
13 Hop, Skip, and Jump

Copyright
c
 1995 by The MIT Press.

Draft: September 19, 1995 { 19 : 18



What is the value of (intersect set1 set2 )

where

set1 is (tomatoes and macaroni)

and

set2 is (macaroni and cheese)

(and macaroni).

Is intersect an old acquaintance? Yes, we have known intersect for as long as

we have known union.

Write intersect
Sure, here we go:

(de�ne intersect

(lambda (set1 set2 )

(cond

((null? set1 ) (quote ()))

((member? (car set1 ) set2 )

(cons (car set1 )

(intersect (cdr set1 ) set2 )))

(else (intersect (cdr set1 ) set2 )))))

What would this de�nition look like if we

hadn't forgotten The Twelfth

Commandment?

(de�ne intersect

(lambda (set1 set2 )

(letrec

((I (lambda (set)

(cond

((null? set) (quote ()))

((member? (car set) set2 )

(cons (car set)

(I (cdr set))))

(else (I (cdr set)))))))

(I set1 ))))

Hop, Skip, and Jump 37



Do you also recall intersectall Isn't that the function that intersects a list

of sets?

(de�ne intersectall

(lambda (lset)

(cond

((null? (cdr lset)) (car lset))

(else (intersect (car lset)

(intersectall (cdr lset)))))))

Why don't we ask (null? lset)

There is no need to ask this question because

The Little Schemer assumes that the list of

sets for intersectall is not empty.

How could we write a version of intersectall

that makes no assumptions about the list of

sets?

That's easy: We ask (null? lset) and then

just use the two cond-lines from the earlier

intersectall :

(de�ne intersectall

(lambda (lset)

(cond

((null? lset) (quote ()))

((null? (cdr lset)) (car lset))

(else (intersect (car lset)

(intersectall

(cdr lset)))))))

Are you sure that this de�nition is okay? Yes? No?

Are there two base cases for just one

argument?

No, the �rst question is just to make sure

that lset is not empty before the function

goes through the list of sets.

But once we know it isn't empty we never

have to ask the question again.

Correct, because intersectall does not recur

when it knows that the cdr of the list is

empty.

38 Chapter 13



What should we do then? Ask the question once and use the old

version of intersectall if the list is not empty.

And how would you do this? Could we use another function?

Where do we place the function?

Should we use (letrec : : : )?

Yes, the new version of intersectall could

hide the old one inside a (letrec : : : )

(de�ne intersectall

(lambda (lset)

(letrec

((intersectall

(lambda (lset)

(cond

((null? (cdr lset))

(car lset))

(else (intersect (car lset)

(intersectall

(cdr lset))))))))

(cond

((null? lset) (quote ()))

(else (intersectall lset))))))

Could we have used A as the name of the

function that we de�ned with (letrec : : : )

Sure, intersectall is just a better name,

though a bit long for these boxes.

(de�ne intersectall

(lambda (lset)

(letrec

((A (lambda (lset)

(cond

((null? (cdr lset))

(car lset))

(else (intersect (car lset)

(A (cdr lset))))))))

(cond

((null? lset) (quote ()))

(else (A lset))))))

Great! We are pleased to see that you are

comfortable with (letrec : : : ).

One more time: we can use whatever name

we want for such a minor function if nobody

else relies on it.

Yes, because (letrec : : : ) hides de�nitions,

and the names matter only inside of

(letrec : : : ).

Is this similar to (lambda (x y) M )

Yes, it is. The names x and y matter only

inside of M , whatever M is. And in

(letrec ((x F ) (y G)) M )

the names x and y matter only inside of F ,

G , and M , whatever F , G , and M are.

Hop, Skip, and Jump 39



Why do we ask (null? lset) before we use A The question (null? lset) is not a part of A.

Once we know that the list of sets is

non-empty, we need to check for only the list

containing a single set.

What is (intersectall lset)

where

lset is ((3 mangos and)

(3 kiwis and)

(3 hamburgers))

(3).

