
9 : : : and Again, and Again, and Again, : : :

Copyright
c
 1995 by The MIT Press.

Draft: September 18, 1995 { 09 : 28

Are you in the mood for caviar Then we must go looking for it.

What is (looking a lat)

where a is caviar

and

lat is (6 2 4 caviar 5 7 3)

#t ,

caviar is obviously in lat .

(looking a lat)

where a is caviar

and

lat is (6 2 grits caviar 5 7 3)

#f.

Were you expecting something di�erent? Yes, caviar is still in lat .

True enough, but what is the �rst number

in the lat?

6.

And what is the sixth element of lat

7.

And what is the seventh element?
3.

So looking clearly can't �nd caviar True enough,

because the third element is grits, which

does not even resemble caviar.

Here is looking

(de�ne looking

(lambda (a lat)

(keep-looking a (pick 1 lat) lat)))

Write keep-looking

We did not expect you to know this.

(looking a lat)

where a is caviar

and

lat is (6 2 4 caviar 5 7 3)

#t ,

because (keep-looking a 6 lat) has the same

answer as (keep-looking a (pick 1 lat) lat).

: : : and Again, and Again, and Again, : : : 149

What is (pick 6 lat)

where

lat is (6 2 grits caviar 5 7 3)

7.

So what do we do?

(keep-looking a 7 lat)

where a is caviar

and

lat is (6 2 4 caviar 5 7 3).

What is (pick 7 lat)

where

lat is (6 2 grits caviar 5 7 3)

3.

So what is (keep-looking a 3 lat)

where a is caviar

and

lat is (6 2 4 caviar 5 7 3)

It is the same as

(keep-looking a 4 lat).

Which is? #t .

Write keep-looking

(de�ne keep-looking

(lambda (a sorn lat)

(cond

((number? sorn)

(keep-looking a (pick sorn lat) lat))

(else (eq? sorn a)))))

Can you guess what sorn stands for? Symbol or number.

What is unusual about keep-looking It does not recur on a part of lat .

We call this \unnatural" recursion. It is truly unnatural.

150 Chapter 9

Does keep-looking appear to get closer to its

goal?

Yes, from all available evidence.

Does it always get closer to its goal? Sometimes the list may contain neither caviar

nor grits.

That is correct. A list may be a tup.

Yes, if we start looking in (7 2 4 7 5 6 3), we

will never stop looking.

What is (looking a lat)

where a is caviar

and

lat is (7 1 2 caviar 5 6 3)

This is strange!

Yes, it is strange. What happens? We keep looking and looking and looking : : :

Functions like looking are called partial

functions. What do you think the functions

we have seen so far are called?

They are called total.

Can you de�ne a shorter function that does

not reach its goal for some of its arguments?

(de�ne eternity

(lambda (x)

(eternity x)))

For how many of its arguments does eternity

reach its goal?

None, and this is the most unnatural

recursion possible.

Is eternity partial? It is the most partial function.

What is (shift x)

where

x is ((a b) c)

(a (b c)).

: : : and Again, and Again, and Again, : : : 151

What is (shift x)

where

x is ((a b) (c d))

(a (b (c d))).

De�ne shift This is trivial; it's not even recursive!

(de�ne shift

(lambda (pair)

(build (�rst (�rst pair))

(build (second (�rst pair))

(second pair)))))

Describe what shift does. Here are our words:

\The function shift takes a pair whose �rst

component is a pair and builds a pair by

shifting the second part of the �rst

component into the second component."

Now look at this function:

(de�ne align

(lambda (pora)

(cond

((atom? pora) pora)

((a-pair? (�rst pora))

(align (shift pora)))

(else (build (�rst pora)

(align (second pora)))))))

What does it have in common with

keep-looking

Both functions change their arguments for

their recursive uses but in neither case is the

change guaranteed to get us closer to the

goal.

Why are we not guaranteed that align makes

progress?

In the second cond-line shift creates an

argument for align that is not a part of the

argument.

Which commandment does that violate? The Seventh Commandment.

152 Chapter 9

Is the new argument at least smaller than

the original one?

It does not look that way.

Why not? The function shift only rearranges the pair it

gets.

And? Both the result and the argument of shift

have the same number of atoms.

Can you write a function that counts the

number of atoms in align's arguments?

