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I am a salesman, 
and I will sell you Racket.
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The Racket language
 - higher-order functions
 - classes and objects
 - cross-platform GUIs
 - extensive libraries
 - rich web programming
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#lang racket 

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table 
(define (fib-tab l)
  ;; [Listof Natural] -> Any
  (define (result lst)
    (if (cons? (rest (rest lst))) (third lst) "..."))
  ;; Any -> PARAGRAPH
  (define (b x)
    (make-paragraph (make-style #f '[]) (format "~a" x)))
  ;; -- IN -- 
  (make-table (make-style 'boxed '())
              (cons (map b (list "n" "n+1" "n+2"))
                    (let loop ([l l])
                          (if (empty? (rest l))
                              '()
                              (cons (map b (list (first l) (second l) (result l)))
                                    (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket

#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2, 
2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Scribble

#lang typed/racket

(define (! n rho)
  (cond 
     [(number? n) n]
     [(variable? n) (lookup-variable n rho)]
     [(eq? ‘lambda (first n))  (make-closure n rho)]
     [else (apply-closure (! (first n) rho)) (! (second n) rho))]))

(define (apply-closure f a)
   (match f 
      [(struct closure code env-ptr) 
       (! (body code) (extend-with-variable env-ptr (var code) a)]
     [else error]))

Typed Racket

#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2, 
2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Lazy
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#lang racket 

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table 
(define (fib-tab l)
  ;; [Listof Natural] -> Any
  (define (result lst)
    (if (cons? (rest (rest lst))) (third lst) "..."))
  ;; Any -> PARAGRAPH
  (define (b x)
    (make-paragraph (make-style #f '[]) (format "~a" x)))
  ;; -- IN -- 
  (make-table (make-style 'boxed '())
              (cons (map b (list "n" "n+1" "n+2"))
                    (let loop ([l l])
                          (if (empty? (rest l))
                              '()
                              (cons (map b (list (first l) (second l) (result l)))
                                    (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket

#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2, 
2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Scribble

#lang typed/racket

(define (! n rho)
  (cond 
     [(number? n) n]
     [(variable? n) (lookup-variable n rho)]
     [(eq? ‘lambda (first n))  (make-closure n rho)]
     [else (apply-closure (! (first n) rho)) (! (second n) rho))]))

(define (apply-closure f a)
   (match f 
      [(struct closure code env-ptr) 
       (! (body code) (extend-with-variable env-ptr (var code) a)]
     [else error]))

Typed Racket

#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2, 
2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Lazy

values flow back and forth
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#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
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#lang lazy

(require "syn-support.rkt")

;; fib: 1, 1, 2, 3, 5, ... 
(define fib$ 
  (cons 1 
        (cons 1
              ((rec add-2
                 (lambda (str$) 
                   (cons (+ (first str$) (second str$))
                            (add-2 (rest str$)))))
               fib$))))

(provide fib$ take)

fib.rkt
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#lang lazy

(require "syn-support.rkt")

;; fib: 1, 1, 2, 3, 5, ... 
(define fib$ 
  (cons 1 
        (cons 1
              ((rec add-2
                 (lambda (str$) 
                   (cons (+ (first str$) (second str$))
                            (add-2 (rest str$)))))
               fib$))))

(provide fib$ take)

fib.rkt

#lang racket 

(define-syntax-rule 
   (rec f e) 
   ;; ==> 
   (letrec ((f e)) f))

(provide rec)

etc.rkt
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#lang lazy

(require "syn-support.rkt")

;; fib: 1, 1, 2, 3, 5, ... 
(define fib$ 
  (cons 1 
        (cons 1
              ((rec add-2
                 (lambda (str$) 
                   (cons (+ (first str$) (second str$))
                            (add-2 (rest str$)))))
               fib$))))

(provide fib$ take)

fib.rkt

#lang racket 

(define-syntax-rule 
   (rec f e) 
   ;; ==> 
   (letrec ((f e)) f))