What is (intersectall lset)

where

lset is ((3 steaks and)

(no food and)

(three baked potatoes)

(3 diet hamburgers))

().

What is (intersectall lset)

where

lset is ((3 mangoes and)

()

(3 diet hamburgers))

().

Why is this?

The intersection of (3 mangos and), (), and

(3 diet hamburgers) is the empty set.

Why is this? When there is an empty set in the list of

sets, (intersectall lset) returns the empty set.

But this does not show how intersectall

determines that the intersection is empty.

No, it doesn't. Instead, it keeps intersect ing

the empty set with some set until the list of

sets is exhausted.

Wouldn't it be better if intersectall didn't

have to intersect each set with the empty set

and if it could instead say \This is it: the

result is () and that's all there is to it."

That would be an improvement. It could

save us a lot of work if we need to determine

the result of (intersect lset).

40 Chapter 13



Well, there actually is a way to say such

things.

There is?

Yes, we haven't shown you (letcc : : : ) yet.

Why haven't we mentioned it before?

Because we did not need it until now.

How would intersectall use (letcc : : : )?

That's simple. Here we go:

(de�ne intersectall

(lambda (lset)

(letcc

1

hop

(letrec

((A (lambda (lset)

(cond

((null? (car lset))

(hop (quote ()))

2

)

((null? (cdr lset))

(car lset))

(else

(intersect (car lset)

(A (cdr lset))))))))

(cond

((null? lset) (quote ()))

(else (A lset)))))))

1

L: (catch 'hop : : : )

2

L: (throw 'hop (quote ()))

Alonzo Church (1903{1995) would have

written:

(de�ne intersectall

(lambda (lset)

(call-with-current-continuation

1

(lambda (hop)

(letrec

((A (lambda (lset)

(cond

((null? (car lset))

(hop (quote ())))

((null? (cdr lset))

(car lset))

(else

(intersect (car lset)

(A (cdr lset))))))))

(cond

((null? lset) (quote ()))

(else (A lset))))))))

1

S: This is Scheme.

Doesn't this look easy?

We prefer the (letcc : : : ) version. It only has

two new lines.

Yes, we added one line at the beginning and

one cond-line inside the minor function A

It really looks like three lines.

Hop, Skip, and Jump 41



A line in a (cond : : : ) is one line, even if we

need more than one line to write it down.

How do you like the �rst new line?

The �rst line with (letcc : : : looks pretty

mysterious.

But the �rst cond-line in A should be

obvious: we ask one extra question

(null? (car lset))

and if it is true, A uses hop as if it were a

function.

Correct: A will hop to the right place. How

does this hopping work?

Now that is a di�erent question. We could

just try and see.

Why don't we try it with an example?

What is the value of (intersectall lset)

where

lset is ((3 mangoes and)

()

(3 diet hamburgers))

Yes, that is a good example. We want to

know how things work when one of the sets

is empty.

So how do we determine the answer for

(intersectall lset)

Well, the �rst thing in intersectall is

(letcc hop : : :

which looks mysterious.

Since we don't know what this line does, it is

probably best to ignore it for the time being.

What next?

We ask (null? lset), which in this case is not

true.

And so we go on and : : :

: : : determine the value of (A lset) where lset

is the list of sets.

What is the next question?

(null? (car lset)).

Is this true?

No, (car lset) is the set

(3 mangos and).

42 Chapter 13



Is this why we ask (null? (cdr lset))

Yes, and it is not true either.

else Of course.

And now we recur?

Yes, we remember that (car lset) is

(3 mangos and), and that we must intersect

this set with the result of (A (cdr lset)).

How do we determine the value of (A lset)

where

lset is (()

(3 diet hamburgers))

We ask (null? (car lset)).

Which is true. And now we need to know the value of

(hop (quote ())).

Recall that we wanted to intersect the set

(3 mangos and) with the result of the natural

recursion?

Yes.

And that there is

(letcc hop : : :

which we ignored earlier?