No problem:

(de�ne length*

(lambda (pora)

(cond

((atom? pora) 1)

(else

((length* (�rst pora))

(length* (second pora)))))))

Is align a partial function? We don't know yet. There may be arguments

for which it keeps aligning things.

Is there something else that changes about

the arguments to align and its recursive uses?

Yes, there is. The �rst component of a pair

becomes simpler, though the second

component becomes more complicated.

In what way is the �rst component simpler? It is only a part of the original pair's �rst

component.

Doesn't this mean that length* is the wrong

function for determining the length of the

argument? Can you �nd a better function?

A better function should pay more attention

to the �rst component.

How much more attention should we pay to

the �rst component?

At least twice as much.

: : : and Again, and Again, and Again, : : : 153

Do you mean something like weight*

(de�ne weight*

(lambda (pora)

(cond

((atom? pora) 1)

(else

((� (weight* (�rst pora)) 2)

(weight* (second pora)))))))

That looks right.

What is (weight* x)

where

x is ((a b) c)

7.

And what is (weight* x)

where

x is (a (b c))

5.

Does this mean that the arguments get

simpler?

Yes, the weight* 's of align's arguments

become successively smaller.

Is align a partial function? No, it yields a value for every argument.

Here is shu�e which is like align but uses

revpair from chapter 7, instead of shift :

(de�ne shu�e

(lambda (pora)

(cond

((atom? pora) pora)

((a-pair? (�rst pora))

(shu�e (revpair pora)))

(else (build (�rst pora)

(shu�e (second pora)))))))

The functions shu�e and revpair swap the

components of pairs when the �rst

component is a pair.

Does this mean that shu�e is total? We don't know.

154 Chapter 9

Let's try it. What is the value of (shu�e x)

where

x is (a (b c))

(a (b c)).

(shu�e x)

where

x is (a b)

(a b).

Okay, let's try something interesting. What

is the value of (shu�e x)

where

x is ((a b) (c d))

To determine this value, we need to �nd out

what (shu�e (revpair pora)) is

where

pora is ((a b) (c d)).

And how are we going to do that? We are going to determine the value of

(shu�e pora)

where pora is ((c d) (a b)).

Doesn't this mean that we need to know the

value of (shu�e (revpair pora))

where

(revpair pora) is ((a b) (c d))

Yes, we do.

And? The function shu�e is not total because it

now swaps the components of the pair again,

which means that we start all over.

Is this function total?

(de�ne C

(lambda (n)

(cond

((one? n) 1)

(else

(cond

((even? n) (C (� n 2)))

(else (C (add1 (� 3 n)))))))))

It doesn't yield a value for 0, but otherwise

nobody knows. Thank you, Lothar Collatz

(1910{1990).

: : : and Again, and Again, and Again, : : : 155

What is the value of (A 1 0)

2.

(A 1 1)

3.

(A 2 2)

7.

Here is the de�nition of A

(de�ne A

(lambda (n m)

(cond

((zero? n) (add1 m))

((zero? m) (A (sub1 n) 1))

(else (A (sub1 n)

(A n (sub1 m)))))))

Thank you, Wilhelm Ackermann

(1853{1946).

What does A have in common with shu�e

and looking

A's arguments, like shu�e's and looking 's,

do not necessarily decrease for the recursion.

How about an example?

That's easy: (A 1 2) needs the value of

(A 0 (A 1 1)). And that means we need the

value of (A 0 3).

Does A always give an answer? Yes, it is total.

Then what is (A 4 3)

For all practical purposes, there is no answer.

What does that mean? The page that you are reading now will have

decayed long before we could possibly have

calculated the value of (A 4 3).

But answer came there none|

And this was scarcely odd, because

They'd eaten every one.

The Walrus and The Carpenter

|Lewis Carroll

156 Chapter 9

Wouldn't it be great if we could write a

function that tells us whether some function

returns with a value for every argument?

It sure would. Now that we have seen

functions that never return a value or return

a value so late that it is too late, we should

have some tool like this around.

Okay, let's write it. It sounds complicated. A function can work

for many di�erent arguments.

Then let's make it simpler. For a warm-up

exercise, let's focus on a function that checks

whether some function stops for just the

empty list, the simplest of all arguments.

That would simplify it a lot.