(provide rec)

etc.rkt

fib$ :  the stream of fibonacci numbers
take: a library function of the lazy lang
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#lang scribble/base 

@(require lazy/force "fib.ss")

@title{The Fibonacci Sequence}

@(define fib7 (map number->string (!! (take 7 fib$))))

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
@(string-join fib7 “, “) 
because 1 + 1 is 2, 2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ..

doc-v2.scrbl
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We can do better still -- add a table. 
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#lang scribble/base 

@(require lazy/force "fib.rkt" "tabulate.rkt")

@title{The Fibonacci Sequence}

@(define fib7 (map number->string  (!! (take 7 fib$))))

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
@(string-join fib7)
because 1 + 1 is 2, 2 + 3 is 5, and so on. Another way
to illustrate this idea is with this kind of table: 

@(tabulate fib7)
...
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tabulate fib

etc

scribble

lazyracket

racket

How the modules hang together
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racket

How the modules hang together

maintenance 
require
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#lang racket 

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table 
(define (tabulate l)
  ;; [Listof Natural] -> Any
  (define (result lst)
    (if (cons? (rest (rest lst))) (third lst) "..."))
  ;; Any -> PARAGRAPH
  (define (b x)
    (make-paragraph (make-style #f '[]) (format "~a" x)))
  ;; -- IN -- 
  (make-table 
           (make-style 'boxed '())
           (cons (map b (list "n" "n+1" "n+2"))
                    (let loop ([l l])
                          (if (empty? (rest l))
                              '()
                              (cons (map b (list (first l) (second l) (result l)))
                                    (loop (rest l))))))))

(require scribble/core)

(provide tabulate)

tabulate.rkt

You need to recall the “types” 
you had in mind originally.
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#lang typed/racket 

(: fib-tab ((cons Natural (cons Natural [Listof Natural])) -> table))
;; convert a list of at least two Nats into a scribble table 
(define (tabulate l)
  (: result ([Listof Natural] -> Any))
  (define (result lst)
    (if (cons? (rest (rest lst))) (third lst) "..."))
  (: b (Any -> paragraph))
  (define (b x)
    (make-paragraph (make-style #f '[]) (format "~a" x)))
  ;; -- IN -- 
  (make-table 
           (make-style 'boxed '())
           (cons (map b (list "n" "n+1" "n+2"))
                    (let loop ([l l])
                          (if (empty? (rest l))
                              '()
                              (cons (map b (list (first l) (second l) (result l)))
                                    (loop (rest l))))))))

(require/typed scribble/core (struct style ...) ...)

(provide tabulate)

tabulate.rkt

You might as well make them 
explicit and checkable.
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tabulate fib

syn-support

scribble

lazytyped racket

How the modules hang together, 
still, even with types added. 

racket
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Two ideas worth studying
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•generative programming to implement languages 

• safe component interaction in a multi-lingual world

Two ideas worth studying
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SAFE INTERACTIONS
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#lang racket 

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table 
(define (fib-tab l)
  ;; [Listof Natural] -> Any
  (define (result lst)
    (if (cons? (rest (rest lst))) (third lst) "..."))
  ;; Any -> PARAGRAPH
  (define (b x)
    (make-paragraph (make-style #f '[]) (format "~a" x)))
  ;; -- IN -- 
  (make-table (make-style 'boxed '())
              (cons (map b (list "n" "n+1" "n+2"))
                    (let loop ([l l])
                          (if (empty? (rest l))
                              '()
                              (cons (map b (list (first l) (second l) (result l)))
                                    (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket
#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2, 
2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

FrTime

values

How does a reactive program 
safely access Racket’s GUI library?
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#lang racket 

