
TeachScheme! 2: Boston: 5–9 July 2004

c©2004 Felleisen, Findler, Flatt, Krishnamurthi

http://www.ccs.neu.edu/home/matthias/TS2-2004/

This hand out consists of two pieces per daily session: goals and examples
for the lecture session and exercises for the lab session. Please read the lab
instructions carefully.

Lab instructions:

1. Please login as “pclab” with the password “guest”. Use the “Log on
to:” box and choose the domain “CCIS WINDOWS”, though this may
already be the case.

2. Create a Desktop folder for your work. The folder is likely to stay
around for the week, but due to open access for a couple of hours in
the evening, a misinformed user may delete them. Back up the folder
on one of the floppies from your welcome folder.

3. For the lab sessions, please scan the exercises quickly. Solve those
exercises that are marked with an asterisk (*). Then decide which
exercise you like most; try to do complete that one. Repeat this until
you are out of time.



2 CONTENTS

Contents

1 Monday Morning: Welcome Back 2

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example: Functions on Numbers . . . . . . . . . . . . . . . . 3

1.3 Example: Images . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Example: Structures and Functions on Structures . . . . . . . 4

1.5 Example: Lists and Functions on Lists . . . . . . . . . . . . . 5

2 Monday Afternoon: Images, Lists, N 7

2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A Notation for Lists . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Example: N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Example: More on Images . . . . . . . . . . . . . . . . . . . . 9

2.5 Example: Image Functions . . . . . . . . . . . . . . . . . . . . 11

3 Tuesday Morning: Local Definitions 14

3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Local Definitions: Syntax and Semantics . . . . . . . . . . . . 14

3.3 Local Definitions: Go slow! . . . . . . . . . . . . . . . . . . . 15

3.4 Local Definitions: Go fast! . . . . . . . . . . . . . . . . . . . . 16

3.5 Local Definitions: Just Do It . . . . . . . . . . . . . . . . . . . 17

3.6 Lexical Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Tuesday Afternoon: Generative Recursion 21

4.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Example: Generating Balloons . . . . . . . . . . . . . . . . . . 21

4.3 Example: Sorting Numbers . . . . . . . . . . . . . . . . . . . 22

4.4 Example: Fractals . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Generative Recursion: The Design Recipe . . . . . . . . . . . 24

5 Wednesday Morning: Creating Abstractions 28

5.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Example: Functions are Values, too . . . . . . . . . . . . . . . 28

5.3 Example: Primitives are Values, too . . . . . . . . . . . . . . . 29

5.4 Example: More on Functions . . . . . . . . . . . . . . . . . . 30

5.5 Example: Contracts are People, too . . . . . . . . . . . . . . . 31

5.6 Function have Contracts, too . . . . . . . . . . . . . . . . . . 31



6 Wednesday Afternoon: Using Abstractions 34

6.1 Goals: 1001 Loops . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Examples: Mapping . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 mapping with lambda, the Ultimate . . . . . . . . . . . . . . 35
6.4 Example: Filtering . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5 filtering with lambda, the Ultimate . . . . . . . . . . . . . . . 36
6.6 lambda, the ultimate . . . . . . . . . . . . . . . . . . . . . . . 37
6.7 Example: Building Lists, with lambda . . . . . . . . . . . . . 38

7 Thursday Morning: Some Basic I/O 40

7.1 Goal: Shriram’s Day of Networking . . . . . . . . . . . . . . 40
7.2 apply, another powerful loop . . . . . . . . . . . . . . . . . . 40
7.3 Example: Keeping Track of Grades . . . . . . . . . . . . . . . 42
7.4 Input and Output: S-expressions . . . . . . . . . . . . . . . . 44

8 Thursday Afternoon: A Networking Application 49

9 Friday Morning: Games 53

9.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Calling Functions on Events . . . . . . . . . . . . . . . . . . . 53
9.3 Example: Flying a Rocket . . . . . . . . . . . . . . . . . . . . 54
9.4 The Nature of Keystroke Events . . . . . . . . . . . . . . . . . 55
9.5 Example: Launching a Rocket . . . . . . . . . . . . . . . . . . 56

10 Friday Afternoon: More on Games 59

10.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



CONTENTS 1

Goals of the Workshop

We have two goals with this workshop:

1. We wish to deepen your understanding of program design, espe-
cially structural recursion, abstraction, generative recursion, and the
model-view “software architecture”.

2. We try to give you a sense of how program design à la HtDP applies
to practical programming. This year we have chosen three topics:
games, web programming, and network scripting.

The Daily Routine

The workshop schedule is roughly like the one you know from Teach-
Scheme! 1. Every morning we start at 8:30am with a lecture session fol-
lowed by a lab. The lunch break is from noon to 1:15pm. The afternoon
starts again with a brief lecture session, followed by more lab time. The
goal is to wrap up each day by 5:00pm.



2 Section 1

1 Monday Morning: Welcome Back

Related material in How to Design Programs: parts I, II

1.1 Goals

(1) recall basic Scheme data: numbers, images, structures, lists

(2) recall basic Scheme mechanics: defining functions, structures, variables

(3) recall the design recipes for structural data:

1. analyze the problem & identify the classes of data (with examples)

2. formulate a purpose statement and a contract

3. make up “functional” examples

4. create the template: what information exists to compute the desired
result?

5. program

6. turn the examples into a test suite

(4) over the week, see iterative refinement at work



Monday Morning: Welcome Back 3

1.2 Example: Functions on Numbers

-
X

?

Y

0 50 100

200

150

100

50

0

t

��������9

t = 0

t

��������9

t = 1

t

��������9

t = 2

t

��������9

t = 3

t

��������9

t = 4

Translate into a function from numbers to numbers:

t = 0 1 2 3 4 . . . 7

X = 20 30 40 50 60 . . . ?

;; ufo-x : Number → Number
;; where is the UFO at t (horizontally)?
;; examples: see table
(define (ufo-x t)

(+ 20 (∗ 10 t)))

;; Tests:
(= (ufo-x 0) 20)
(= (ufo-x 1) 30)
(= (ufo-x 2) 40)

;; Run program run:
(ufo-x 2345)



4 Section 1

1.3 Example: Images

(define an-image (rectangle 3 4 ’blue))

;; area : Image → Number
;; compute the number of pixels in an image
;; example: (area an-image) should be 12
(define (area i)

(∗ (image-width i) (image-height i)))

;; Tests:
(= (area an-image) 12)

;; Run program run: (demo matthias demo)
(area . . . an image of your favorite teach-scheme instructor . . . )

1.4 Example: Structures and Functions on Structures

(define-struct color (red green blue)) ;; color occurs in nature
;; Color = (make-color Number Number Number)

;; make-color; color?; color-red, color-green, color-blue

#| Template:
;; Color → ???
(define (process-rgb c)

. . . (color-red c) . . .

. . . (color-green c) . . .

. . . (color-blue c) . . . )
|#

;; Program:
;; Color → Color
;; produce a color like c, but without any green
;; example: (remove-green (make-color 200 100 0)) should be
;; (remove-green (make-color 200 0 0))
(define (remove-green c)

(make-color (color-red c) 0 (color-blue c)))

;; Tests:
(equal? (remove-green (make-color 200 100 0))

(make-color 200 0 0))



Monday Morning: Welcome Back 5

1.5 Example: Lists and Functions on Lists

;; A ColorList is either
;; — empty
;; — (cons Color ColorList)

#| Template:
;; ColorList → ???
(define (process-cl cl)

(cond

[(empty? cl) . . . ]
[else . . . (first cl) . . . (process-cl (rest cl)) . . . ]))

|#

;; ColorList → ColorList
;; remove green from every color on cl
;; examples: see tests
(define (remove-all-green cl)

(cond

[(empty? cl) empty]
[else (cons (remove-green (first cl)) (remove-all-green (rest cl)))]))

;; Tests:
(equal? (remove-all-green (cons (make-color 100 100 100)

(cons (make-color 200 100 0)
empty)))

(cons (make-color 100 0 100)
(cons (make-color 200 0 0)

empty)))

;; Run program run:
(color-list→image

(remove-all-green
(image→color-list

. . . an image of your favorite teach-scheme instructor . . . )))



6 Section 1

Exercises

Exercise 1.1 (*) Locate the Web page for the workshop (see cover). Book-
mark it. Copy and paste the program for removing green (section 1.5) fromUse the language level

Beginning Student a picture and run the tests. Then get the expression at the bottom of the
program to run. Hint: Use DrScheme’s help desk to find out how the prim-
itives on images work. Yes, you may use any picture that you like and you
have access to the Web.