Here is the beginning of this function:

(de�ne will-stop?

(lambda (f)

: : :))

Can you �ll in the dots?

What does it do?

Does will-stop? return a value for all

arguments?

That's the easy part: we said that it either

returns #t or #f, depending on whether the

argument stops when applied to ().

Is will-stop? total then? Yes, it is. It always returns #t or #f.

Then let's make up some examples. Here is

the �rst one. What is the value of

(will-stop? f)

where

f is length

We know that (length l) is 0

where l is ().

So?

Then the value of (will-stop? length) should

be #t .

: : : and Again, and Again, and Again, : : : 157

Absolutely. How about another example?

What is the value of (will-stop? eternity)

(eternity (quote ())) doesn't return a value.

We just saw that.

Does this mean the value of

(will-stop? eternity) is #f

Yes, it does.

Do we need more examples? Perhaps we should do one more example.

Okay, here is a function that could be an

interesting argument for will-stop?

(de�ne last-try

(lambda (x)

(and (will-stop? last-try)

(eternity x))))

What is (will-stop? last-try)

What does it do?

We need to test it on () If we want the value of (last-try (quote ())),

we must determine the value of

(and (will-stop? last-try)

(eternity (quote ()))).

What is the value of

(and (will-stop? last-try)

(eternity (quote ())))

That depends on the value of

(will-stop? last-try).

There are only two possibilities. Let's say

(will-stop? last-try) is #f

Okay, then (and #f (eternity (quote ()))),

is #f, since (and #f : : :) is always #f.

So (last-try (quote ())) stopped, right?

Yes, it did.

But didn't will-stop? predict just the

opposite?

Yes, it did. We said that the value of

(will-stop? last-try) was #f, which really

means that last-try will not stop.

158 Chapter 9

So we must have been wrong about

(will-stop? last-try)

That's correct. It must return #t , because

will-stop? always gives an answer. We said it

was total.

Fine. If (will-stop? last-try) is #t

what is the value of (last-try (quote ()))

Now we just need to determine the value of

(and #t (eternity (quote ()))),

which is the same as the value of

(eternity (quote ())).

What is the value of (eternity (quote ()))

It doesn't have a value. We know that it

doesn't stop.

But that means we were wrong again! True, since this time we said that

(will-stop? last-try) was #t .

What do you think this means?
Here is our meaning:

\We took a really close look at the two

possible cases. If we can de�ne will-stop?,

then

(will-stop? last-try)

must yield either #t or #f. But it

cannot|due to the very de�nition of what

will-stop? is supposed to do. This must

mean that will-stop? cannot be de�ned."

Is this unique? Yes, it is. It makes will-stop? the �rst

function that we can describe precisely but

cannot de�ne in our language.

Is there any way around this problem? No. Thank you,

Alan M. Turing (1912{1954)

and

Kurt G�odel (1906{1978).

What is (de�ne : : :)

This is an interesting question. We just saw

that (de�ne : : :) doesn't work for will-stop?.

: : : and Again, and Again, and Again, : : : 159

So what are recursive de�nitions? Hold tight, take a deep breath, and plunge

forward when you're ready.

Is this the function length

(de�ne length

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

It sure is.

What if we didn't have (de�ne : : :)

anymore? Could we still de�ne length

Without (de�ne : : :) nothing, and especially

not the body of length, could refer to length.

What does this function do?

(lambda (l)

(cond

((null? l) 0)

(else (add1 (eternity (cdr l))))))

It determines the length of the empty list

and nothing else.

What happens when we use it on a

non-empty list?

No answer. If we give eternity an argument,

it gives no answer.

What does it mean for this function that

looks like length

It just won't give any answer for non-empty

lists.

Suppose we could name this new function.

What would be a good name?

length

0

because the function can only determine

the length of the empty list.

How would you write a function that

determines the length of lists that contain

one or fewer items?

Well, we could try the following.

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length

0

(cdr l))))))

160 Chapter 9

Almost, but (de�ne : : :) doesn't work for

length

0

So, replace length

0

by its de�nition.

(lambda (l)

(cond

((null? l) 0)

(else

(add1

((lambda (l)

(cond

((null? l) 0)

(else (add1

(eternity (cdr l))))))

(cdr l))))))

And what's a good name for this function? That's easy: length

�1

.

