
Relational t

Logic Programming

Helena Dworak
3/26/2021

O . Prehistory : Predicate
Logic as Grammar

1. History
: Prolog and logic programming

2
. Relational Programming in mini Karren

O

Prehistory
: Predicate Logic as Grammar

1970 's : push for natural language processing
as part of AI

1971 : Col merauer & Roussel develop Prolog as a means

to process natural French Language

1974 : Kowalski - Predicate Logic as Grammar

1976 : Van Emden & Kowalski - Semantics of Predicate

Logic as Grammar

Two bigideas at this time :

① Natural language processing

② Programming language without features
that are

only meaningful
to the machine

t

Programming Language shaped to the problem

O

Predicate Logic

Horn clause :

B ,
v .

. . V Bm ← A , n . . .

n An

where m E I
,

i.e
.

there is at most I
"

B "

(also said
"

at mostonepositive
")

a
,

A . . . n an → b E Ta
, vnazv . . . v - an Vb

4 types of horn clauses :

I . h -40
, m # O

,
i.e

.
B ← A in . . . ran PROCEDURE

2
.

n=O
,

M€0
,

B ←
-

ASSERTION

3
. n

't O
,

m
-

- O
, -

← A
,

a
. . . n An GOAL

4
. n' - O

,
m - O

,
HALT (false)

O

Member

Member (x
,

cons (x
,

r)) ←

Member (x
,

cons Cy , r)) ← Member C x
,

r)

Member (2
,

Cons ("
a

"

,
cons (" b "

,
nil)))

z : -
"

a
" Member (2

,
cons ("

b
"

, nil))
^

(Z : -

"

b
" Member't '

hit)

I
two s

#
ssful one unsuccessfulcomputations

(hat -4 empty is false)

O

Consider append :

append (nil
,

z
,

z) ←

append (cons (x
, y)

,
z

,
cons (x

,
u)) ← append (y ,

z
,

u)

append (cons (
'

'
a

"

,
cons (" b

"

,
nil))

,
Cons f"

c
' '

,
cons (' ' d

' '

,
nil))

,
ans)

⑤
Predicate Log :c

Introduces "

input - output relation"

(doesn't distinguish
betweeninput loutpue)

append (cons ("

a

"

,
cons ("

b
"

,
nil))

,

I

7

(
cons ("

a

"

,
cons ("

b
"

,
cons (' ' c' init))))

free variable in what is

traditionally
the 2nd input arg

to append

Predicate logic has no notion

of input v
. output ,

just determines relations between them

@

- known non - determinism

O More than one procedure can

have a name which matches
a selected procedure call

Again,
consider member (z

,
cons (' '

a
"

,
cons C " b

"

,
nil)))

member (x
,

cons (x. r)) ←

member (x
,

cons (
y ,

r)) ← member C x
,

r)

-
"

viability of predicate
.

logic
[. . . depends on development)

of auxiliary control language
"

.

I

Prolog

Natural
Language Processing

\
Prolog

Predicate Logic
#

Developed in 1971 (Colmerauer & Rowsell]

Expressed and answered questions in french
& atoms are Cnearly) anything

English
'

, Prolog
-

I

Helena is a student
.

I student (Helena)
.

I

I

I
Is Helena a student ? ? - student (Helena)

.

I

↳ Yes
.

↳ Yes
I

Which X is a student ?
"

l ? - student C x)
.

I

↳ when X is Helena .

↳ X -
- Helena

.

①

Member from predicate logic

Member (x
,

cons (x
,

r)) ←

Member (x
,

cons Cy , r)) ← Member C x
,

r)

Prolog member function

member (x
,

[Xl - 3) .

member (X
,

[Y I R]) : - member (X
,

R) .

T "
looks

like
looks a

sentence
like

"
←

"

implies

①
Unification

Prolog is a
"

pattern - matcher
"

(pattern matching uncommon

at this point)

But how does it match patterns ?

→ Unification [Robinson 1965]

Cons ("

a
"

,
cons (X

,
y)) cons (2

,
cons C ' '

b
"

,
nil))

①
Unification Cont 'd

.

Variablesbound once
,

creates a permanent
relation

(
define equal (x

,
x)

.

first
,

bind x to 1

) equal (I
,

2) .

then
, try bind x to 2

µ) find
,

x - I I 2
,

thus should not unify

Variables can be bound to atoms
,

other variables
,

or complex data structures

Binding variables to complex data structures in PROLOG

TRICKY

Prolog lacksthe occurscheck

②
Occurs Check

consider

child (X) = X
.

in unification
,

(bind X child CX)) is valid

X = child (child (child(child (child (child (ild(child (

child (child (child(child (child (child (114Cchild (

child (child (child(child (. . .