Yes, and (hop (quote ())) seems to have

something to do with this line.

It does. The two lines are like a compass

needle and the North Pole. The North Pole

attracts one end of a compass needle,

regardless of where in the world we are.

What does that mean?

It basically means:

\Forget what we had remembered to do

after leaving behind (letcc hop

and before encountering (hop M ) And then

act as if we were to determine the value of

(letcc hop M ) whatever M is."

But how do we forget something?

Hop, Skip, and Jump 43



Easy: we do not do it. You mean we do not intersect the set

(3 mangos and) with the result of the natural

recursion?

Yes. And even better, when we need to

determine the value of something that looks

like

(letcc hop (quote ()))

we actually know its answer.

The answer should be (), shouldn't it?

Yes, it is ()

That's what we wanted.

And it is what we got. Amazing! We did not do any intersect ing at

all.

That's right: we said hop and arrived at the

right place with the result.

This is neat. Let's hop some more!

The Fourteenth Commandment

Use (letcc : : : ) to return values abruptly and promptly.

How about determining the value of

(intersectall lset)

where

lset is ((3 steaks and)

(no food and)

(three baked potatoes)

(3 diet hamburgers))

We ignore (letcc hop.

And then?

We determine the value of (A lset) because

lset is not empty.

44 Chapter 13



What do we ask next?

(null? (car lset)), which is false.

And next?

(null? (cdr lset)), which is false.

And next?

We remember to intersect (3 steaks and)

with the result of the natural recursion:

(A (cdr lset))

where

lset is ((3 steaks and)

(no food and)

(three baked potatoes)

(3 diet hamburgers)).

What happens now? We ask the same questions as above and �nd

out that we need to intersect the set

(no food and) with the result of (A lset)

where

lset is ((three baked potatoes)

(3 diet hamburgers)).

And afterward? We ask the same questions as above and �nd

out that we need to intersect the set

(three baked potatoes) with the result of

(A lset)

where

lset is ((3 diet hamburgers)).

And then?

We ask (null? (car lset)), which is false.

And then?

We ask (null? (cdr lset)), which is true.

And so we know what the value of (A lset) is

where

lset is ((3 diet hamburgers))

Yes, it is (3 diet hamburgers).

Hop, Skip, and Jump 45



Are we done now?

No! With (3 diet hamburgers) as the value,

we now have three intersects to go back and

pick up.

We need to:

a. intersect (three baked potatotes) with

(3 diet hamburgers);

b. intersect (no food and) with

the value of a;

c. intersect (3 steaks and) with

the value of b.

And then, at the end, we must not forget

about (letcc hop.

Yes, so what is (intersect set1 set2 )

where

set1 is (three baked potatoes)

and

set2 is (3 diet hamburgers)

().

So are we done? No, we need to intersect this set with

(no food and).

Yes, so what is (intersect set1 set2 )

where

set1 is (no food and)

and

set2 is ()

().

So are we done now? No, we still need to intersect this set with

(3 steaks and).

But this is also empty. Yes, it is.

So are we done? Almost, but there is still the mysterious

(letcc hop

that we ignored initially.

46 Chapter 13



Oh, yes. We must now determine the value of

(letcc hop (quote ()))

That's correct. But what does this line do

now that we did not use hop?

Nothing. What do you mean, nothing?

When we need to determine the value of

(letcc hop (quote ()))

there is nothing left to do. We know the

value.

You mean, it is () again?

Yes, it is () again.

That's simple.

Isn't it? Except that we needed to intersect the

empty set several times with a set before we

could say that the result of intersectall was

the empty set.

Is it a mistake of intersectall Yes, and it is also a mistake of intersect .

In what sense? We could have de�ned intersect so that it

would not do anything when its second

argument is the empty set.

Why its second argument? When set1 is �nally empty, it could be

because it is always empty or because

intersect has looked at all of its arguments.

But when set2 is empty, intersect should not

look at any elements in set1 at all; it knows

the result!