Exercise 1.2 (*) Strings are another important class of data that most pro-
gramming languages offer. With number→string, you can even convert any
number into a string, and with string→number you can convert a string into
a number, if the string represents one. Experiment with the two functions
in DrScheme’s Interactions window.

Develop the function numbers-to-strings, which consumes a list of num-
bers and produces a list of strings that represent these numbers. For exam-
ple, (cons 1 (cons 2 (cons 3 empty))) produces ’("1" "2" "3").

Also develop the function strings-to-numbers, which consumes a list of
strings and converts them to numbers, if possible. In other words, it uses
string→number on each item on the list.

Finally, develop the program strings-to-numbers∗. It consumes a list of
strings and converts them to numbers. If a string doesn’t represent a num-
ber, it drops the item from the list.

Exercise 1.3 Networks send requests. Servers process these requests and
send responses back.

One way to represent a class of requests is to form a list where each item
is a list of two items: a string and a boolean:

;; Request is either
;; — empty
;; — (cons Line Request)
;; Line is (cons String (cons Boolean empty))

Develop the function which-toppings. The function consumes a Request
and produces the list of strings that come with true in the given request.



Monday Afternoon: Images, Lists, N 7

2 Monday Afternoon: Images, Lists, N

Related material in How to Design Programs: intermezzo 2, part II[11]

2.1 Goals

(1) to make working with lists and S-expressions easier
(2) to get to know the class of image values
(3) to understand functions on natural numbers

2.2 A Notation for Lists

(cons 1
(cons 2

(cons 3 empty))) (list 1 2 3)

(cons
(cons ’a (cons ’b empty))
(cons

(cons 1 (cons 2 empty))
(cons

(cons true (cons false empty))
(cons

(cons "a" (cons "b" empty))
empty))))

(list (list ’a ’b)
(list 1 2)
(list true false)
(list "a" "b"))

(cons (make-color 0 0 0)
(cons (make-color 255 255 255)

(cons (make-color 200 100 0)
empty)))

(list (make-color 0 0 0)
(make-color 255 255 255)
(make-color 200 100 0))



8 Section 2

2.3 Example: N

;; An N (natural number) is either
;; — 0
;; — (add1 N)

Recognize 0 with zero?. Given n and assuming (zero? n) is false, then n is
(add1 m) for some m, which belongs to N. We get m via (sub1 n).

#| Template:
;; N → ???
(define (process-n k)

(cond

[(zero? k) . . . ]
[else . . . (process-n (sub1 k)) . . . ]))

|#

;; N Symbol → ListOfSymbols
;; make a list with k copies of a
;; examples:
;; — given 0 and ’z, produce empty
;; — given 2 and ’z, produce (list ’z ’z)
(define (copies n a)

(cond

[(zero? n) empty]
[else (cons a (copies (sub1 n) a))]))

;; Tests:
(equal? (copies 0 ’z) empty)
(equal? (copies 2 ’z) (list ’z ’z))

;; N → ListOfString
;; create a list of strings "k", . . . , "0"
(define (cells k)

(cond

[(zero? k) (list "0")]
[else (cons (number→string k) (cells (sub1 k)))]))

;; Tests:
(equal? (cells 0) (list "0"))
(equal? (cells 2) (list "2" "1" "0"))



Monday Afternoon: Images, Lists, N 9

2.4 Example: More on Images

Images have always been values in DrScheme. All we had, however, were
constants. Now we also have functions for creating images:

(rectangle 10 20 ’red) create a red, 10 x 20 rectangle

(circle 10 ’red) create a red circle with radius 10

(disk 10 ’red) create a red disk of radius 10

(empty-scene 100 200) create an empty 100 x 200 scene

(place-image (rectangle 5 5 ’red)
10 20
(empty-scene 100 200))

place a red, 5 x 5 square at (10,20)
into an empty scene

(image→color-list
(rectangle 3 4 ’green))

turn the green, 3 x 4 reactangle
into a list of 12 copies of (make-
color 60 248 52)



10 Section 2

(color-list→image
(list

(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52))

1 12)

turn a list of 12 copies of (make-
color 60 248 52) into a horizontal
line of 12 green pixels

(color-list→image
(list

(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52)
(make-color 60 248 52))

3 4)

turn a list of 12 copies of (make-
color 60 248 52) into a horizontal
line of 12 green pixels

(offset-image+
(rectangle 1 11 ’red)
−5 5
(rectangle 11 1 ’red))

create two thin rectangles, then
combine them into a red cross



Monday Afternoon: Images, Lists, N 11

2.5 Example: Image Functions

(define UFO . . . ) ;; some shape that resembles a green saucer

;; Number → Number
;; determine the UFO’s x coordinate at time t
(define (ufo-x t) 10)

;; Number → Number
;; determine the UFO’s y coordinate at time t
(define (ufo-y t) (+ 20 t))

;; Number Scene → Scene
;; place the UFO into s at time t
(define (place-ufo t s) (place-image UFO (ufo-x t) (ufo-y t) s))

;; Tests:
(= (ufo-x (random 100)) 10)
(= (ufo-y 10) 30)

Use the stepper to see how things work.



12 Section 2

Exercises

Exercise 2.1 (*) DrScheme doesn’t provide the function line for drawing a
line. Fortunately, this is not a problem because we have color-list→image,Use the language level

BS w/ Lists which consumes a list of colors and produces an image.
Develop the function make-line, which creates a ColorList that represents

a horizontal line. The function consumes the width of the line (a natural
number) and a color. It produces an appropriate list of colors.

Also, even if DrScheme did not provide rectangle, we could still draw
rectangles. Develop the function make-rectangle. It consumes two natural
numbers, width and height, and a color. Its result is a ColorList that repre-
sents the matching rectangle.

Hint: (append (list 1 2) (list 3 4 5)) produces (list 1 2 3 4 5).
After you have developed the functions, including automated tests, run

them as follows:

(color-list→image (make-line 100 (make-color 100 100 100)) 100 1)

or

(color-list→image (make-rectangle 2 3 (make-color 0 0 0)) 2 3)

Keep in mind that these are not tests.

Exercise 2.2 (*) Copy and paste the program from section 2.5. Provide a
definition for UFO (in the lecture code) so that it shows up as a flying greenAdd the teachpack

image.ss saucer.

Exercise 2.3 (difficult, but entertaining) Develop place-blocks. The program
consumes a list of blocks:Add the teachpack

image.ss ;; A BlockList is either:
;; — empty
;; — (cons N BlockList)

Each number on a BlockList represents the height of a stack of blocks. The
program produces an image, drawing a stack of blocks of the specified
height starting in the lower, right corner of a 100 x 100 canvas.

Note: The program is a core piece of a Tetris-style game.
Hint 1: Use these definitions for your basic constants:

(define WIDTH 100)
(define HEIGHT 100)
(define CANVAS (empty-scene WIDTH HEIGHT))



Monday Afternoon: Images, Lists, N 13

(define BLOCK-WIDTH 10)
(define BLOCK

(offset-image+
(rectangle BLOCK-WIDTH BLOCK-WIDTH ’red)
0 0
(outline-rect BLOCK-WIDTH BLOCK-WIDTH ’black)))

Hint 2: Here is the image for (place-blocks (list 1 2)):

Produce the image by hand and then use it with
image=? to test the program. The picture shows that
the drawing starts at the right. The length of the list
determines how far from the right a stack of blocks
is drawn.

Exercise 2.4 (*) Use the conventional draw.ss teachpack to draw and erase
green flying saucers from a canvas. That is, develop the functions draw- Add the teachpack

draw.ssufo and clear-ufo for drawing and clearing a UFO-like shape from a canvas.
Both functions consume a Posn, which represents the anchor position of the
UFO (e.g., the center of the disk or the northwest corner of the rectangle).