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table 
(define (fib-tab l)
  ;; [Listof Natural] -> Any
  (define (result lst)
    (if (cons? (rest (rest lst))) (third lst) "..."))
  ;; Any -> PARAGRAPH
  (define (b x)
    (make-paragraph (make-style #f '[]) (format "~a" x)))
  ;; -- IN -- 
  (make-table (make-style 'boxed '())
              (cons (map b (list "n" "n+1" "n+2"))
                    (let loop ([l l])
                          (if (empty? (rest l))
                              '()
                              (cons (map b (list (first l) (second l) (result l)))
                                    (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket
#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2, 
2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Lazy

values

Lazy values are promises of plain values.
How do we ensure safe access? 
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#lang racket 

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table 
(define (fib-tab l)
  ;; [Listof Natural] -> Any
  (define (result lst)
    (if (cons? (rest (rest lst))) (third lst) "..."))
  ;; Any -> PARAGRAPH
  (define (b x)
    (make-paragraph (make-style #f '[]) (format "~a" x)))
  ;; -- IN -- 
  (make-table (make-style 'boxed '())
              (cons (map b (list "n" "n+1" "n+2"))
                    (let loop ([l l])
                          (if (empty? (rest l))
                              '()
                              (cons (map b (list (first l) (second l) (result l)))
                                    (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket
#lang scribble/base 

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding 
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are 
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2, 
2 + 3 is 5, and so on. 

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Typed Racket

values

Typed values are plain values.
But how do you guarantee type soundness?
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What is type safety in a world of 
typed and untyped components?
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#lang typed/racket 

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i) 
   (+ i 5))

(provide inc5)

inc.rkt
#lang racket 

(require “inc.rkt”)
  
(printf  “~a\n” (inc5 6))

main.rkt
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#lang typed/racket 

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i) 
   (+ i 5))

(provide inc5)

inc.rkt
#lang racket 

(require “inc.rkt”)
  
(printf  “~a\n” (inc5 6))

main.rkt

This works because typed 
and untyped Racket use the 

same set of values.
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#lang typed/racket 

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i) 
   (+ i 5))

(provide inc5)

inc.rkt
#lang racket 

(require “inc.rkt”)
  
(printf  “~a\n” (inc5 true))

main.rkt
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#lang typed/racket 

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i) 
   (+ i 5))

(provide inc5)

inc.rkt
#lang racket 

(require “inc.rkt”)
  
(printf  “~a\n” (inc5 true))

main.rkt

bang!

W/o care, the typed 
component will be blamed for 
a type error in the untyped 

module.
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#lang typed/racket 

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i) 
   (+ i 5))

(provide inc5)

inc.rkt
#lang racket 

(require “inc.rkt”)
  
(printf  “~a\n” (inc5 true))

main.rkt

Solution: check 
Integer on call

bang!

W/o care, the typed 
component will be blamed for 
a type error in the untyped 

module.
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#lang typed/racket 

(: encode ((Integer -> Integer) ->   Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket 

(require “encode.rkt”)
  
(define (code i)
   (format "~a: hello world" i))
  
(printf "~a\n" (encode code))
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#lang typed/racket 

(: encode ((Integer -> Integer) ->   Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket 

(require “encode.rkt”)
  
(define (code i)
   (format "~a: hello world" i))
  
(printf "~a\n" (encode code))
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on call
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The typed component will 
be blamed for a type error in 

the untyped module.
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#lang typed/racket 

(: encode ((Integer -> Integer) ->   Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket 

(require “encode.rkt”)
  
(define (main i)
   (format "~a: hello world" i))
  
(printf "~a\n" (encode hello))
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#lang typed/racket 

(: encode ((Integer -> Integer) ->   Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket 

(require “encode.rkt”)
  
(define (main i)
   (format "~a: hello world" i))
  
(printf "~a\n" (encode hello))

Solution 1: wrap contract 
(integer? -> integer?) 

around code
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#lang typed/racket 

(: encode ((Integer -> Integer) ->   Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket 

(require “encode.rkt”)
  
(define (main i)
   (format "~a: hello world" i))
  
(printf "~a\n" (encode hello))

Solution 1: wrap contract 
(integer? -> integer?) 

around code

Solution 2: contract 
(integer? -> integer?) 

checks each call to code
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#lang racket 

;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket 

(require “encode.rkt”)
  
(define (code i)
   (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode code))
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#lang racket 

;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket 

(require “encode.rkt”)
  
(define (code i)
   (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode code))

stop!

