
Extended Exercise: Interactive Games

A Supplement to “How to Design Programs”

c©2003, 2002 Felleisen, Findler, Flatt, Krishnamurthi

1 Interaction via Keystrokes

PREREQUISITE: 7. The Varieties of Data TEACHPACK: draw.ss

Many programs interact with users via keystrokes. Text editing programs
interpret every keystroke. Some indicate that the user is typing plain text;
others request that the editor changes fonts, transposes words, and so on.
Game programs also heavily use arrow keys. They allow players to move
objects, fire weapons, open locks, and so on.

The draw.ss teachpack supports programs that wish to observe a user’s
keystroke actions when the teachpack’s canvas is the active window. Ev-
ery keystroke is an event. DrScheme observes these events and provides a
function that delivers the keystrokes, if the user has touched the keyboard.
Clearly, the first thing we need then is a data definition that describes this
class of events:1

A KeyEvent is either

1. a Boolean, i.e., false, if the user didn’t press a key;

2. a Character, e.g., #\a, #\space, if the user pressed an alphanu-
meric key,

3. a Symbol, e.g., ’up, ’down, ’left, ’right, if the user pressed a spe-
cial key (or other events happened).

The data definition puts together an interesting mix of distinct classes of
data into one class. Naturally, a function that consumes and processes a
KeyEvent must distinguish all those cases.

1Recall that char? is the predicate that recognizes characters and that char=? is a predi-
cate for comparing characters.



2 Section 1

The second thing we need is a function that observes the events and
delivers them, one at a time:

;; get-key-event : → KeyEvent
;; observes the keyboard and produces KeyEvents as they happen

When a program evaluates (get-key-event) and the user has triggered some
event with the keyboard since the last time the expression was evaluated,
the expression produces a character or a symbol. If not, it just produces
false.

Now consider the following sample function:

;; move-how-far? : KeyEvent → Number
;; to interpret a ’left or ’right keystroke as a move
;; into the appropriate direction by 10 pixels
(define (move-how-far? ke)

(cond

[(boolean? ke) 0]
[(char? ke) 0]
[else ; we now know that (symbol? ke) is true

(cond

[(symbol=? ’left ke) −10]
[(symbol=? ’right ke) +10]
[else 0])]))

It consumes a keystroke and produces the number of pixels that some ob-
ject has to move to the left (negative) or right (positive). The cond expres-
sion distinguishes the three subclasses of data in the data definition; the
nested cond recognizes the kind of key that the user pressed.

Since KeyEvents are reported as ordinary forms of data, we can also
make and test examples for this function:

(move-how-far? false) "should be" 0

(move-how-far? #\a) "should be" 0

(move-how-far? ’left) "should be" −10

(move-how-far? ’up) "should be" 0

Once the function is tested with obvious inputs, we can compose it with
get-key-event and use it on true input data in a program like this:



Interaction via Keystrokes 3

(start 300 300)
(sleep-for-a-while 3)
(move-how-far? (get-key-event))

This expression checks whether any keystroke has happened and produces
a number.

;; drive-ball : N Posn → Boolean
;; draw and move small red ball according to user input
(define (drive-ball n a-posn)

(cond
[(zero? n) true]
[else (and

(draw-shape a-posn)
(sleep-for-a-while .05)
(clear-shape a-posn)
(drive-ball (sub1 n)

(make-posn (+ (posn-x a-posn)
(move-how-far? (get-key-event)))

(posn-y a-posn))))]))

;; Posn → true
(define (draw-shape a-posn)

(draw-solid-disk a-posn 3 ’red))

;; Posn → true
(define (clear-shape a-posn)

(clear-solid-disk a-posn 3 ’red))

(start 300 300)

(drive-ball 1000 (make-posn 150 150))

Figure 1: Moving a ball

When we design programs that react to keystrokes, we usually need to
process many keystrokes, not just one. With what we know so far, we can’t
process more than a fixed number of KeyEvents. To overcome this obstacle,
we need to use one function per program whose design is beyond the level
of this section. Take a look at figure 1 for one such function. This small pro-
gram runs for several seconds. During that time, it draws the ball, sleeps
for a while to allow users to see the object, clears the object, and moves it



4 Section 2

left or right, depending on user input. Then it repeats the process. Draw-
ing and clearing the object from the canvas in rapid succession at different
locations gives the impression of a quickly moving object.