14 Section 3

3 Tuesday Morning: Local Definitions

Related material in How to Design Programs: intermezzo 3

3.1 Goals

(1) to study:
(1a) a new programming construct, local definitions,
(1b) and a related programming concept, lexical scope;
(2) how to approach new constructs: syntax, semantics, pragmatics

3.2 Local Definitions: Syntax and Semantics

Syntax (aka Grammar):

(local ((define a-name rhs-expression)
. . .
(define another-name another-rhs-expression))

the-expression)

Syntax example:

(local ((define x 10)
(define y (+ x 10)))

(+ x (∗ 10 y)))

Semantics (aka meaning): The evaluation of a local expression proceeds in
stages. It begins with the evaluation of the first definition. The evaluation
proceeds just like for a normal, aka top-level, definition. Once we know
the value of the rhs-expression, a-name stands for this value inside the local

expression. After all definitions are evaluated, the evaluator reduces the-
expression to a value. This last value is the result of the local expression.
Semantics example:

(local ((define x 10)
(define y (+ x 10)))

(+ x (∗ 10 y)))

First, 10 is a value, so x stands for 10. Second, (+ x 10) accordingly eval-
uates to 20, and y represents 20. Finally, (+ x (∗ 10 y)) evaluates to 210
because x is 10 and y is 20 inside this local expression. Hence, the result of
the local expression is 210.

On to pragmatics.



Tuesday Morning: Local Definitions 15

3.3 Local Definitions: Go slow!

;; Posn → Number

;; determine the distance of p to the origin:
√

(px)2 + (py)2

;; example: (distance0 (make-posn 3 4)) is 5
(define (distance0 p)

(sqrt (+ (sqr (posn-x p)) (sqr (posn-y p)))))

;; tests:
(= (distance0 (make-posn 3 4)) 5)
(= (distance0 (make-posn 12 5)) 13)

Here is a “slower” version:

;; Posn → Number

;; determine the distance of p to the origin:
√

(px)2 + (py)2

;; example: (distance0 (make-posn 3 4)) is 5
(define (distance0 p)

(local ((define x (posn-x p))
(define y (posn-y p))
(define sqrx (sqr x))
(define sqry (sqr y))
(define sum (+ sqrx sqry)))

(sqrt sum)))

;; tests:
(= (distance0 (make-posn 3 4)) 5)
(= (distance0 (make-posn 12 5)) 13)



16 Section 3

3.4 Local Definitions: Go fast!

;; A NEL is one of:
;; — (cons Number empty)
;; — (cons Number NEL)

;; NEL → Number
;; find the largest number in l
;; examples: (list 1 2 3) produces 3
(define (largest l)

(cond
[(empty? (rest l)) (first l)]
[else (cond

[(> (first l) (largest (rest l))) (first l)]
[else (largest (rest l))])]))

;; test:
(= (largest (list 1 2 3)) 3)

;; run program run

(largest (list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)) ; produces
17

(largest
(list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23))

Use local definitions instead:

;; NEL → Number
;; find the largest number in l
;; examples: (list 1 2 3) produces 3
(define (largest l)

(cond

[(empty? (rest l)) (first l)]
[else (local ((define max-in-rest (largest (rest l))))

(cond [(> (first l) max-in-rest) (first l)]
[else max-in-rest])])))



Tuesday Morning: Local Definitions 17

3.5 Local Definitions: Just Do It

;; N → Matrix
;; create a 1 diagonal in an n x n square
(define (diagonal n)

(local (;; N → Matrix
;; produce i rows of width n with 1’s in the diagonal positions
;; example: (aux n) produces (list (list 0 0 ... 1))
(define (aux i)

(cond

[(zero? i) empty]
[else (cons (row n i) (aux (sub1 i)))]))

;; N → NumberList
;; produce one row of width n with a 1 in position i
;; example: (row 3 1) produces (list 1 0 0)
(define (row n i)

(cond
[(zero? n) empty]
[else (cond [(= i n) (cons 1 (row (sub1 n) i))]

[else (cons 0 (row (sub1 n) i))])])))
(aux n)))

;; tests:
(equal? (diagonal 3)

(list (list 1 0 0)
(list 0 1 0)
(list 0 0 1)))

(equal? (diagonal 1)
(list (list 1)))

(equal? (diagonal 0)
empty)



18 Section 3

3.6 Lexical Scope

Identifier Bindings Exposed

Holes in Nested Lexical Scopes (Remember Pascal?)



Tuesday Morning: Local Definitions 19

Exercises

Exercise 3.1 (*) Take a look at this function definition: Use the language level
Intermediate Student;; Number → Number

;; compute the after-tax weekly wage from the hours someone worked
;; pay-per-hour: $12.55
;; tax rate: 15%
;; social security: 5.5%
;; insurance cost: $100
(define (after-tax-income hours)

(− ; gross income:
(∗ hours 12.55)
; taxes:
(∗ (∗ hours 12.55) .15)
; social security:
(∗ (∗ hours 12.55) .055)
; insurance
100))

;; example/test:
(= (after-tax-income 40) 299.09)

Use local to simplify the function body (“go slow!”).

Exercise 3.2 (*) Developing the program strings-to-numbers∗ in exercise 1.2
required the definition of several functions. It is good practice to reorganize
programs such as those with local into a single function definition.

Exercise 3.3 Develop the program numeric-matrix?. The function consumes
a string matrix. It produces true if all strings represent a number; otherwise
its return value is false.

Here are the data definitions:

;; A Matrix is one of:
;; — empty
;; — (cons LOS Matrix)
;; Constraint: In a matrix, the length of all LOS is the same.

;; A LOS is one of:
;; — empty
;; — (cons String LON)



20 Section 3

Hint: The program requires several function definitions.
Constraint: Develop the program in two stages. First design all func-

tions at the top-level. Second organize them using local so that there is only
one top-level function.

Exercise 3.4 Design make-spread. The function consumes two natural num-
bers: n and m. Its result is a rectangular list: rectangle S-expression such as
this:

(list
(list (list ’td "cell00") (list ’td "cell01"))
(list (list ’td "cell10") (list ’td "cell11"))
(list (list ’td "cell20") (list ’td "cell21"))
(list (list ’td "cell30") (list ’td "cell31")))

with 4 rows and 2 columns.
Hint: Use the function string-append, which performs the obvious oper-

ation on strings.
Use the function to develop the function make-table, which consumes

two natural numbers and creates the following S-expression for n = 3 and
m = 2:

(list ’table
(list ’tr (list ’td "cell00") (list ’td "cell01"))
(list ’tr (list ’td "cell10") (list ’td "cell11"))
(list ’tr (list ’td "cell20") (list ’td "cell21")))

Add the teachpack
servlet2.ss When the function is properly designed, use the function inform/html

(from the teachpack) to display the result of the function in a browser.



Tuesday Afternoon: Generative Recursion 21

4 Tuesday Afternoon: Generative Recursion

Related material in How to Design Programs: part v

4.1 Goal

to study
(1) a new form of program organization and
(2) a design recipe for creating such programs

4.2 Example: Generating Balloons

Problem:

Develop a function that creates a blue background with n ran-
domly distributed balloons for an animated scene.

Or,

Develop a function that creates a blue background with n ran-
domly distributed falling stars for the “Collect Star Thalers”
fairy-tale game.

We clearly need n distinct Posns:

;; Number → PosnList
;; create a list of n distinct Posns
(define (background n)

(cond

[(zero? n) empty]
[else (add-distinct-posn (background (sub1 n)))]))

;; PosnList → PosnList
;; create and add a Posn to l that is distinct from all
;; Posns on there
(define (add-distinct-posn l)

(local ((define new-x (random WIDTH))
(define new-y (random HEIGHT))
(define new-p (make-posn new-x new-y)))

(cond

[(boolean? (member new-p l)) (cons new-p l)]
[else (add-distinct-posn l)])))

What’s wrong with the underlined recursion?