The typed component needs 
a type for the untyped 
import for type checking.
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#lang racket 

;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket 

(require/typed “encode.rkt”
  (encode ((Integer -> Integer) -> Integer)))
  
(define (main i)
   (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode hello))
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#lang racket 

;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket 

(require/typed “encode.rkt”
  (encode ((Integer -> Integer) -> Integer)))
  
(define (main i)
   (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Solution 1: state type  
((Integer -> Integer) -> Integer)

for import  main
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#lang racket 

;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket 

(require/typed “encode.rkt”
  (encode ((Integer -> Integer) -> Integer)))
  
(define (main i)
   (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Solution 1: state type  
((Integer -> Integer) -> Integer)

for import  main

Solution 2: interpret 
types as contracts
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#lang typed/racket 

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.
#lang typed/racket 

(require“encode.rkt”)
  
(define (main i)
   (format "~a: hello world" 
               (encode (λ (x) x))))

(printf "~a\n" (encode hello))
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#lang typed/racket 

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

encode.rkt main.
#lang typed/racket 

(require“encode.rkt”)
  
(define (main i)
   (format "~a: hello world" 
               (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Interactions between 
components of the same 
kind do not need controls.
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(lambda (f) (if (= (f 0) 0) 4 2))

Ty
pe

d

U
nt

yp
ed

((Integer -> Integer) -> Integer)

step 1: typed ‘modules’ must specify types for all 
imported variables and specify types for all exports 
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(lambda (f) (if (= (f 0) 0) 4 2))

Ty
pe

d

U
nt

yp
ed

((Integer -> Integer) -> Integer)

step 1: typed ‘modules’ must specify types for all 
imported variables and specify types for all exports 

(lambda (f*)
  (define (f x)
    (check integer? ‘BLAME+
       (f* (check integer? ‘BLAME- x)))
  (check string? ‘BLAME-
      (if (= (f 0) 0) “h” “w”)))

step 2: when values cross component boundaries, 
types are interpreted as contracts and wrapped 
around values to protect the typed components
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(lambda (f) (if (= (f 0) 0) 4 2))

Ty
pe

d

U
nt

yp
ed

((Integer -> Integer) -> Integer)

step 1: typed ‘modules’ must specify types for all 
imported variables and specify types for all exports 

(lambda (f*)
  (define (f x)
    (check integer? ‘BLAME+
       (f* (check integer? ‘BLAME- x)))
  (check string? ‘BLAME-
      (if (= (f 0) 0) “h” “w”)))

step 2: when values cross component boundaries, 
types are interpreted as contracts and wrapped 
around values to protect the typed components

step 3: value flow between typed modules is free
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Blame Theorem:   Let P be a mixed program with checked 
types in interfaces interpreted as contracts.  Then 

•  P yields to a value, 
•  P diverges, or
•  P signals an error that blames a specific untyped module. 

Sam Tobin-Hochstadt
Dynamic Language Symposium
Portland. OR.  2006
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LANGUAGES FROM MACROS
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#lang typed/racket 

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

(: decode (Integer ->  ((Integer -> Integer) -> Integer)))
;; decodes input for f
(define (decode f)
    (if (f 0) (lambda (g) (g 42)) (lambda (h) (h 0))))
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#lang typed/racket 

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
    (+ (f 21) 42))

(provide encode)

(: decode (Integer ->  ((Integer -> Integer) -> Integer)))
;; decodes input for f
(define (decode f)
    (if (f 0) (lambda (g) (g 42)) (lambda (h) (h 0))))

