
Counting the Votes 1

Extended Exercise: The Mathematics of
Elections

A Supplement to “How to Design Programs”

c©2003 Felleisen, Findler, Flatt, Krishnamurthi

Acknowledgments

Thanks to Stephen Bloch (Adelphi) and Terry Butler (Brigham Young Uni-
versity) for feedback on this exercise set. Professor Bloch recommends Don
Saari’s book “Chaotic Elections!: A Mathematician Looks at Voting” for ad-
ditional insight into this topic. He also suggests you look up the Condorcet
method for counting votes.

1 Counting the Votes

Source: Wall Street Journal, Friday March 14, 2003, page B1, column 1
Counting democratic elections poses a non-trivial problem. If we allow

a voter or, more likely, a group of voters (say a state) to pick a sequence of
choices, there are many strategies to evaluate these sub-elections. Here are
three:

1. the winner-takes-all strategy says that the winner of the most sub-
elections wins the overall election;

2. the approval-rating strategy gives the first and second place finish-
ers each one point, and the candidate with the most points wins the
overall election;

3. the points-per-place strategy allocates 3, 2, and 1 point to the top three
finishers, respectively. Again, the candidate with the most points
wins the overall election.

Different countries have come up with additional strategies with good jus-
tification for each of them.

Not surprisingly, different strategies produce different winners. That is,
given the same series of election results, the winner depends on the evalu-
ation strategy. Indeed, any of the above strategies may produce more than
one winner, so we also need a tie-breaking mechanism in the end.



2 Section 1

1.1 The Basic Problem

PREREQUISITE: 12.3. Composing Functions, Revisited Again

Exercise 1.1.1 Make up examples of elections. Consider the following sce-
nario. Your class wants to organize a little reception for your teacher. (Yes,
the teacher did a great job, teaching you things and doing so in a nice way.)
You would like to cater at least two choices of food. You ask all your class-
mates to rank the following foods in order of preference: chicken, steak,
and (triple-flavored) tofu. Each of your classmates turns in a ranked list of
these foods and you need to figure out the winner. Use all three strategies
to count (imaginary) results from this food-vote.

Exercise 1.1.2 Explain how real-world election laws incorporate elements
from each of these strategies. Hint: Strategies 1 and 3 occur in the US in
modified form.

Exercise 1.1.3 Association lists are an important element of programming
that helps with many tasks. It typically associates symbols or strings with
numbers or other values.

A AssocList is either

1. empty

2. (cons (cons String natural-number) AssocList)

Develop the function bump. It consumes an association list al, a string
name, and a natural number i. It produces an association list. The given and
the produced association lists are alike except for name. If name is already
associated with a number j in al, then the new list associates name with (+ i
j); otherwise it associates name with just i.

Exercise 1.1.4 For each of the three evaluation strategies, develop a func-
tion that computes the winner. Each function consumes a list of election
results and produces a sorted list of those candidates who won the elec-
tion. An election result specifies the first three candidates as strings. Think
of each election result as the first three in a state’s election or the ranking of
three foods that the students in your school may select for a school party.



Counting the Votes 3

The functions must accommodate write-in candidates. That is, every
voter may add a name. The functions cannot assume that there is a fixed
set of candidates. Note that this does not make the problem more difficult.

Hints:

1. The evaluation of an election consists of two tasks: tabulating the
votes and determining the winner(s).

2. Use an association list (ex. 1.1.3) to connect the two tasks.

3. Sort the list of winners with (quicksort . . . string<=?).

Exercise 1.1.5 Find a list of subelection results for which the three strate-
gies produce pairwise distinct winners.

1.2 Editing Programs

PREREQUISITE: 21.2. Abstracting From Examples

Exercise 1.2.1 Compare the functions for tabulating the votes from elec-
tions. They are structurally alike except for the treatment of each election,
which is determined by the election strategy. Abstract the functions that
tabulate the votes over the strategy. Represent the strategies as functions
with this contract:

;; strategy : AssocList Election → AssocList
;; to count the votes in the election-result
(define (strategy results election-result) . . . )

The class of Elections represents the results of a single sub-election accord-
ing to the solution of exercise 1.1.5.

Create a single function eval-elections that computes the winners of an
election according to all strategies that satisfy the above contracts.

Exercise 1.2.2 Use the functions from figure 57 (page 313) to simplify the
function from exercise 1.2.1, which tabulates the votes according to some
given strategy.

Exercise 1.2.3 Use the functions from figure 57 (page 313) to simplify the
function from exercise 1.1.5 that determines the winner from the tabulated
results.