22 Section 4

4.3 Example: Sorting Numbers

Problem:

Sort a list of numbers via a divide-and-conquer strategy. That
is, pick a pivot element; extract all those items that are smaller
than the pivot and sort those; extract all those items that are
larger than the pivot and sort those; and finally juxtapose the
two sequences to get a sorted sequence.

;; NumberList → NumberList
;; to create a sorted list of numbers from alon
(define (kwik-sort alon)

(cond

[(sorted? alon) alon]
[else (append

(kwik-sort (smaller (first alon) (rest alon)))
(list (first alon))
(kwik-sort (larger (first alon) (rest alon))))]))

;; NumberList → NumberList
;; extract all items from l that are smaller than pivot
(define (smaller pivot l)

(cond

[(empty? l) empty]
[else (cond

[(< (first l) pivot) (cons (first l) (smaller pivot (rest l)))]
[else (smaller pivot (rest l))])]))

;; NumberList → NumberList
;; extract all items from l that are larger than pivot
(define (larger pivot l)

(cond

[(empty? l) empty]
[else (cond

[(> (first l) pivot) (cons (first l) (larger pivot (rest l)))]
[else (larger pivot (rest l))])]))

;; test:
(equal? (kwik-sort (list 3 8 1 2 9 7)) (list 1 2 3 7 8 9))

What’s wrong with the underlined recursions?



Tuesday Afternoon: Generative Recursion 23

4.4 Example: Fractals

Problem:

Design a program that draws these triangles:

;; Posn Posn Posn → true
;; to draw a Sierpinski triangle at a, b, and c,
(define (sierpinski a b c)

(cond

[(too-small? a b c) #t]
[else

(local ((define a-b (mid-point a b))
(define b-c (mid-point b c))
(define c-a (mid-point a c)))

(and

(draw-triangle a b c)
(sierpinski a a-b c-a)
(sierpinski b a-b b-c)
(sierpinski c c-a b-c)))]))

;; Posn Posn → Posn
;; to compute the mid-point between a-posn and b-posn
(define (mid-point a-posn b-posn)

(make-posn (mid (posn-x a-posn) (posn-x b-posn))
(mid (posn-y a-posn) (posn-y b-posn))))

;; Number Number → Number
;; to compute the average of x and y
(define (mid x y) (/ (+ x y) 2))



24 Section 4

4.5 Generative Recursion: The Design Recipe

1. The design recipe uses the basic six steps.
Question: if the ideas are ad hoc, how can we design a template sys-
tematically?

2. All functions based on generative recursion use the same basic out-
line. To find it, ask these four questions:

(a) what are trivial solutions?

(b) how do you generate new, slightly different problems?

(c) how do you use the solutions to these problems?

(d) how do you now to get the solution for the original problem?

3. We need a seventh step. Does it terminate?



Tuesday Afternoon: Generative Recursion 25

Exercises

Exercise 4.1 (*) Develop the function random-interval. It consumes a num-
ber (MIN) and produces an interval:

(define-struct interval (left right))
;; An Interval is:
;; — (make-interval L R)
;; if (< L R) is true

The function returns an interval whose distance is less than MIN.

Exercise 4.2 (*) Assume DrScheme’s Definitions Window contains the def-
inition for a mathematically continuous function f :

;; f : Number → Number
(define (f x) . . . )

Just a reminder: continuous means for us “has no gaps.”

Design the function find0, which consumes an interval and determines
a small interval (smaller than 1.0) where some top-level function f from
Number to Number crosses the x-axis in this interval.

Hint 1: If f values at the two ends of the interval are at opposite sides
of the x-axis, f is 0 somewhere in between. Take a look at the middle of the
interval.

Hint 2: Your problem and data analysis may benefit from drawing a
picture.

Note: The solution of this problem is the basis of binary search in vec-
tors and similar data structures.

Exercise 4.3 (*) Develop a program that draw nested circles like these:



26 Section 4

The program consumes the center and radius of a circle. Place the initial
circle in the center of the canvas created with (start 300 300).

Hint: Use the following picture to figure out the mathematics for find-
ing the center of the next nested circle:

Exercise 4.4 Develop the function merge-sort, which sorts a list of numbers
in ascending order using the following insight.

1. Construct a list of one-item lists from the given list of numbers. For
example,

(list 2 5 9 3)

turns into

(list (list 2) (list 5) (list 9) (list 3))

2. Merge pairs of neighboring, sorted lists in the list of list so that the
result is sorted. For example,

(list (list 2) (list 5) (list 9) (list 3))

turns into

(list (list 2 5) (list 3 9))

and

(list (list 2 5) (list 3 9))

turns into

(list (list 2 3 5 9))



Tuesday Afternoon: Generative Recursion 27

In general, this step yields a list that is approximately half as long as
the input. Why is the output not always half as long as the input?

3. Stop when the list of lists contains a single list. For example, for the
above starting point, we should get

(list (list 2 3 5 9))

Develop all necessary functions independently.



28 Section 5

5 Wednesday Morning: Creating Abstractions

Related material in How to Design Programs: part iv

5.1 Goal

to abstract over recurring patterns in functions, why it matters
the design recipe

1. recognize patterns in two functions: circle the differences and connect
them with lines in the two definitions;

2. for each pair of differences, introduce a new parameter and use it in
place of the circled deltas;

3. define each of the old functions in terms of the abstraction and use
the old test suite to ensure that things still work.

5.2 Example: Functions are Values, too

What’s the difference?

;; draw-ufo : Posn → true
;; draw a red disk at p
(define (draw-ufo p)

( draw-solid-disk p 3 ’red))

;; clear-ufo : Posn → true
;; erase a red disk at p
(define (clear-ufo p)

( clear-solid-disk p 3 ’red))

Doing better:1

;; dc-ufo : Posn ??? → true
;; draw or erase a red disk at p
(define (clear-ufo p action)

(action p 3 ’red))

;; draw-ufo : Posn → true
;; draw a red disk at p
(define (draw-ufo p)

(dc-ufo p draw-solid-disk))

;; clear-ufo : Posn → true
;; erase a red disk at p
(define (clear-ufo p)

(dc-ufo p clear-solid-disk))

Now change the shape of the UFOs.

1There is a different alternative.



Wednesday Morning: Creating Abstractions 29

5.3 Example: Primitives are Values, too

;; NumberList → NumberList
;; extract all items from l
;; that are smaller than pivot
(define (smaller pivot l)

(cond

[(empty? l) empty]
[else

(cond

[( < (first l) pivot)
(cons (first l)

(smaller pivot (rest l)))]
[else

(smaller pivot (rest l))])]))

;; test:
(equal? (smaller 3 (list 1 2 3 4 5))

(list 1 2))

;; NumberList → NumberList
;; extract all items from l
;; that are larger than pivot
(define (larger pivot l)

(cond

[(empty? l) empty]
[else

(cond

[( > (first l) pivot)
(cons (first l)

(larger pivot (rest l)))]
[else

(larger pivot (rest l))])]))

;; test:
(equal? (larger 3 (list 1 2 3 4 5))

(list 4 5))

;; NumberList ??? → NumberList
;; extract all items from l
;; that are cmp to pivot
(define (extract pivot l cmp)

(cond

[(empty? l) empty]
[else (cond

[( cmp (first l) pivot)

(cons (first l) (extract pivot (rest l)))]
[else (extract pivot (rest l))])]))

(define (smaller pivot l)
(extract pivot l <))

;; test:
(equal? (smaller 3 (list 1 2 3 4 5))

(list 1 2))

(define (larger pivot l)
(extract pivot l >))

;; test:
(equal? (larger 3 (list 1 2 3 4 5))

(list 4 5))

Now extract all those numbers equal to pivot. Why?