Teaching Note: The goal is still to keep the functional portion sepa-
rated from the event-based portion. To this end, we use a program design
discipline that separates the action into one generative recursive function
(always provided), which controls the game and intercepts the keystrokes,
and ordinary functions in the sense of HtDP, Part I that accomplish the
work. This is also a good strategy for a realistic implementation.

1.1 Finger Exercises

Exercise 1.1.1 Copy and paste the above program for moving a red ball
on a canvas into DrScheme and use the program to move the ball around.
Adjust the argument to sleep-for-a-while to your computer.

Exercise 1.1.2 Design the function up-or-down, which consumes a KeyEvent
and produces true when the input is ’up, ’down, #\u, or #\d.

Exercise 1.1.3 Design move-4-directions. The function consumes a KeyEvent
and produces a Posn. The latter represents how far the ball on the canvas
has to move in one of the four directions (’left, ’right, ’up, ’down).

2 Stopping a UFO

The goal of this extended exercise is to develop a simple interactive game.
Imagine the approach of a UFO, falling out of the blue sky. You’re riding a
modern AUP (anti-UFO platform), and your task is to stop the UFO from
crossing the line, i.e., the bottom of the canvas. Your powerful AUP can
move left or right, and it can shoot at the UFO in straight lines. The means
of last resort is to make sure the UFO crashes into your AUP. If the UFO
makes it across the line, you lost; otherwise you win.

Figure 2 illustrates what the scene may look like. The (green) saucer on
the canvas is the UFO; the line at the bottom is your AUP. The straight lines
going up and through the UFO are the shots that the AUP fired.

The section consists of three subsections. Each corresponds to a stage
in the design process. The subsections illustrate what we call the itera-
tive refinement process (see section 16). The goal of iterative refinement is



Stopping a UFO 5

Figure 2: Stopping a UFO

to implement the core functionality of a product and to add pieces of the
functionality step by step. Here we present the method via an example;
take a look at the sections on iterative refinement in How to Design Programs
for a thorough description of the idea.

2.1 UFOs

PREREQUISITE: 6.1 Structures TEACHPACK: draw.ss

The first goal is to create a UFO that drops from the top of a canvas to the
bottom. The function that does the repetitive work and the fragment that
starts the game are defined in figure 3. The following exercises show how
to fill in the dots.



6 Section 2

;; UFO → Boolean
;; fly UFO until it lands on bottom
(define (fly-until-down ufo)

(cond
[(at-bottom? ufo) true]
[else
(and (draw-ufo ufo)

(sleep-for-a-while .05)
(clear-ufo ufo)
(fly-until-down (move-ufo ufo)))]))

. . .

;; Constants
(define WIDTH 200)
(define HEIGHT 500)

;; run program, run
(start WIDTH HEIGHT)
(fly-until-down (create-ufo (random WIDTH)))

Figure 3: Flying a UFO

We adopt the usual conventions from physics and think of the UFO as
just a position on the canvas:

A UFO is a Posn.

When we draw the UFO we think of it as a green disk whose center is the
Posn with which we represent it. Or, we think of it as something more
elaborate, but for now this doesn’t matter. We can always change our un-
derstanding; we just need to keep in mind what the Posn represents. To
remind ourselves of this relationship (between data and information), we
call the Posn that represents a UFO an anchor point.

Exercises

Exercise 2.1.1 Design the function create-ufo, which consumes a number n
and produces a UFO whose anchor point is at the top of the canvas n pixels
to the right of the canvas origin.