What does this mean?
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Racket languages are
components that implement 

a compiler and 
a run-time library.
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   Syntax Rewriting
+ Run-time Functions
= New Languages
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      (define-syntax-rule
        (pop x)

        ;; ==>> 

        (begin0 (first x) (set! x (rest x))))

Pattern-based Syntax Rewriting
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      (define-syntax-rule
        (pop x)

        ;; ==>> 

        (begin0 (first x) (set! x (rest x))))

Pattern-based Syntax Rewriting
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      (define-syntax-rule
        (pop x)

        ;; ==>> 

        (begin0 (first x) (set! x (rest x))))

Pattern-based Syntax Rewriting
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(define-syntax (define-un-serialize stx)
  (syntax-parse stx 
    [(_ name:id (argument:id ...) unparser:expr parser:expr)
     
     (define serialize   (postfix stx "serialize"   (syntax-e #'name)))
     (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

     #`(define-values (#,serialize #,deserialize)
           (values (lambda (argument ...) unparser)
                      (lambda (msg) parser)))]))

Procedural Syntax Rewriting
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(define-syntax (define-un-serialize stx)
  (syntax-parse stx 
    [(_ name:id (argument:id ...) unparser:expr parser:expr)
     
     (define serialize   (postfix stx "serialize"   (syntax-e #'name)))
     (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

     #`(define-values (#,serialize #,deserialize)
           (values (lambda (argument ...) unparser)
                      (lambda (msg) parser)))]))

Procedural Syntax Rewriting
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(define-syntax (define-un-serialize stx)
  (syntax-parse stx 
    [(_ name:id (argument:id ...) unparser:expr parser:expr)
     
     (define serialize   (postfix stx "serialize"   (syntax-e #'name)))
     (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

     #`(define-values (#,serialize #,deserialize)
           (values (lambda (argument ...) unparser)
                      (lambda (msg) parser)))]))

Procedural Syntax Rewriting
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(define-syntax (define-un-serialize stx)
  (syntax-parse stx 
    [(_ name:id (argument:id ...) unparser:expr parser:expr)
     
     (define serialize   (postfix stx "serialize"   (syntax-e #'name)))
     (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

     #`(define-values (#,serialize #,deserialize)
           (values (lambda (argument ...) unparser)
                      (lambda (msg) parser)))]))

Procedural Syntax Rewriting
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   Syntax Rewriting
+ Run-time Functions
= New Languages
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   Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))
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   Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))
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   Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))

(define (expand identifier module-path)
   (form-full-path identifier module-path ‘()))

(define (normalize type)
   (sort-unions (get-type-names type)))

(define (insert identifier its-type))
   (send *type-environment* add-set
            identifier its-type)))
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   Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))

(define (expand identifier module-path)
   (form-full-path identifier module-path ‘()))

(define (normalize type)
   (sort-unions (get-type-names type)))

(define (insert identifier its-type))
   (send *type-environment* add-set
            identifier its-type)))

typed/racket.rkt
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(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))

(define (expand identifier module-path)
   (form-full-path identifier module-path ‘()))

(define (normalize type)
   (sort-unions (get-type-names type)))

(define (insert identifier its-type))
   (send *type-environment* add-set
            identifier its-type)))

typed/racket.rkt
#lang typed/racket 

(: f (Integer -> Integer))
...

Substitution 1: Macro bodies are substituted for macro calls. 
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(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))

(define (expand identifier module-path)
   (form-full-path identifier module-path ‘()))

(define (normalize type)
   (sort-unions (get-type-names type)))

(define (insert identifier its-type))
   (send *type-environment* add-set
            identifier its-type)))

typed/racket.rkt
#lang typed/racket 

(: f (Integer -> Integer))
...

expand

#lang typed/racket

(let ([identifier 
         (expand ‘f (this-module))]
      [its-type   
         (normalize
            ‘(Integer -> Integer)))])
  (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls. 
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(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))

(define (expand identifier module-path)
   (form-full-path identifier module-path ‘()))

(define (normalize type)
   (sort-unions (get-type-names type)))