30 Section 5

5.4 Example: More on Functions

;; PosnList → NumberList
;; extract the x coordinates
;; from the Posns
(define (xxxs pl)

(cond

[(empty? pl) empty]
[else

(cons
(posn-x (first pl))
(xxxs (rest pl)))]))

;; Test:
(equal?
(xxxs
(list

(make-posn 3 4)
(make-posn 12 5)
(make-posn 17 20)
(make-posn 22 1)))

(list
3
12
12
22))

;; ColorList → ColorList
;; remove green from every color on cl
;; see section 1.5
(define (remove-all-green cl)

(cond

[(empty? cl) empty]
[else

(cons
(remove-green (first cl))
(remove-all-green (rest cl)))]))

;; Test:
(equal? (remove-all-green

(cons
(make-color 100 100 100)
(cons

(make-color 200 100 0)
empty)))

(cons
(make-color 100 0 100)
(cons

(make-color 200 0 0)
empty)))

;; ???List ??? → ???List
;; use f on every item in l
(define (every l f )

(cond

[(empty? l) empty]
[else (cons (f (first l)) (every (rest l) f ))]))

(define (xxxs gl)
(every gl one-gpa))

(define (remove-all-green cl)
(every cl remove-green))

Now extract all x-coordinates from a list of Posns.



Wednesday Morning: Creating Abstractions 31

5.5 Example: Contracts are People, too

A list of GradeRs is either

1. empty or

2. (cons s l) where

(a) s is a gradeR and

(b) l is a
list of GradeRs.

A list of Colors is either

1. empty or

2. (cons s l) where

(a) s is a Color and

(b) l is a
list of Colors.

Use (Listof X) instead.

5.6 Function have Contracts, too

We have:

;; tax: Number → Number

;; xxxs: PosnList → NumberList

;; draw-ufo : Posn → true

So it’s not surprising that:

;; draw-solid-disk : Posn Number ColorSymbol → true

;; < : Number Number → Boolean

;; remove-green : Color → Color

;; one-gpa : GradeR → GPA

And therefore:

;; dc-ufo : Posn (Posn Number ColorSymbol → true) → true

;; extract : NumberList (Number Number → Boolean) → NumberList

But what about every? (Listof X) (X → Y) → (Listof Y)



32 Section 5

Exercises

Exercise 5.1 (*) Develop the function allergic. The function consumes a Re-
quest (see exercise 1.3 and produces the list of strings that are associated
with false in the Request.
Compare allergic with toppings (also see exercise 1.3). Abstract the two func-
tions into a single function.
Optional: Can you use the new function to extract all positive numbers
from a list of numbers? If not, can you create a common abstraction?

Exercise 5.2 (challenging!) Compare these two functions:

;; N → Image
;; add n squares to a
;; 100 x 100 empty canvas
(define (add-boxes n)

(cond

[(zero? n) (empty-scene 100 100)]
[else

(place-image
(rectangle 1 1 ’green)
(random 100)
(random 100)
(add-boxes (sub1 n)))]))

;; tests:
(image=? (add-boxes 0)

(empty-scene 100 100))
(image? (add-boxes 10))

;; N → Number
;; to add n to pi without using +

(define (add-to-pi n)
(cond

[(zero? n) pi]
[else

(add1
(add-to-pi (sub1 n)))]))

;; tests:
(= (add-to-pi 0) pi)
(= (add-to-pi 3) (+ pi 3))
(= (add-to-pi 10) (+ pi 10))

Abstract the two functions into one.

Exercise 5.3 Develop the function blink. It consumes a natural number n
and a position and draws and clears a blinking rectangle at that position n
times.Add the teachpack

draw.ss Hint 1: Use sleep-for-a-while.
Hint 2: Develop two auxiliary functions: one for drawing an object and

one for clearing it.
Design a common abstraction for the two auxiliary functions. Then

change the function so that it draws/clears a “lunar lander.” Approximate



Wednesday Morning: Creating Abstractions 33

the lander with one small rectangle atop a large rectangle and two short,
rectangular legs sticking out from the large rectangle.

Exercise 5.4 Design all-numbers. The function determines whether all items
in a list (of arbitrary values) are numbers.

Develop the function all-symbols, which determines whether all items in
a list are symbols.

Abstract the two functions into a single function. Use the new func-
tion to define a function that determines whether all numbers on a list of
numbers are positive.

Exercise 5.5 (*) Compare the following two data definitions:

;; A NumberBT is one of:
;; — (make-leaf Number)
;; — (make-node NumberBT NumberBT)
;; A StringBT is one of:
;; — (make-leaf String)
;; — (make-node StringBT NumberBT)

Abstract them into a single data definition for binary trees.

Exercise 5.6 Use every to define numbers-to-strings from exercise 1.2.



34 Section 6

6 Wednesday Afternoon: Using Abstractions

Related material in How to Design Programs: section 21.1

6.1 Goals: 1001 Loops

(1) to iterate: to apply an action to each item in a piece of compound data
(2) studying lambda: writing actions is easy with lambda

;; build-list : N (N → X) → (listof X)
;; to construct (list (f 0) . . . (f (− n 1)))
(define (build-list n f ) . . . )

;; filter : (X → boolean) (listof X) → (listof X)
;; to construct a list from all those items on alox for which p holds
(define (filter p alox) . . . )

;; map : (X → Y) (listof X) → (listof Y)
;; to construct a list by applying f to each item on alox
;; that is, (map f (list x-1 . . . x-n)) = (list (f x-1) . . . (f x-n))
(define (map f alox) . . . )

;; andmap : (X → boolean) (listof X) → boolean
;; to determine whether p holds for every item on alox
;; that is, (andmap p (list x-1 . . . x-n)) = (and (p x-1) (and . . . (p x-n)))
(define (andmap p alox) . . . )

;; ormap : (X → boolean) (listof X) → boolean
;; to determine whether p holds for at least one item on alox
;; that is, (ormap p (list x-1 . . . x-n)) = (or (p x-1) (or . . . (p x-n)))
(define (ormap p alox) . . . )

Figure 1: Some of Scheme’s loops



Wednesday Afternoon: Using Abstractions 35

6.2 Examples: Mapping

Given:

;; ColorList → ColorList
;; remove green from every color on cl
(define (remove-all-green cl)

(cond

[(empty? cl) empty]
[else (cons (remove-green (first cl)) (remove-all-green (rest cl)))]))

;; Color → Color
;; produce a color like c, but without any green
(define (remove-green c)

(make-color (color-red c) 0 (color-blue c)))

;; Tests:
(equal? (remove-all-green (cons (make-color 100 100 100)

(cons (make-color 200 100 0)
empty)))

(cons (make-color 100 0 100)
(cons (make-color 200 0 0)

empty)))

Better:

;; ColorList → ColorList
;; remove green from every color on cl
(define (remove-all-green cl)

(local ((define (remove-green c)
(make-color (color-red c) 0 (color-blue c))))

(map remove-green cl)))

6.3 mapping with lambda, the Ultimate

Best:

;; ColorList → ColorList
;; remove green from every color on cl
(define (remove-all-green cl)

(map (lambda (c) (make-color (color-red c) 0 (color-blue c))) cl))



36 Section 6

6.4 Example: Filtering

Given:

;; NumberList → NumberList
;; extract all items from l that are larger than pivot
(define (larger pivot l)

(cond

[(empty? l) empty]
[else (cond

[(> (first l) pivot) (cons (first l) (larger pivot (rest l)))]
[else (larger pivot (rest l))])]))

;; test:
(equal? (larger 3 (list 3 8 1 2 9 7)) (list 8 9 7))

Better:

;; NumberList → NumberList
;; extract all items from l that are larger than pivot
(define (larger pivot l)

(local ((define (compare-item-to-pivot item)
(> item pivot)))

(filter compare-item-to-pivot l)))

6.5 filtering with lambda, the Ultimate

Best:

;; NumberList → NumberList
;; extract all items from l that are larger than pivot
(define (larger pivot l)

(filter (lambda (item) (> item pivot)) l))



Wednesday Afternoon: Using Abstractions 37

6.6 lambda, the ultimate

Syntax: (lambda (variable . . . ) expression)

Syntax examples:
1:

(lambda (i) i)

2:

(lambda (i j) (> i j))

3:

(define f (lambda (i) (+ (∗ 10 i) 3))) ; cmp. with:
(define (f i) (+ (∗ 10 i) 3))

Semantics: lambda creates a function without name

Semantics examples: 1: consume a value and produce the very same value

(lambda (i) i)

2: consume two numbers; check whether the first is larger than the second

(lambda (i j) (> i j))

3: consume a number, turn into string, prefix with "cell"

(lambda (i) (string-append "cell" (number→string i)))



38 Section 6

6.7 Example: Building Lists, with lambda

I want lists like (list 0 1 2 . . . ) (build-list n (lambda (i) i))

How about (list 3 4 5 . . . )? (build-list n (lambda (i) (+ 3 i)))

And (list 1 4 9 . . . )? (build-list n (lambda (i) (* i i)))

Can I do more than numbers?