Is this the function that would determine the

lenghts of lists that contain two or fewer

items?

(lambda (l)

(cond

((null? l) 0)

(else

(add1

((lambda (l)

(cond

((null? l) 0)

(else

(add1

((lambda (l)

(cond

((null? l) 0)

(else

(add1

(eternity

(cdr l))))))

(cdr l))))))

(cdr l))))))

Yes, this is length

�2

. We just replace eternity

with the next version of length.

Now, what do you think recursion is? What do you mean?

: : : and Again, and Again, and Again, : : : 161

Well, we have seen how to determine the

length of a list with no items, with no more

than one item, with no more than two items,

and so on. How could we get the function

length back?

If we could write an in�nite function in the

style of length

0

, length

�1

, length

�2

, : : : , then

we could write length

1

, which would

determine the length of all lists that we can

make.

How long are the lists that we can make? Well, a list is either empty, or it contains one

element, or two elements, or three, or four,

: : : , or 1001, : : :

But we can't write an in�nite function. No, we can't.

And we still have all these repetitions and

patterns in these functions.

Yes, we do.

What do these patterns look like? All these programs contain a function that

looks like length. Perhaps we should abstract

out this function: see The Ninth

Commandment.

Let's do it! We need a function that looks just like length

but starts with (lambda (length) : : :).

Do you mean this?

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

eternity)

Yes, that's okay. It creates length

0

.

162 Chapter 9

Rewrite length

�1

in the same style.

((lambda (f)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (f (cdr l)))))))

((lambda (g)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (g (cdr l)))))))

eternity))

Do we have to use length to name the

argument?

No, we just used f and g . As long as we are

consistent, everything's okay.

How about length

�2

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

eternity)))

Close, but there are still repetitions. True. Let's get rid of them.

Where should we start? Name the function that takes length as an

argument and that returns a function that

looks like length.

: : : and Again, and Again, and Again, : : : 163

What's a good name for this function? How about mk-length for \make length"?

Okay, do this to length

0

No problem.

((lambda (mk-length)

(mk-length eternity))

(lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l))))))))

Is this length

�1

((lambda (mk-length)

(mk-length

(mk-length eternity)))

(lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l))))))))

It sure is. And this is length

�2

.

((lambda (mk-length)

(mk-length

(mk-length

(mk-length eternity))))

(lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l))))))))

Can you write length

�3

in this style?
Sure. Here it is.

((lambda (mk-length)

(mk-length

(mk-length

(mk-length

(mk-length eternity)))))

(lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l))))))))

What is recursion like? It is like an in�nite tower of applications of

mk-length to an arbitrary function.

164 Chapter 9

Do we really need an in�nite tower? Not really of course. Everytime we use length

we only need a �nite number, but we never

know how many.

Could we guess how many we need? Sure, but we may not guess a large enough

number.

When do we �nd out that we didn't guess a

large enough number?

When we apply the function eternity that is

passed to the innermost mk-length.

What if we could create another application

of mk-length to eternity at this point?

That would only postpone the problem by

one, and besides, how could we do that?

Well, since nobody cares what function we

pass to mk-length we could pass it mk-length

initially.

That's the right idea. And then we invoke

mk-length on eternity and the result of this

on the cdr so that we get one more piece of

the tower.

Then is this still length

0

((lambda (mk-length)

(mk-length mk-length))

(lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1

(length (cdr l))))))))

Yes, we could even use mk-length instead of

length.

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(lambda (l)

(cond

((null? l) 0)

(else (add1

(mk-length (cdr l))))))))

Why would we want to do that? All names are equal, but some names are

more equal than others.

1

1

With apologies to George Orwell (1903-1950).

: : : and Again, and Again, and Again, : : : 165

True: as long as we use the names

consistently, we are just �ne.

And mk-length is a far more equal name than

length. If we use a name like mk-length, it is

a constant reminder that the �rst argument

to mk-length is mk-length.

Now that mk-length is passed to mk-length

can we use the argument to create an

additional recursive use?

Yes, when we apply mk-length once, we get

length

�1

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(lambda (l)

(cond

((null? l) 0)

(else (add1

((mk-length eternity)

(cdr l))))))))

What is the value of

(((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(lambda (l)

(cond

((null? l) 0)

(else (add1

((mk-length eternity)

(cdr l))))))))

l)

where

l is (apples)

This is a good exercise. Work it out with

paper and pencil.