Stopping a UFO 7

Exercise 2.1.2 Design the function move-ufo, which consumes a UFO (rep-
resentation) and produces one whose anchor point is 3 pixels below the
given one.

Modify move-ufo so that it produces a UFO that has dropped 3 pixels
and has moved randomly to the left or right by up to 4 pixels. Hint: Use
the function random, which consumes a positive number n and produces a
number between 0 (inclusive) and n (exclusive). Two consecutive calls may
or may not produce the same number. Design the function random-range,
which consumes n and produces a number between −n and +n.

Challenge: Revise move-ran-ufo so that a UFO that has disappeared on
the left or right of the canvas reappears on the other side for the next time
slice. Modify fly-until-down so that it uses move-ran-ufo.

Exercise 2.1.3 Design the function at-bottom?, which consumes a UFO (rep-
resentation) and determines whether its anchor point is level with, or be-
low, the bottom of the canvas.

Exercise 2.1.4 Design the function draw-ufo, which consumes the represen-
tation of a ufo and draws it on the canvas.

Also design clear-ufo, which consumes the representation of a ufo and
clears it from the canvas.

Draw the UFO as a green disk of radius 3 around the anchor point. For
the ambitious, draw the UFO as a green line of length 20 with a disk of
radius 3 in the center.

Now watch the UFO fly down from top to bottom (in a random walk).

2.2 AUPs

PREREQUISITE: 7.1 Varieties of Data TEACHPACK: draw.ss

Now it’s time to develop our defenses. An AUP defends the bottom of the
canvas where it can move left or right.

Exercise 2.2.1 Develop a (minimalist) data definition for AUPs.

Exercise 2.2.2 Design the function create-aup, which consumes a number
n and produces an AUP that is n pixels to the right of the canvas’s left
margin.



8 Section 2

Exercise 2.2.3 Design move-aup. The function consumes an AUP (represen-
tation) and a KeyEvent. It produces an AUP that has moved to the left or
right by one (1) pixel, if the player has pressed the left or right arrow key;
otherwise, it just returns the given AUP.

Exercise 2.2.4 Design the function draw-aup, which consumes a AUP and
draws it on the canvas.

Also design clear-aup, which consumes a AUP and clears it from the
canvas.

Think of the AUP as a blue line of with 10.

;; AUP → Boolean
;; move an AUP at most n times
(define (move-n-times n an-aup)

(cond
[(zero? n) true]
[else
(and (draw-aup an-aup)

(sleep-for-a-while .05)
(clear-aup an-aup)
(move-n-times (sub1 n) (move-aup an-aup (get-key-event))))]))

. . .

;; Constants
(define WIDTH 200)
(define HEIGHT 500)

;; run program, run
(start WIDTH HEIGHT)

(move-n-times 10000 (create-aup 0))

Figure 4: Controlling an AUP

The program fragment in figure 4 allows players to control an AUP.
It “loops” 10000 times and checks on keyboard events. It requires well-
developed solutions for all the exercises in this subsection. Don’t rush.
Follow the design recipe.



Stopping a UFO 9

2.3 Putting it all together

PREREQUISITE: 7.1 Varieties of Data TEACHPACK: draw.ss

With UFOs and AUPs in place we can create our first interactive game.
Roughly speaking, we need to merge the code from figures 3 and 4 and, if
we want to make it truly convenient, we should also create a function that
produces an announcement about the winners and losers. Figure 5 shows
the program fragment that performs all these tasks. The following exercises
specify the few remaining tasks before this game can run.

;; String → String
;; let name defend against a UFO
(define (main name)

(announcement
(fly-until-down (create-ufo (/ WIDTH 2)) (create-aup (/ WIDTH 2)))
name))

;; UFO AUP → Boolean
;; if the UFO is caught, produce true
(define (fly-until-down ufo aup)

(cond
[(at-bottom? ufo) (landed-on-aup? aup ufo)]
[else
(and (draw-scene ufo aup)

(sleep-for-a-while .05)
(clear-scene ufo aup)
(fly-until-down (move-ran-ufo ufo) (move-aup aup (get-key-event))))]))

. . .

