPES

· PROJECTION => COMPATABILITY

· LOCAL TYPES WITH SESSION INTERLEAVING

· DEADLOCK GUARANTEES

THE OLD

- · LINEARITY
- " INTERACTION OPERATORS (1, 1, &, ())
- · DUAL => PROJECTION

STEP3: IS IT RIGHT?

STEP 30° SIMPLIFY EX. "SEGSION TYPES REVISITED" (DARDHA ET AL. 17) (GINARY) 10EA. EMBED SESSION TYPES IN KPT96 LINEAR 1/0 RECALL LINEAR VO. 1ª Num CHANNEL OUTPUTS NUM EXACTLY ONCE J 1 Num 11 IN PUTS 1, 1 Num U. U) OUT PUTS + INPUTS · REPLACE I WITH CO FOR UNRESTRICTED · CAN SEND CHANNELS OVER CHANNELS BST. SESSION USED MULTIPLE TIMES, BUT EXACTLY ONCE AT EACH STEP VS. LINEAR 10°. CHANNEL USED EXACTLY ONCE (FOR SENDING, RECEIVING)

STEP 3a. CPS ENCODING · Ex. I TPING. JPONG. II $= \hat{1}^{1} (P_{ING}, \hat{1}^{1} P_{ONG})$ 5 "CONTINUATION' CHANNEL FOR PARTNER TO RESPOND WITH · MORE GENERALLY, $[\uparrow A.B] = \uparrow^{1}([A], [B])$ OUTPUT $\mathbb{I} \downarrow \mathbb{A} \cdot \mathbb{B} \mathbb{I} = \downarrow^{1}(\mathbb{I} \mathbb{A} \mathbb{J}, \mathbb{I} \mathbb{B} \mathbb{I})$ INPUT

STEP 35: "MORE FUNDAMENTAL"

BACKGROUND. WRRY-HOWARD CORRESPONDENCE

LOOK FAMILIAR?

LOGIC	STLC
PROPOSITION	TYPE
Proof	Program
PROOF SIMPLIFICATION	COMPUTATION
CUT ELIMINATION	TERMINATION
MPLICATION	FUNCTION TYPE
CONJUNCTION	PRODUCT
DISJUNCTION	SUM
INTRO RULE	CONSTRUCTOR .
ELIM RULE	APP, PATTERN MATCH

STEP 36. LINEAR LOGIC ~ STPC

"INTUITIONISTIC LINEAR PROPOSITIONS AS SESSION TYPES" (CAIRES - PRENNING '10)

LINEAR LOGIC	SESSION-TYPED TT-CALLULUS (STPC)
PROPOSITION	SESSION TYPE
PROOF	PROCESS
PROOF SIMPLIFICATION	COMMUNICATION
LUT ELIMINATION	DEADLOCK-FREEDOM
MULT CONNECTIVES	SELECT/OFFER
ADD CONNECTIVES	OUTPUT / INPUT
EXPONENTIALS	REQUEST/ACCEPT
DENTITY AXIOM	FORWARDING
CUT (ENTAILMENT)	PARALLEL COMPOSITION

GOAL: USE LOGIC TO GUIDE DEVELOPMENT OF RULES

REFLECTIONS

THEMES.

HOW DO WE EVALUATE A THEORY? HOW SHOULD WE? Σ HOW DOES THE EVOLUTION OF THE IT-CALCULUS MIRROR THAT OF THE A-CALCULUS?

	2	TT (
FOUNDED	Z05-305	1992
R6075	LOGIC, MATH	PROGRAMS, PROTOCOLS
LOGIC LINK	'ZOS, 'SOS, '605	2010
4 PROP	TTPE	SESSION
Ly PROOF	PROGRAM	PROCESS
GPROOF RED.	EVALUATION	COMMUNICATION
4 GUARANTEE	TERMINATION	DEA DLOCK -FREEDOM
GENERALITY	\mathcal{M}	
IMPLS	LISP ('53), ML ('73), ETC.	PICT ('92-'98, RIP)

RESOURCES

· FOR MAIN PAPERS, SEE ABSTRACT ON WEBSITE

· "SESSION-TYPED CONCURRENT PROGRAMMING" ON JOUTUBE

- OPLSS '19 WI FRANK PFENNING

-ORSS '18 WI STERHANIE BALZER

· NOBUKO YOSHIDA'S TALK @ PAPERS WELOVE

· MARCO CARBONE'S TALK @ FRIDA ZOZO

- "AN INTRODUCTION TO SESSION TYPES" ON WEN KOKKE'S BLOG
- "FUNDAMENTALS OF SESSION TYPES" VASCO TO VASCONCELOS, 12
- · "FOUDATIONS OF SESSION TYPES & BEHAVIORAL CONTRACTS" - HÜTTEL ET AL, 2016
- · HOWDA'S "IDIOMS FOR INTERACTION" LECTURE NOTES

FRON DISCUSSION

· RELEVANT TO MATTHIAS' 100-DRONE EXAMPLE. "OYNAMIC MULTIRALE SESSIONS TYPES"

- DENIÉLOU & YOSHIOA '11

· ON CLASSICAL US. CONSTRUCTIVE LOGIC.

(AIRES + PFENNING 10 USE CONSTRUCTIVE,

WHILE WADLER 'IZ USES CLASSICAL