The occurs check will check if X
' '

occurs
"

in child (x) before binding it

(occurs ? x child C x)) → Yes

T
then bind fails

②

Prolog omits the occurs Check for efficiency
and

consequentially
,

this
leads to unsoundedness

Not the
onlyissue:

Prolog

search
tree - DFS

- Not
memory

intensive :

does '
he maintain branches

to traverse like BFS

- Can get stuck in one branch

of the search tree !

In practice , prolog programmers
use

" extra logical
" features such as CUT l !)

to stop search

②

Negation
OPTION I

absent (X
,

nil)
.

absent (X
,

[Y I R]) : - dif C X
,

)
,

absent (X
,

R)
.

res not the same
.

diff :

interesting history
C971] . introduced in the original Prolog

[1973) . removed in next iteration
, Prolog

I

[1986) . re - added in Prolog
It

Negation - as - failure

OPTION 2

absent (X
,

L) : -

n (member ('

.
L))

.

T

necessary
without diff

.

②

Historical interlude : timeline

• 1971 : Predicate Logic as

Programming Language

• 1971 - 1972 : Birth of Prolog

• 1982 : Fifth Generation Computer System④GCS]

• 1992 : FGCS 1992 conference (to

mark end of FGCS)

①

Fifth Generation Computer System

1982 - MITI (Japan) started

massive initiative for FGCS

- Promised large At achievements

- namedProloglanguage
of choice

. (too ambitious]

1984 - US
. Congress passed NCRA

[National Cooperative Research Act]

A lot of interest in Prolog
t its potential

1992 - FGCS had
'

failed
'

,
LISP machines

werereplaced with PCs

①

Logic Programming
t Prolog

-

promising use of predicate logic

as programming language

- flaws with search tree
,

unification
,

It 11

and extra logical features break

true relational behavior

- associated with a project that made

many promises (and never delivered)

②

2005

Relational Programming (mini Karren)

[TRS Friedman et
.

at
.

2018]

- attempts to

remedy
I remove

extra logical features that exist in Prolog

Similarities :

- still routed inpredicate
logic

- shares concept of unification

- also has
necessary

search tree

but relational
programming

in mini Kamen

solves

negation lunificationl search issues

②

First
, compare syntax

:

Prolog :

member (X
,CXIRD.

member (X
,

[4/123) : -

member (X ,R)
.

mini Karren : (on Racket)

(define (membero x l)
(fresh C f r)

(= - l (cons f r))
(Conde

(C = = x f))
((members × r)))))

This is the Racket - specific

implementation

Mini Kamen is built on

many

languages

③

Unification

- Contains the occurs check
that

many implementations
of prolog lack

. mathematically
- sound unification

Negation

- no more negation as failure

- can simulate N - A - F with
'

Ionda
"

° Prunes the search try in

a

way
similar to cut C !)

②

Search tree

interleaving search

- more

memory
intensive than DFS

- eliminates or reduces need for cut

-

delays when possible before executing
recursive call

.
-it

has
delay

this
recursive .

.

call ?
execution

.

.

.

.

explore
this

node a bit

✓ more

unfold sequentially
ii. i

.

.

.

2

logic + relational programming is

heavily reliant on search tree

- relational
programming

solves

some issues
,

but not all

- search tree can still
diverge

•

may
ask for infite answers

•

may
ask for a non -

existing
answer in an infinite

search tree

②

Applications of Relational
Programming

-

not for
every problem

° We want

control
over

runtime t procedure

- imported as a package
to

.

solve problems that are conducive
to this

type
of

programming

•

graphs ,
list manipulation ,

etc .

- mini Karren lacks a compiler ,

so it
leverages

other
languagesto do the computations

②

Program Sythesis

evalo
:

- semantics for X - calculus expressed
as a relation

-

allows
us to evaluate how we

normally would in Schemel Racket
in our relational world

(evalo p i o)

in
T

program input output

-

we can use evalo to make

assertions about our program P

and have the interpreter

guess the program

①

[Chir Kou
,

et at . 2020]

Synthesizing
Recursion

↳ give
interpreter Fib (2) =/

and Fib (5) -

- 5

relational programming
can show

- the bound n > 2

- the base case
(return n)

- both recursive
calls

Continued potential for development

in area of
program synthesis

⑤

Summary

• Predicate Logic as Grammar

° logical implication as

grammar
+ natural language processing

•

Prolog
° Sacrifices made in implementation

for efficiency
(Unification ,

Search
,

Cut
,

etc .)

* Mini Kahr en

o improvements in negation ,

search ,
and unification