;; Constants
(define WIDTH 200)
(define HEIGHT 500)

;; run program, run
(start WIDTH HEIGHT)

(main "your name here")

Figure 5: Crashing a UFO



10 Section 2

Exercises

Exercise 2.3.1 Design the function announcement. It consumes a Boolean,
which represents the result of dropping the UFO and defending with an
AUP, and a String, which is the name of the player. From these it produces
a string that announces whether the player has won. Hint: The primitive
string-append concatenates two strings.

Exercise 2.3.2 Design the function draw-scene. It consumes an AUP and a
UFO and draws them on the canvas.

Also design clear-scene, which consumes a AUP and a UFO and clears
them from the canvas.

The functions should return true if both drawing or clearing actions
succeed.

Exercise 2.3.3 Design the function landed-on-aup?. It determines whether
some given UFO has landed on a given AUP. Hint: Recall the geomet-
ric interpretation that goes with each data representation. Then draw pic-
tures and determine what it means to figure out whether the two geometric
shapes overlap. Approximate “landing” as best as you can; expect to see
these simplifications as you play the game.

2.4 One shot at the UFO

PREREQUISITE: 7.1 Varieties of Data TEACHPACK: draw.ss

The chief engineer has figured out how to let AUP’s fire a gun—once. This
means that an AUP now has two chances to stop the UFO. Either the AUP
shoots and that one shot hits the UFO or it manages to stop the UFO via
a crash. We already have a program that does the latter; let’s develop a
program that simulates the new ability to shoot.

Exercises

Exercise 2.4.1 Develop a data definition for representing a shot. Make up
examples and show what each example means in figure 2.



Stopping a UFO 11

Exercise 2.4.2 Design the function create-shot, which consumes a Posn, rep-
resenting the position of the AUP, and produces the representation of a shot
that has just left the AUP. Assume the shot leaves from the middle of the
AUP.

Exercise 2.4.3 Design the function move-shot, which consumes a Shot (rep-
resentation) and produces one that has risen 5 pixels.

Exercise 2.4.4 Design the function draw-shot, which consumes the repre-
sentation of a shot and draws it on the canvas.

Also design clear-shot, which consumes the representation of a shot and
clears it from the canvas.

Think of a shot as a vertical red line of length 5.

Now the code in figure 6 almost works for AUPs that can fire one shot.
It is similar to the function in figure 5 except that it stops the game when the
UFO is hit and it needs to manage key events for two functions, move-aup
and create-shot, not just one.

Exercises

Exercise 2.4.5 Revise draw-scene and clear-scene from exercise 2.3.2. In addi-
tion to an AUP and a UFO they now also consume a Shot/f , which is defined
as follows:

;; A Shot/f is one of the following:
;; — a shot ; (see exercise 2.4.1)
;; — false

Hint: Although Shot/f is the last argument, think of it as the primary argu-
ment for the design.

Exercise 2.4.6 Design the function hit-shot?, which determines whether a
shot has hit a UFO. The function consumes an Shot and a UFO. It produces
true if there is any overlap between the UFO and Shot. Hint: Recall the ge-
ometric interpretation that goes with each data representation. Then draw
pictures and determine what it means to figure out whether the two ge-
ometric shapes overlap. Approximate “hit by a shot” as best as you can;
expect to see these simplifications as you play the game. Enjoy!