(define (insert identifier its-type))
   (send *type-environment* add-set
            identifier its-type)))

typed/racket.rkt
#lang typed/racket 

(: f (Integer -> Integer))
...

expand

#lang typed/racket

(let ([identifier 
         (expand ‘f (this-module))]
      [its-type   
         (normalize
            ‘(Integer -> Integer)))])
  (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls. 
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(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))

(define (expand identifier module-path)
   (form-full-path identifier module-path ‘()))

(define (normalize type)
   (sort-unions (get-type-names type)))

(define (insert identifier its-type))
   (send *type-environment* add-set
            identifier its-type)))

typed/racket.rkt
#lang typed/racket 

(: f (Integer -> Integer))
...

expand

#lang typed/racket

(let ([identifier 
         (expand ‘f (this-module))]
      [its-type   
         (normalize
            ‘(Integer -> Integer)))])
  (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls. 
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(define-syntax-rule
    (: id a-type)
    ;; ==>> 
    (let ([identifier (expand ‘id (this-module))]
           [its-type   (normalize ‘a-type))])
       (insert identifier its-type)))

(define (expand identifier module-path)
   (form-full-path identifier module-path ‘()))

(define (normalize type)
   (sort-unions (get-type-names type)))

(define (insert identifier its-type))
   (send *type-environment* add-set
            identifier its-type)))

typed/racket.rkt
#lang typed/racket 

(define (expand x) 42)
(: f (Integer -> Integer))
...

expand

#lang typed/racket

(define (expand x) 42)
(let ([identifier 
         (expand ‘f (this-module))]
      [its-type   
         (normalize
            ‘(Integer -> Integer)))])
  (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls. 
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(define-syntax-rule
    (define-type T Type)
    ;; ==>> 
    (begin
       (define NormalType (normalize ‘Type))

       (define T NormalType)))

... 

(define (normalize type)
   (sort-unions (get-type-names type)))

... 

typed/racket.rkt
#lang typed/racket 

(define-type Shapes (U Square Circle))
...

Substitution 2: Macro arguments are substituted into macro bodies. 
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(define-syntax-rule
    (define-type T Type)
    ;; ==>> 
    (begin
       (define NormalType (normalize ‘Type))

       (define T NormalType)))

... 

(define (normalize type)
   (sort-unions (get-type-names type)))

... 

typed/racket.rkt
#lang typed/racket 

(define-type Shapes (U Square Circle))
...

Substitution 2: Macro arguments are substituted into macro bodies. 

Saturday, October 22, 2011



(define-syntax-rule
    (define-type T Type)
    ;; ==>> 
    (begin
       (define NormalType (normalize ‘Type))

       (define T NormalType)))

... 

(define (normalize type)
   (sort-unions (get-type-names type)))

... 

typed/racket.rkt
#lang typed/racket 

(define-type Shapes (U Square Circle))
...

expand

#lang typed/racket

(define NormalType (normalize ‘Type))

(define T NormalType))

Substitution 2: Macro arguments are substituted into macro bodies. 
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(define-syntax-rule
    (define-type T Type)
    ;; ==>> 
    (begin
       (define NormalType (normalize ‘Type))

       (define T NormalType)))

... 

(define (normalize type)
   (sort-unions (get-type-names type)))

... 

typed/racket.rkt
#lang typed/racket 

(define-type Shapes (U Square Circle))
...

expand

#lang typed/racket

(define NormalType (normalize ‘Type))

(define T NormalType))

Substitution 2: Macro arguments are substituted into macro bodies. 
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(define-syntax-rule
    (define-type T Type)
    ;; ==>> 
    (begin
       (define NormalType (normalize ‘Type))

       (define T NormalType)))

... 