(color-list→image
(build-list

50 (lambda (i)
(make-color (∗ i 10)

(∗ i 5)
(∗ i 3))))

50 1)

And nested lists?

(build-list
10 (lambda (i)

(build-list
10 (lambda (j)

(if (= i j) 1 0)))))



Wednesday Afternoon: Using Abstractions 39

Exercises

Exercise 6.1 (*) Define numbers-to-strings from exercise 1.2 with one of the Use the language level
IS w/ lambdaloops.

Exercise 6.2 Use build-list to design the function count-down, which con-
sumes a natural number n and produces the list of numbers n . . . 0.

Exercise 6.3 (*) Define the functions line and make-rectangle (see exercise 2.1
for the original definitions) with loops.

Exercise 6.4 Define which-toppings and allergic from exercises 1.3 and 5.1,
respectively, with loops.

Exercise 6.5 Use loops to define numeric-matrix? (see exercise 3.3).

Exercise 6.6 (*) Use Scheme’s loops to develop the function build-rectangle.
It consumes two natural numbers: n and m. Its result is a rectanglular S-
expression such as this:

(list
(list ’tr (list ’td "cell00") (list ’td "cell01"))
(list ’tr (list ’td "cell10") (list ’td "cell11"))
(list ’tr (list ’td "cell20") (list ’td "cell21"))
(list ’tr (list ’td "cell30") (list ’td "cell31")))

with 4 rows and 2 columns.

Exercise 6.7 (*) Use foldr to define the function add-blocks, which consumes
a list of Posns and places squares at these positions into an empty scene.

Exercise 6.8 Develop the function draw-stars, which consumes a natural
number n and creates a blue canvas of 100 x 100 pixels with n yellow disks Add the teachpack

draw.ssof radius 2.



40 Section 7

7 Thursday Morning: Some Basic I/O

7.1 Goal: Shriram’s Day of Networking

to understand how Scheme programs can communicate with the rest of the
world via sequential reading and writing

7.2 apply, another powerful loop

(+ 2 3) add 2 and 3

(+ 2 3 4 5 6 7)
add 2, . . . , and 7, because prefix
syntax is good

(+ (list 2 3 4 5 6 7))

error. Even though + can “do”
a sequence of numbers, it can’t
deal with lists.

;; sum : (Listof Number) → Number
;; add up the numbers in a list
(define (sum l)

(apply + l))

;; tests
(= (sum (list 1 2 3)) 6)

With apply, we can do it anyway.
Say we “launch” the sum appli-
cation on (list 1 2 3),

(sum (list 1 2 3))
= (apply + (list 1 2 3))
= (+ 1 2 3)
So apply does “the right thing.”

;; average : (Listof Number) → Number
;; the average for a non-empty list,
;; error otherwise
(define (average l)

(cond

[(empty? l) (error . . . )]
[else (/ (apply + l) (length l))]))

Yes, this is the two-line expert
version of average.



Thursday Morning: Some Basic I/O 41

;; largest :
;; (NEListof Number) → Number
;; the largest item on the list
(define (largest l) (apply max l)) Yes, it’s one line long.

;; sentence :
;; (Listof String) String → String
;; separate the words
;; with a leading space,
;; add a "." at the end
(define (sentence l end)

(string-append
(apply string-append

(map (lambda (word)
(string-append
" " word))

l))
end))

;; tests:
(string=?

(sentence
(list "hello" "world") "!")

" hello world!")
(string=?

(sentence
(list "how" "are" "you") "?")

" how are you?")
Imagine doing this without apply
and lambda.

But, always remember, you don’t really
ever need loops.

You can always design a function
instead of using a loop.



42 Section 7

7.3 Example: Keeping Track of Grades

Data definitions:

;; A gradebook (gb) is: (Listof GBE).

(define-struct gbe (name grades))
;; A GBE (grade-book entry) is:
;; (make-gbe symbol (Listof Number))

;; Example:
(define gradebook

(list (make-gbe ’ALICE (list 49 81 64))
(make-gbe ’BOB (list 16 31 27))
(make-gbe ’CARL (list 27 64 8))))

Exercise

Exercise 7.1 Design

;; students-in : GB → (Listof Symbol)

which enumerates the students in the course (duplicates are okay).

Exercise 7.2 Design

;; grades-of : GB Symbol → (Listof Number)

which extracts the grades for a given student from the given GB.

Exercise 7.3 Design

;; total-of : GB Symbol → Number

computes the total score for a given student from the given GB.

Exercise 7.4 Design

;; highest-total : GB → Number

which determines who has the highest total score in the class.

Exercise 7.5 Design

;; chart-grades : GB → Histogram



Thursday Morning: Some Basic I/O 43

which consumes a gradebook and generates a histogram.

;; A Histogram is: (Listof HistoLine).

(define-struct histoline (name result))
;; A HistoLine is: (make-histoline Symbol String)
;; Note: the result string is at most 60 characters long.

Each item of the generated list is a name combined with a string rep-
resenting the histogram entry. The longest string, representing the person
with the highest grade, should be 60 characters long. Every other string
should be proportionally shorter. You may need some math functions to
help you compute the lengths of strings; once you’ve determined what
functions you need, ask the TAs for help finding these in Scheme or ex-
periment or use the HelpDesk.



44 Section 7

7.4 Input and Output: S-expressions

read : IPort → S-expression

Given an IPort, read those char-
acters from the port that form an
S-expression and produce it.

If the file is looks like this
10 the S-expression is 10.

If the file looks like this
hello the S-expression is ’hello.

If the file looks like this
(hello world) the result is (list ’hello ’world).

If the file looks like this

((ALICE 1)
(BOB 2)
(CARL 3))

the S-expression is

(list (list ’ALICE 1)
(list ’BOB 2)
(list ’CARL 3))

In short, read adds list and quote (’)
where needed.

But where do you get an input
port from?

Like this:
open-input-file : String → IPort}

Find a file by name (string), open
it, and make it available as an (in-
put) Port.

So composing the two functions is use-
ful:
(read (open-input-file "gradebook.txt"))

If the name of your gradebook
file is "gradebook.txt", then this
reads an entire grade book.



Thursday Morning: Some Basic I/O 45

If "gradebook.txt" contains this:

((ALICE 49 81 64)
(BOB 16 31 27)
(CARL 27 64 8))

. . . then the expression produces:

(list (list ’ALICE 49 81 64)
(list ’BOB 16 31 27)
(list ’CARL 27 64 8))

Of course, this isn’t quite what our data
definition says.

(define gradebook
(map (lambda (raw-gbe)

(make-gbe
(first raw-gbe)
(rest raw-gbe)))

(read
(open-input-file
"gradebook.txt"))))



46 Section 7

Exercise Download the data file

hamlet.txt

Study it to ascertain its structure. (Does it remind you of a gradebook?)

Exercise 7.6 Develop a data definition for representing a dialog with lists
and structures. Here are some guidelines:Add the teachpack

io.ss

• The entire list is a dialog.

• Each element of a dialog is a part. A part consists of a symbol, indi-
cating which character is speaking, and a list of strings.

• Each string in the list of strings is called a line.

For instance,

((HAMLET
"My excellent good friends! How dost thou,"
"Guildenstern? Ah, Rosencrantz!
Good lads, how do ye both?")

(ROSENCRANTZ
"As the indifferent children of the earth.")

(GUILDENSTERN
"Happy, in that we are not over-happy;"
"On fortune’s cap we are not the very button.")

(HAMLET
"Nor the soles of her shoe?"))

is a dialog with four parts. HAMLET speaks two parts, while his comrades
speak one each. The first and third part each have two lines, while the
second and fourth have one line each. In all, HAMLET speaks three lines
spread over two parts in this dialog.