Hop, Skip, and Jump 47



Should we have de�ned intersect with an

extra question about set2

(de�ne intersect

(lambda (set1 set2 )

(letrec

((I (lambda (set1 )

(cond

((null? set1 ) (quote ()))

((member? (car set1 )

set2 )

(cons (car set1 )

(I (cdr set1 ))))

(else (I (cdr set1 )))))))

(cond

((null? set2 ) (quote ()))

(else (I set1 ))))))

Yes, that helps a bit.

Would it make you happy? Actually, no.

You are not easily satis�ed. Well, intersect would immediately return the

correct result but this still does not work

right with intersectall .

Why not?

When one of the intersects returns () in

intersectall , we know the result of

intersectall .

And shouldn't intersectall say so? Yes, absolutely.

Well, we could build in a question that looks

at the result of intersect and hops if

necessary?

But somehow that looks wrong.

Why wrong? Because intersect asks this very same

question. We would just duplicate it.

48 Chapter 13



Got it. You mean that we should have a

version of intersect that hops all the way

over all the intersects in intersectall

Yes, that would be great.

We can have this.

Can (letcc : : : ) do this? Can we skip and

jump from intersect?

Yes, we can use hop even in intersect if we

want to jump.

But how would this work? How can intersect

know where to hop to when its second set is

empty?

Try this �rst: make intersect a minor

function of intersectall using I as its name.

(de�ne intersectall

(lambda (lset)

(letcc hop

(letrec

((A : : : )

(I : : : ))

(cond

((null? lset) (quote ()))

(else (A lset)))))))

: : :

((A (lambda (lset)

(cond

((null? (car lset))

(hop (quote ())))

((null? (cdr lset))

(car lset))

(else (I (car lset)

(A (cdr lset)))))))

(I (lambda (s1 s2 )

(letrec

((J (lambda (s1 )

(cond

((null? s1 ) (quote ()))

((member? (car s1 ) s2 )

(J (cdr s1 )))

(else (cons (car s1 )

(J (cdr s1 ))))))))

(cond

((null? s2 ) (quote ()))

(else (J s1 )))))))

: : :

What can we do with minor functions? We can do whatever we want with the minor

version of intersect . As long as it does the

right thing, nobody cares because it is

protected.

Hop, Skip, and Jump 49



Like what? We could have it check to see if the second

argument is the empty set. If it is, we could

use hop to return the empty set without

further delay.

Did you imagine a change like this:

: : :

(I (lambda (s1 s2 )

(letrec

((J (lambda (s1 )

(cond

((null? s1 ) (quote ()))

((member? (car s1 ) s2 )

(J (cdr s1 )))

(else (cons (car s1 )

(J (cdr s1 ))))))))

(cond

((null? s2 ) (hop (quote ())))

(else (J s1 ))))))

: : :

Yes.

What is the value of (intersectall lset)

where

lset is ((3 steaks and)

(no food and)

(three baked potatoes)

(3 diet hamburgers))

We know it is ().

Should we go through the whole thing again? We could skip the part when A looks at all

the sets until lset is almost empty. It is

almost the same as before.

What is di�erent? Every time we recur we need to remember

that we must use the minor function I on

(car lset) and the result of the natural

recursion.

50 Chapter 13



So what do we have to do when we reach the

end of the recursion?

With (3 diet hamburgers) as the value, we

now have three I s to go back and pick up.

We need to determine the value of

a. I of (three baked potatotes)

and (3 diet hamburgers);

b. I of (no food and)

and the value of a;

c. I of (3 steaks and)

and the value of b.

Are there any alternatives? Correct: there are none.

Okay, let's go. What is the �rst question?

(null? s2 )

where

s2 is (3 diet hamburgers).

Which is not true.
No, it is not.

Which means we ask for the minor function

J inside of I

Yes, and we get () because

(three baked potatoes)

and

(3 diet hamburgers)

have no common elements.

What is the next thing to do?