Could we do this more than once? Yes, just keep passing mk-length to itself,

and we can do this as often as we need to!

166 Chapter 9

What would you call this function?

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(lambda (l)

(cond

((null? l) 0)

(else (add1

((mk-length mk-length)

(cdr l))))))))

It is length, of course.

How does it work? It keeps adding recursive uses by passing

mk-length to itself, just as it is about to

expire.

One problem is left: it no longer contains the

function that looks like length

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(lambda (l)

(cond

((null? l) 0)

(else (add1

((mk-length mk-length)

(cdr l))))))))

Can you �x that?

We could extract this new application of

mk-length to itself and call it length.

Why? Because it really makes the function length.

: : : and Again, and Again, and Again, : : : 167

How about this?

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

Yes, this looks just �ne.

Let's see whether it works. Okay.

What is the value of

(((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

l)

where

l is (apples)

It should be 1.

First, we need the value of

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

That's true, because the value of this

expression is the function that we need to

apply to l where

l is (apples)

168 Chapter 9

So we really need the value of

((lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length)))

(lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

True enough.

But then we really need to know the value of

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

((lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length)))

(lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length)))))

Yes, that's true, too. Where is the end of

this? Don't we also need to know the value

of

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

((lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length)))

(lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l)))))))

(mk-length mk-length))))))

: : : and Again, and Again, and Again, : : : 169

Yes, there is no end to it. Why? Because we just keep applying mk-length to

itself again and again and again : : :

Is this strange? It is because mk-length used to return a

function when we applied it to an argument.

Indeed, it didn't matter what we applied it

to.

But now that we have extracted

(mk-length mk-length)

from the function that makes length

it does not return a function anymore.

No it doesn't. So what do we do?

Turn the application of mk-length to itself in

our last correct version of length into a

function:

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(lambda (l)

(cond

((null? l) 0)

(else (add1

((mk-length mk-length)

(cdr l))))))))

How?

Here is a di�erent way. If f is a function of

one argument, is (lambda (x) (f x)) a

function of one argument?

Yes, it is.

If (mk-length mk-length) returns a function

of one argument, does

(lambda (x)

((mk-length mk-length) x))

return a function of one argument?

Actually,

(lambda (x)

((mk-length mk-length) x))

is a function!

170 Chapter 9

Okay, let's do this to the application of

mk-length to itself.

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(lambda (l)

(cond

((null? l) 0)

(else

(add1

((lambda (x)

((mk-length mk-length) x))

(cdr l))))))))

Move out the new function so that we get

length back.

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

((lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else

(add1 (length (cdr l)))))))

(lambda (x)

((mk-length mk-length) x)))))

Is it okay to move out the function? Yes, we just always did the opposite by

replacing a name with its value. Here we

extract a value and give it a name.

Can we extract the function in the box that

looks like length and give it a name?

Yes, it does not depend on mk-length at all!

: : : and Again, and Again, and Again, : : : 171

Is this the right function?

((lambda (le)

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(le (lambda (x)

((mk-length mk-length) x))))))

(lambda (length)

(lambda (l)

(cond

((null? l) 0)

(else (add1 (length (cdr l))))))))

Yes.

What did we actually get back? We extracted the original function mk-length.

Let's separate the function that makes length

from the function that looks like length

That's easy.

(lambda (le)

((lambda (mk-length)

(mk-length mk-length))

(lambda (mk-length)

(le (lambda (x)

((mk-length mk-length) x))))))

Does this function have a name? Yes, it is called the applicative-order Y

combinator.

(de�ne Y

(lambda (le)

((lambda (f) (f f))

(lambda (f)

(le (lambda (x) ((f f) x)))))))

Does (de�ne : : :) work again?

Sure, now that we know what recursion is.

Do you now know why Y works? Read this chapter just one more time and

you will.

172 Chapter 9

What is (Y Y)

Who knows, but it works very hard.

Does your hat still �t? Perhaps not after such a mind stretcher.

Stop the World|I Want to Get O�.

Leslie Bricusse and Anthony Newley

: : : and Again, and Again, and Again, : : : 173