(define (normalize type)
   (sort-unions (get-type-names type)))

... 

typed/racket.rkt
#lang typed/racket 

(define (NormalType x) x)
(define-type Shapes (U Square Circle))
...

expand

#lang typed/racket

(define (NormalType x) x)
(define NormalType (normalize ‘Type))

(define T NormalType))

Substitution 2: Macro arguments are substituted into macro bodies. 
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Macro hygiene ensures that two different 
substitutions work as intended by default.  
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Macro hygiene ensures that two different 
substitutions work as intended by default.  

  Programmers can override the defaults.
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Contrary to rumors in the CL world:
Hygienic macros increase the expressive 

power of the macros system. 
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But macros are only half the story.
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But macros are only half the story.

Macros are (mostly) context-free rewriting rules. 
Implementing languages requires context-sensitivity.
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(define: f 
  (Int -> Int)
  ...)Imagine a 

language that 
requires type 

checking.
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(define: f 
  (Int -> Int)
  ...)

expand

(: f (Int -> Int))
(define f ...)

Imagine a 
language that 
requires type 

checking.
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(define: f 
  (Int -> Int)
  ...)

expand

(: f (Int -> Int))
(define f ...)

Imagine a 
language that 
requires type 

checking.

(f (sin pi)) (f x)
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(define: f 
  (Int -> Int)
  ...)

expand

(: f (Int -> Int))
(define f ...)

Imagine a 
language that 
requires type 

checking.

(f (sin pi)) (f x)

?? ??
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 Macros rewrite trees. 
They cannot communicate to contexts.
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(define: f 
  (Int -> Int)
  ...)

(f (sin pi)) (f x)

Languages require
 whole-module processing.
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(define: f 
  (Int -> Int)
  ...)

(f (sin pi)) (f x)

Languages require
 whole-module processing.
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(define: f 
  (Int -> Int)
  ...)

(f (sin pi)) (f x)

Languages require
 whole-module processing.
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(define: f 
  (Int -> Int)
  ...)

(f (sin pi)) (f x)

(#%module-begin

)

Languages require
 whole-module processing.
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(define: f 
  (Int -> Int)
  ...)

(f (sin pi)) (f x)

(#%module-begin

)

Languages require
 whole-module processing.

And languages may redefine 
#%module-begin.
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Let’s make context-sensitive 
processing concrete. 
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Let’s make context-sensitive 
processing concrete. 

#lang racket

(provide 
  ... ;; additional exports 
  (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
  (new-module-begin mexpr ...)
  ;; ==>> 
  (#%module-begin
    (begin
      (count++)
      (printf "evaluating the ~a~a part\n" (count) (st-or-th))
      mexpr)
    ...))

silly.rkt
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(provide 
  ... ;; additional exports 
  (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
  (new-module-begin mexpr ...)
  ;; ==>> 
  (#%module-begin
    (begin
      (count++)
      (printf "evaluating the ~a~a part\n" (count) (st-or-th))
      mexpr)
    ...))

silly.rkt
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Let’s make context-sensitive 
processing concrete. 

#lang racket

(provide 
  ... ;; additional exports 
  (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
  (new-module-begin mexpr ...)
  ;; ==>> 
  (#%module-begin
    (begin
      (count++)
      (printf "evaluating the ~a~a part\n" (count) (st-or-th))
      mexpr)
    ...))

silly.rkt
#lang s-exp "silly.rkt"

(define (f x)
  (+ (g (* 10 x)) 1))

(define (g y)
  (/ y 2))

client.rkt
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Let’s make context-sensitive 
processing concrete. 