12 Section 2

;; String → String
;; let name defend against a UFO
(define (main name)

(announcement
(fly-until-down (create-ufo (/ WIDTH 2)) (create-aup (/ WIDTH 2)) false)
name))

;; UFO AUP (Shot or false) → Boolean
;; if the UFO is caught, produce true
(define (fly-until-down ufo an-aup a-shot)

(cond
[(at-bottom? ufo) (landed-on-aup? an-aup ufo)]
[(and (not (boolean? a-shot)) (hit-shot? a-shot ufo))
(draw-scene ufo an-aup a-shot)]

[else
(and (draw-scene ufo an-aup a-shot)

(sleep-for-a-while .05)
(clear-scene ufo an-aup a-shot)
(manage (get-key-event) (move-ufo ufo) an-aup (move-shot/f a-shot)))]))

;; KeyEvent UFO AUP (Shot or false) → Boolean
(define (manage ke ufo an-aup a-shot)

(cond
[(boolean? ke) (fly-until-down ufo an-aup a-shot)]
[(char? ke) (fly-until-down ufo an-aup a-shot)]
[(symbol=? ke ’up)
(cond

[(boolean? a-shot)
(fly-until-down ufo an-aup (create-shot an-aup))]

[else (fly-until-down ufo an-aup a-shot)])]
[else (fly-until-down ufo (move-aup an-aup ke) a-shot)]))

;; (Short or false) → (Shot or false)
(define (move-shot/f a-shot)

(cond
[(boolean? a-shot) a-shot]
[else (move-shot a-shot)]))

. . .
;; Constants
(define WIDTH 200)
(define HEIGHT 500)

;; run program, run
(start WIDTH HEIGHT)

(main "your name here")

Figure 6: Crashing or shooting down a UFO



Stopping a UFO 13

2.5 Many Shots

PREREQUISITE: 10.2 Lists that Contain Structures TEACHPACK: draw.ss

The true goal is to simulate an AUP-UFO fight like the one in figure 2. The
AUP in the figure can obviously fire many shots, not just one. Since “many”
clearly means “arbitrary” and “unknown”, we need a list of shots. Put
differently, we need to revise all the data definitions and all the functions
that deal with shots.

Exercises

Exercise 2.5.1 Develop a data definition for representing a list of Shots.

Exercise 2.5.2 Design the function move-all-shots, which consumes a list of
shots and produces one where each shot has been moved with move-shot.

Exercise 2.5.3 Design the function draw-all-shots, which consumes a list of
shots, draws all of them, and produces true if all drawing actions succeed.

Design the function clear-all-shots, which consumes a list of shots, clears
all of them, and produces true if all drawing actions succeed.

Exercise 2.5.4 Design the function hit-by-shot?. It consumes a list of Shots
and a UFO. It produces true if one of the Shots has hit the UFO; it produces
false if none of the Shots has hit the UFO.

Exercise 2.5.5 Revise draw-scene and clear-scene from exercise 2.4.5. Instead
of a Shot/f , the functions now consume a list of Shots.

It’s time to play. And you’re ready to play. The program fragment in
figure 7 contains the code for a game that allows AUPs to fire many shots.
After you have played enough, try to understand (write down) how the
program evolved and how we planned out this series of exercises.

2.6 Eliminating Similarities

2.6.1 Abstracting Similar Functions

PREREQUISITE: 19 Similarities in Definitions
TEACHPACK: draw.ss



14 Section 2

;; String → String
;; let name defend against a UFO
(define (main name)

(announcement
(fly-until-down (create-ufo (/ WIDTH 2)) (create-aup (/ WIDTH 2)) empty)
name))

;; UFO AUP (Shot or false) → Boolean
;; if the UFO is caught, produce true
(define (fly-until-down ufo an-aup shots)

(cond
[(at-bottom? ufo) (landed-on-aup? an-aup ufo)]
[(hit-by-shot? shots ufo) (draw-scene ufo an-aup shots)]
[else
(and

(draw-scene ufo an-aup shots)
(sleep-for-a-while .05)
(clear-scene ufo an-aup shots)
(manage (get-key-event) (move-ufo ufo) an-aup (move-all-shots shots)))]))

;; KeyEvent UFO AUP (Shot or false) → Boolean
(define (manage ke ufo an-aup shots)

(cond
[(boolean? ke) (fly-until-down ufo an-aup shots)]
[(char? ke) (fly-until-down ufo an-aup shots)]
[(symbol=? ke ’up)
(fly-until-down ufo an-aup (cons (create-shot an-aup) shots))]