Note: in keeping with tradition, the names of the characters are in UP-
PERCASE. Thus, you must refer to the Prince of Denmark as ’HAMLET, not
as ’Hamlet or ’hamlet.

Use read and open-input-file to read the file from disk. Also traverse the
resulting S-expression to create instances of Dialog so that the remaining
functions can process the dialog easily.

Hint: See how we read the gradebook and converted into a list of struc-
tures.



Thursday Morning: Some Basic I/O 47

Exercise 7.7 Use your data definitions from exercise 7.6 to design

;; speakers : Dialog → (Listof Symbol)

which computes the names of the speakers who contribute to a dialog. Each
speaker’s name must appear exactly once (though the order does not mat-
ter).

Hint: Design the helper function

;; eliminate-duplicates : (Listof Symbol) → (Listof Symbol)

which consumes a list of symbols and produces one without duplicates.
More precisely, a symbol should only be on the result list if it is not in the
rest of the list.

Exercise 7.8 Use your data definitions from exercise 7.6 to design

;; lines-of : Symbol Dialog → (Listof String)

which generates a single list of all the lines spoken by the character named
by the first argument.

Exercise 7.9 Use your data definitions from exercise 7.6 to design

;; most-parts : Dialog → Symbol

which computes which speaker has the most parts in the dialog.

Exercise 7.10 Use your data definitions from exercise 7.6 to design

;; most-lines : Dialog → Symbol

which computes which speaker has the most lines in the dialog.

Exercise 7.11 Use your data definitions from exercise 7.6 to design

;; abbreviate-for : Symbol Dialog → Dialog

which extracts a given actor’s part from a dialog.

Rationale: When rehearsing for a play, it’s useful to have a list of just
your parts, with only an indication of when someone else is going to speak,
not what they say. For the actor playing HAMLET, for instance, the function
would yield



48 Section 7

((HAMLET
"My excellent good friends! How dost thou,"
"Guildenstern? Ah, Rosencrantz!

Good lads, how do ye both?")
(ROSENCRANTZ)
(GUILDENSTERN)
(HAMLET
"Nor the soles of her shoe?"))

for the example in exercise 7.6.



Thursday Afternoon: A Networking Application 49

8 Thursday Afternoon: A Networking Application

Whose Line is It, Anyway?
By Shriram

Say, you are part of a group of Shakespeare fans who “read” the Bard’s
plays over the Internet. You like reading Shakespeare (who doesn’t?), but
you hate typing in all those “quothe”s and “thine”s and what not (who
doesn’t?). Being a Seasoned Schemer, you’re too smart to get suckered into
typing all that text. Instead, you want to write an Internet agent that does
the work for you. Let’s assume there are only three roles in the dialogs we
want to read: yours and two others.

Exercise

Exercise 8.1 To wit, you will write a procedure with the following contract:

;; serve : Symbol Number Dialog String Number String Number → true

The arguments to serve have the following meaning:

• The first argument, a symbol, specifies which of the roles serve will
play.

• The second argument, a port number, specifies on which port serve
will receive messages.

• The third argument is the dialog, which serve reads from the file that
you created in exercise 7.6.

• The fourth and fifth arguments designate the port number and ma-
chine name for an agent playing one of the other two characters.
Which character this other agent plays doesn’t matter.

• The sixth and seventh arguments designate the port number and ma-
chine name for an agent playing the remaining character.

The supplementary teachpack provides two functions: Add the teachpack
hamsup.scm

;; install-listener : Number (Sexpr → true) → true
;; installs a procedure that is invoked each time when a
;; message shows up on a specific port number
(define (install-listener listener) . . . )



50 Section 8

;; send-message : String Number Sexpr → true
;; send a message to a machine at a certain port
(define (send-message machine port msg) . . . )

Here are some more specifics on install-listener. The procedure given
to install-listener receives the content of the message, which can be any S-
expression. To standardize, we will use the following packet format:

(list symbol
(list string)
number)

The first component is the name of a character; the second is a list of strings
indicating the lines in a part for that character; and the third is a counter,
which we will discuss below. When your agent receives a message, it
should print the name and dialog that your Internet buddies sent.

Hint: The functions display and , available in the io teachpack, which
we installed for exercise 7.6. The first writes an S-expression to a port and
produces true; the second writes a new line to a port and produces true, too.
A TA will help you put these together.

The number dictates which part of the dialog (assumed to be shared
by all three agents) comes next—indices begin at 0. Therefore, your agent
needs to look up the dialog to determine who is supposed to say that part.
If it’s someone else, do nothing (the agent can just return a dummy value,
like ’do-nothing). Otherwise, your agent needs to transmit the Bard’s eternal
words. It does this by using the library procedure

send-message : machine-name port-number s-expression → <ignore>

It needs to send a message to each of the other two machine/port combina-
tions that were given as arguments to serve. The s-expression in this case is
a packet in the format specified above. Important: The number your agent
specifies in the packet it transmits must be one bigger than the number it
received!

This process works well once initiated, but it’s impossible to initiate!
(A message only gets sent in response to an incoming one, so if you never
receive a message. . . .) Therefore, we shall designate one kind of packet as
special: ones of the form

(fake () 0)

If the number field is 0, that means the message is being sent only to initiate
the dialog. Ideally, you should not bother printing out the character’s name



Thursday Afternoon: A Networking Application 51

and dialog in this case (since they are nonsensical values), but don’t worry
about this initially.

As an example, a dialog using the Hamlet prose might look like this:
machineG: running

(serve
’GUILDENSTERN 7000 dialog "machineR" 7001 "machineH" 7002)

machineR: running

(serve
’ROSENCRANTZ 7001 dialog "machineG" 7000 "machineH" 7002)

machineH: running

(serve ’HAMLET 7002 dialog "machineR" 7001 "machineG" 7000)

Someone executes

(send-message "machineG" 7000 ’(fake () 0))

(sending the same message to the other two should have no effect).
On receiving this, machineG transmits

(list ’GUILDENSTERN ’("My honoured lord!") 1)

to the other two; machineR then transmits

(list ’ROSENCRANTZ ’("My most dear lord!") 2)

to the other two; machineH then transmits

(list ’HAMLET
’("My excellent good friends! How dost thou,"

"Guildenstern? Ah, Rosencrantz! Good lads, how do ye both?")
3)

to the other two; machineG then transmits

(list ’ROSENCRANTZ
’("As the indifferent children of the earth.")
4)

to the other two; and so forth.



52 Section 8

Notes on Machines, Ports and Debugging

• Your own machine always has the name "localhost". You can actually
run more than one agent on your own machine, just by using differ-
ent port numbers (therefore, in the example above, you could replace
"machineH", "machineG" and "machineR" with "localhost").

• Port numbers below 1024 are reserved for those with administrative
privilege. In general, the lower the port number, the more programs
likely to be vying for it. Choose large numbers below 65536.

• Don’t try to write your agent all in one go! First write a very simple
listener that receives any kind of packet at all, and prints a simple
message. Use send-message to test it. Make sure you get a feel for how
the two library procedures work. Add functionality little-by-little.

• Eventually, we’d like you to “play Hamlet” with two other people in
the class. To test, however, you will want to play all three roles your-
self. Once you’ve written your version of serve, you might be inclined
to run it three times from the Interactions window of DrScheme. If
the main body of serve invokes install-listener, you’re in luck: install-
listener creates a new thread, so when you run serve you ought to see a
response like this:

> (serve
’HAMLET 7002 dialog "machineR" 7001 "machineG" 7000)

true
>

with a fresh prompt awaiting your input.



Friday Morning: Games 53

9 Friday Morning: Games
See ’net, HtDP+

9.1 Goal

to understand the world of reactive programming in the draw.ss teachpack

9.2 Calling Functions on Events

World

A World is a collection of things,
which can also be displayed on a
canvas. Usually we represent a
world as struct.

Show and tell: (start Number Number) Display the canvas for the world.