We determine the value of (I s1 s2 )

where

s1 is (no food and)

and

s2 is ().

What is the �rst question that we ask now?

(null? s2 )

where s2 is ().

And then? We determine the value of

(letcc hop (quote ())).

Hop, Skip, and Jump 51



Why?

Because (hop (quote ())) is like a compass

needle and it is attracted to the North Pole

where the North Pole is (letcc hop.

And what is the value of this?

().

Done.
Huh? Done?

Yes, all done. That's quite a feast.

Satis�ed? Yes, pretty much.

Do you want to go hop, skip, and jump

around the park before we consume some

more food?

That's not a bad idea.

Perhaps it will clear up your mind. And use up some calories.

Can you write rember with (letrec : : : )

Sure can:

(de�ne rember

(lambda (a lat)

(letrec

((R (lambda (lat)

(cond

((null? lat) (quote ()))

((eq? (car lat) a) (cdr lat))

(else (cons (car lat)

(R (cdr lat))))))))

(R lat))))

52 Chapter 13



What is the value of

(rember-beyond-�rst a lat)

where a is roots

and

lat is (noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam

others

rice)

(noodles spaghetti sp�atzle bean-thread).

And (rember-beyond-�rst (quote others) lat)

where

lat is (noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam

others

rice)

(noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam).

And (rember-beyond-�rst a lat)

where a is sweetthing

and

lat is (noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam

others

rice)

(noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam

others

rice).

Hop, Skip, and Jump 53



And

(rember-beyond-�rst (quote desserts) lat)

where

lat is (cookies

chocolate mints

caramel delight ginger snaps

desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more desserts

gingerbreadman chocolate

chip brownies)

(cookies

chocolate mints

caramel delight ginger snaps).

Can you describe in one sentence what

rember-beyond-�rst does?

As always, here are our words:

\The function rember-beyond-�rst takes an

atom a and a lat and, if a occurs in the

lat, removes all atoms from the lat beyond

and including the �rst occurrence of a."

Is this rember-beyond-�rst

(de�ne rember-beyond-�rst

(lambda (a lat)

(letrec

((R (lambda (lat)

(cond

((null? lat) (quote ()))

((eq? (car lat) a)

(quote ()))

(else (cons (car lat)

(R (cdr lat))))))))

(R lat))))

Yes, this is it. And it di�ers from rember in

only one answer.

54 Chapter 13



What is the value of (rember-upto-last a lat)

where a is roots

and

lat is (noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam

others

rice)

(potatoes yam

others

rice).

And (rember-upto-last a lat)

where a is sweetthing

and

lat is (noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam

others

rice)

(noodles

spaghetti sp�atzle bean-thread

roots

potatoes yam

others

rice).

Yes, and what is (rember-upto-last a lat)

where a is cookies

and

lat is (cookies

chocolate mints

caramel delight ginger snaps

desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more cookies

gingerbreadman chocolate

chip brownies)

(gingerbreadman chocolate

chip brownies).

Can you describe in two sentences what

rember-upto-last does?

Here are our two sentences:

\The function rember-upto-last takes an

atom a and a lat and removes all the

atoms from the lat up to and including the

last occurrence of a. If there are no

occurrences of a, rember-upto-last returns

the lat."

Hop, Skip, and Jump 55



Does this sound like yet another version of

rember

Yes, it does.

How would you change the function R in

rember or rember-beyond-�rst to get

rember-upto-last

Both functions are the same except that

upon discovering the atom a, the new version

would not stop looking at elements in lat but

would also throw away everything it had seen

so far.

You mean it would forget some computation

that it had remembered somewhere?

Yes, it would.

Does this sound like intersectall It sounds like it: it knows that the �rst few

atoms do not contribute to the �nal result.

But then again it sounds di�erent, too.

Di�erent in what sense? The function intersectall knows what the

result is; rember-upto-last knows which

pieces of the list are not in the result.

But does it know where it can �nd the result? The result is the rember-upto-last of the rest

of the list.