[else (fly-until-down ufo (move-aup an-aup ke) shots)]))
. . .
;; Constants
(define WIDTH 200)
(define HEIGHT 500)

;; run program, run
(start WIDTH HEIGHT)

(main "your name here")

Figure 7: Crashing or shooting down a UFO with many shots



Stopping a UFO 15

Take a second look at figure 1. The function drive-ball relies on two auxiliary
functions: draw-shape and clear-shape. If the shape is just a ball, the two
functions just draw and clear a solid disk, respectively:

;; Posn → true
(define (draw-shape a-posn)

(draw-solid-disk a-posn 3 ’red))

;; Posn → true
(define (clear-shape a-posn)

(clear-solid-disk a-posn 3 ’red))

Now suppose we want the same program to move a stick figure, not a plain
ball. In that case, the program would have to draw and clear the disk and a
thin rectangle below the disk. That is, we would need to design these two
functions:

;; Posn → true
(define (draw-shape2 a-posn)

(and

(draw-solid-rect a-posn 1 10 ’red)
(draw-solid-disk a-posn 3 ’red)))

;; Posn → true
(define (clear-shape2 a-posn)

(and

(clear-solid-rect a-posn 1 10 ’red)
(clear-solid-disk a-posn 3 ’red)))

Clearly, the two pairs of functions are prime examples of functions with
similar definitions. We can easily abstract over both pairs. For the second
pair, we get this general function:

;; (Posn Number Number Symbol → true) (Posn Number Symbol → true) Posn → true
(define (graphics-shape2 solid-rect solid-disk a-posn)

(and (solid-rect a-posn 1 10 ’red)
(solid-disk a-posn 3 ’red)))

To get back the two functions, we just pass in the appropriate primitives:

;; Posn → true
(define (draw-shape2 p)

(graphics-shape2
draw-solid-rect draw-solid-disk p))

;; Posn → true
(define (clear-shape2 p)

(graphics-shape2
clear-solid-rect clear-solid-disk p))

The advantage is that, in many cases, we can now change just a single func-
tion to get an entirely new shape to move across a canvas.

Exercises

Exercise 2.6.1 Modify graphics-shape2 so that the drive-ball program in fig-
ure 1 moves

1. a square of size 3;



16 Section 2

2. a cross-hair that intersect at the given Posn;

3. a pair of intersecting disks (each of size 5) that contain the given Posn
in their intersection.

Exercise 2.6.2 Develop an abstract function for draw-ufo and clear-ufo from
exercise 2.1.4.

Exercise 2.6.3 Develop an abstract function for draw-aup and clear-aup from
exercise 2.2.4.

Exercise 2.6.4 Develop an abstract function for draw-scene and clear-scene
from exercise 2.3.2.

Exercise 2.6.5 Develop an abstraction for draw-shot and clear-shot from ex-
ercise 2.4.4.

2.6.2 Using Loops

PREREQUISITE: 21.2 Finger Exercises with Abstract List Functions

In addition to abstracting over similar functions, it is also good practice
to define functions with applications of existing abstractions. Scheme pro-
vides a number of “loops”, i.e., functions that traverse a piece of data and
apply some give function to each “stop” during the traversal. For example,

(map move-shot
(list (make-posn 100 500)

(make-posn 100 460)
(make-posn 120 420)))

applies the function move-shot to each Shot (i.e., Posn) on the given list. The
result is the list

(list (make-posn 100 492) (make-posn 100 452) (make-posn 120 412))

In short, the expression moves an entire list of shots.

Exercises

Exercise 2.6.6 Use map to define move-all-shots from exercise 2.5.2.



Stopping a UFO 17

Exercise 2.6.7 Use andmap to define draw-all-shots and clear-all-shots from
exercise 2.5.3.

Exercise 2.6.8 Use ormap to define hit-by-shot? from exercise 2.5.4.

Now that play some more, but use this second draft of the program.