(big-bang Number World)

The function big-bang “creates”
the world. The number tells it
how fast to tick the real clock;
the given world is the first world.
Every tick of the clock can up-
date the world.

tick, (on-tick-event tock)
DrScheme calls the function tock
for every tick of the clock.

click, (on-key-event react)

DrScheme calls the function react
for every key stroke on the key-
board.

(draw (draw-solid-rect (make-posn 0 0)
100 100
’blue)

produce

1)

draw something, then return a
value (note: produce is a new
keyword)



54 Section 9

9.3 Example: Flying a Rocket

Rockets:

(define RKT-WD 3)
(define RKT-HT 8)
(define RKT-X 16)
(define FLM 20)

;; N → Number
;; the height of the rocket at t
(define (rocket-y t) (− HEIGHT (∗ 1/2 G (sqr t))))

;; N → true
;; draw a rocket
(define (rocket-draw t)

(local ((define y (rocket-y t)))
(and

(draw-solid-rect (make-posn RKT-X y) RKT-WD RKT-HT ’blue)
(draw-solid-rect

(make-posn RKT-X (+ y RKT-HT)) RKT-WD FLM ’red))))

World is: a natural number (time in ticks)

(define G 3)
(define WIDTH 100)
(define HEIGHT 300)

;; World → true
(define (world-draw w) (rocket-draw w))

;; World → true
(define (world-clear w)

(draw-solid-rect (make-posn 0 0) WIDTH HEIGHT ’white))

;; World → World
;; erase old world, draw new one, return new one
(define (tock w)

(local ((define new-w (+ w 1)))
(draw (world-clear w) (world-draw w) produce new-w)))

Run, program run!

(start WIDTH HEIGHT) ;; show the canvas
(big-bang .2 0) ;; create the world, start the clock
(on-tick-event tock)



Friday Morning: Games 55

9.4 The Nature of Keystroke Events

Data definition:

;; The KeyEvent is one of:
;; — Character
;; — Symbol
;; Interpretation: a character denotes an ordinary alpha-numeric key
;; a symbol denotes arrow keys (’left, ’right, ’up, ’down) or other events.

Data examples: #\a, #\−, ’up
Template:

;; KeyEvent → ???
(define (process-event ke)

(cond

[(char? ke) . . . ]
[(symbol? ke) . . . ]))

Example:

(define-struct kc (l r u d))
;; Kc = (make-kc N N N N)

;; KeyEvent Kc → Kc
;; add 1 to the appropriate part of ct
(define (arrow-key-counting ke ct)

(cond

[(char? ke) ct]
[(symbol? ke)
(cond

[(symbol=? ’left ke)
(make-kc (+ (kc-l ct) 1) (kc-r ct) (kc-u ct) (kc-d ct))]

[(symbol=? ’right ke)
(make-kc (kc-l ct) (+ (kc-r ct) 1) (kc-u ct) (kc-d ct))]

[(symbol=? ’down ke)
(make-kc (kc-l ct) (kc-r ct) (+ (kc-u ct) 1) (kc-d ct))]

[(symbol=? ’up ke)
(make-kc (kc-l ct) (kc-r ct) (kc-u ct) (+ (kc-d ct) 1))]

[else ct])]))

;; test:
(equal? (arrow-key-counting ’left (make-kc 1 0 2 9))

(make-kc 2 0 2 9))



56 Section 9

9.5 Example: Launching a Rocket

Say we want to launch the rocket with a keystroke on ’up

;; The world is one of:
;; — false
;; — N
;; Interpretation: false says no rocket has been launched; a
;; natural number says the rocket has been flying for that many ticks

(define G 3)
(define WIDTH 100)
(define HEIGHT 300)

;; World → true
(define (world-draw w) (rocket-draw w))

;; World → true
(define (world-clear w)

(draw-solid-rect (make-posn 0 0) WIDTH HEIGHT ’white))

;; World → World
;; erase old world, draw new one, return new one
(define (tock w)

(cond

[(boolean? w) w]
[else (local ((define new-w (+ w 1)))

(draw (world-clear w) (world-draw w) produce new-w))]))

;; KeyEvent World → World
;; change the world to a rocket
(define (react ke w)

(cond

[(char? ke) w]
;; now we know it’s a symbol
[(symbol=? ’up ke) 0]
[else w]))

;; — run program run
(start WIDTH HEIGHT) ;; show the canvas
(big-bang .2 false) ;; create the world, start the clock
(on-tick-event tock)
(on-key-event react)



Friday Morning: Games 57

Exercise

Star Money, Star Thalers by the Grimm Brothers

There was once upon a time a little girl whose father and mother were dead,
and she was so poor that she no longer had a room to live in, or bed to sleep
in, and at last she had nothing else but the clothes she was wearing and a little
bit of bread in her hand which some charitable soul had given her. She was
good and pious, however. And as she was thus forsaken by all the world, she
went forth into the open country, trusting in the good God.

Then a poor man met her, who said, “Ah, give me something to eat, I am so
hungry.”

She handed him the whole of her piece of bread, and said, “May God bless
you,” and went onwards.

Then came a child who moaned and said, “My head is so cold, give me some-
thing to cover it with.”

So she took off her hood and gave it to him. And when she had walked a little
farther, she met another child who had no jacket and was frozen with cold.
Then she gave it her own, and a little farther on one begged for a frock, and
she gave away that also.

At length she got into a forest and it had already become dark, and there
came yet another child, and asked for a shirt, and the good little girl thought
to herself, “It is a dark night and no one sees you, you can very well give your
shirt away,” and took it off, and gave away that also.

And as she so stood, and had not one single thing left, suddenly some stars
from heaven fell down, and they were nothing else but hard smooth pieces
of money, and although she had just given her shirt away, she had a new one
which was of the very finest linen. Then she put the money into it, and was
rich all the days of her life.

Exercise 9.1 Develop a game program based on the story of “Star Money,
Star Thalers.” The main function of the program should consume a natural Add the teachpack

draw.ssnumber and drop that many thalers (from the top of the world) on the girl
(at the bottom of the world), one at a time. The thaler should move ran-
domly to the left or right and downwards, but should always stay within
the boundaries of the world (canvas). The girl should react to ’left and ’right
keystrokes, moving a moderate number of pixels in reaction but always
staying completely within the boundaries of the world.
Hints and suggestions:

1. Represent the girl visually as a container that is open at the top (the
outline of a rectangle without top boundary). Show the number of
thalers it has caught inside of the container.



58 Section 9

Design a function for drawing the girl.

2. Represent the thaler visually as a yellow disk.

Design a function for drawing the thaler.

3. The world of StarThalers contains two physical objects: the girl and
one flying thaler. It also contains two abstract objects: the number of
thalers yet to come and the number of thalers that the girl caught so
far.

Pick physical dimensions of the world (width, height, background
color).

Design a function for drawing the world, assuming that the world’s
canvas is visible.

4. Define the function tock, which refreshes the visible world in reaction
to time events:

(start WORLD-WIDTH WORLD-HEIGHT)
(big-bang .1 . . . some initial world . . . )
(on-tick-event tock)

5. Design a function for moving the world and another one for moving
a thaler. Then modify tock so it too can move the world.

6. Design a function for moving the girl in reaction to a keystroke. The
function consumes a girl and a keystroke. Its result is the girl in the
new position.

Define the function react, which uses this new function to move the
girl in the world:

(start WORLD-WIDTH WORLD-HEIGHT)
(big-bang .1 . . . some initial world . . . )
(on-tick-event tock)
(on-key-event react)

7. Make sure that the world reacts (at tick events) to the landing of a
thaler, to the girl catching a thaler, and to the world running out of
thalers in addition to moving the thaler as needed.

Good luck and enjoy!



Friday Afternoon: More on Games 59

10 Friday Afternoon: More on Games

10.1 Goal

to modify an existing program and to understand how iterative refinement
and the design recipe help with this task

Exercises

Exercise 10.1 Modify the StarMoney game so that all game thalers are in
the air at any point during the game.

Modify the StarMoney game so that many but not all game thalers are
in the air at any point during the game. Add thalers as they land and/or
are caught.

Exercise 10.2 Modify the function that moves the girl so that it can fly in
response to all four arrows (↑, ↓,←,→).

Exercise 10.3 Implement some other game.