Suppose rember-upto-last sees the atom a

should it forget the pending computations,

and should it restart the process of searching

through the rest of the list?

Yes, it should.

We can do this.

You mean we could use (letcc : : : ) to do

this, too?

Yes. How would it continue searching, but ignore

the atoms that are waiting to be consed onto

the result?

56 Chapter 13



How would you say, \Do this or that to the

rest of the list"?

Easy: do this or that to (cdr lat).

And how would you say \Ignore something"?

With a line like (skip : : : ), assuming the

beginning of the function looks like

(letcc skip.

Well then : : : : : : if we had a line like

(letcc skip

at the beginning of the function, we could say

(skip (R (cdr lat)))

when necessary.

Yes, again. Can you write the function

rember-upto-last now?

Yes, this must be it:

(de�ne rember-upto-last

(lambda (a lat)

(letcc skip

(letrec

((R (lambda (lat)

(cond

((null? lat) (quote ()))

((eq? (car lat) a)

(skip (R (cdr lat))))

(else (cons (car lat)

(R (cdr lat))))))))

(R lat)))))

Ready for an example? Yes, let's try the one with the sweet things.

Hop, Skip, and Jump 57



You mean the one

where a is cookies

and

lat is (cookies

chocolate mints

caramel delight ginger snaps

desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more cookies

gingerbreadman chocolate

chip brownies)

Yes, that's the one.

No problem. What is the �rst thing we do?

We see (letcc skip and ignore it for a while.

Great. And then?

We ask (null? lat).

Why? Because we use R to determine the value of

(rember-upto-last a lat).

And (null? lat) is not true. But (eq? (car lat) a) is true.

Which means we skip and actually determine

the value of

(letcc skip (R (cdr lat)))

where

lat is (cookies

chocolate mints

caramel delight ginger snaps

desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more cookies

gingerbreadman chocolate

chip brownies)

Yes.

58 Chapter 13



What next?

We ask (null? lat).

Which is not true.

And neither is (eq? (car lat) a).

So what?
We recur.

How? We remember to cons chocolate onto the

result of (R (cdr lat))

where

lat is (chocolate mints

caramel delight ginger snaps

desserts

chocolate mousse

vanilla ice cream

German chocolate cake

more cookies

gingerbreadman chocolate

chip brownies).

Next? Well, this goes on for a while.

You mean it drags on and on with this

recursion.

Exactly.

Should we gloss over the next steps? Yes, they're pretty easy.

What should we look at next? We should remember to cons chocolate,

mints, caramel, delight, ginger, snaps, desserts,

chocolate, mousse, vanilla, ice, cream, German,

chocolate, cake, and more onto the result of

(R (cdr lat))

where

lat is (more cookies

gingerbreadman chocolate

chip brownies).

And we must not forget the (letcc skip : : :

at the end!

Hop, Skip, and Jump 59



That's right. And what happens then?

Well, right there we ask (eq? (car lat) a)

where

a is cookies

and

lat is (cookies

gingerbreadman chocolate

chip brownies).

Which is true.

Right, and so we should (skip (R (cdr lat))).

Yes, and that works just as before. You mean we eliminate all the pending

conses and determine the value of

(letcc skip (R (cdr lat)))

where

lat is (cookies

gingerbreadman chocolate

chip brownies).

Which we do by recursion. As always.

What do we have to do when we reach the

end of the recursion?

We have to cons gingerbreadman, chocolate,

chip, and brownies onto ().

Which is (gingerbreadman chocolate

chip brownies)

Yes, and then we need to do the (letcc skip

with this value.

But we know how to do that. Yes, once we have a value,

(letcc skip

can be ignored completely.

And so the result is?

(gingerbreadman chocolate

chip brownies).

Doesn't all this hopping and skipping and

jumping make you tired?

It sure does. We should take a break and

have some refreshments now.

60 Chapter 13



Have you taken a tea break yet?

We're taking ours now.

Hop, Skip, and Jump 61