#lang racket

(provide 
  ... ;; additional exports 
  (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
  (new-module-begin mexpr ...)
  ;; ==>> 
  (#%module-begin
    (begin
      (count++)
      (printf "evaluating the ~a~a part\n" (count) (st-or-th))
      mexpr)
    ...))

silly.rkt
#lang s-exp "silly.rkt"

(define (f x)
  (+ (g (* 10 x)) 1))

(define (g y)
  (/ y 2))

client.rkt
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#lang s-exp "silly.rkt"

(define (f x) (+ (g (* 10 x)) 1))

(define (g y) (/ y 2))

client.rkt
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#lang s-exp "silly.rkt"

(define (f x) (+ (g (* 10 x)) 1))

(define (g y) (/ y 2))

client.rkt

(module simple-in-silly "silly.rkt"
  (#%module-begin
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th))    
     (define (f x) (+ (g (* 10 x)) 1)))
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th)) 
     (define (g y) (/ y 2)))))

client.rkt : expanded

expand
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(module simple-in-silly "silly.rkt"
  (#%module-begin
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th))    
     (define (f x) (+ (g (* 10 x)) 1)))
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th)) 
     (define (g y) (/ y 2)))))

client.rkt : expanded
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(module simple-in-silly "silly.rkt"
  (#%module-begin
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th))    
     (define (f x) (+ (g (* 10 x)) 1)))
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th)) 
     (define (g y) (/ y 2)))))

client.rkt : expanded

Welcome to DrRacket, version 5.2.0.1--2011-10-16
(2a43c68/g) [3m].
Language: s-exp "silly.rkt".
evaluating the 1st part
evaluating the 2nd part
> (f 1)
6
> 

client.rkt : run

run
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(module simple-in-silly "silly.rkt"
  (#%module-begin
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th))    
     (define (f x) (+ (g (* 10 x)) 1)))
     (count++) 
     (printf "evaluating the ~a~a part\n" (count) (st-or-th)) 
     (define (g y) (/ y 2)))))

client.rkt : expanded

Welcome to DrRacket, version 5.2.0.1--2011-10-16
(2a43c68/g) [3m].
Language: s-exp "silly.rkt".
evaluating the 1st part
evaluating the 2nd part
> (f 1)
6
> 

client.rkt : run

run
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(define-syntax (typed-module-begin stx)     
  (syntax-parse stx
     [(_ s ...) 
      (with-syntax ([(_ core-s ...)  (local-expand #’(#%module-begin s ...))])    

          (for-each typecheck (syntax->list #’(core-s ...)))

          #’(#%module-begin core-s ...))]))

Typed Racket’s module-begin, 
mostly.
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(define-syntax (typed-module-begin stx)     
  (syntax-parse stx
     [(_ s ...) 
      (with-syntax ([(_ core-s ...)  (local-expand #’(#%module-begin s ...))])    

          (for-each typecheck (syntax->list #’(core-s ...)))

          #’(#%module-begin core-s ...))]))

Typed Racket’s module-begin, 
mostly.
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin, 
one more bit.
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin, 
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin, 
one more bit.
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(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt
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(require “server.rkt”)

... (f 3) ... (f 202) ...
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin, 
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin, 
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin, 
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed context”
    typed-f
    contracted-f)
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed-context”
    typed-f
    contracted-f)

#lang racket

(provide typed-context entering-typed-context)
(define typed-context ...)
(define (entering-typed-context) ...)

typed/racket.rkt
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#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed-context”
    typed-f
    contracted-f)

#lang racket

(provide typed-context entering-typed-context)
(define typed-context ...)
(define (entering-typed-context) ...)

typed/racket.rkt

Saturday, October 22, 2011



#lang typed/racket

(: f (Byte -> Index))
(define (f x) 
   (+ x 22))

(provide f)

server.rkt

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed-context”
    typed-f
    contracted-f)

#lang racket

(provide typed-context entering-typed-context)
(define typed-context ...)
(define (entering-typed-context) ...)

typed/racket.rkt

(entering-typed-context)
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#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt
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#lang racket

(entering-typed-context)
(define-syntax f
 (if “I end up in typed-context”
      typed-f
      contracted-f))
   
... (f 3) ... (f 202) ...

typed.rkt: expanded

expand

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt
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#lang racket

(entering-typed-context)
(define-syntax f
 (if “I end up in typed-context”
      typed-f
      contracted-f))
   
... (f 3) ... (f 202) ...

typed.rkt: expanded

expand

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

(module typed.rkt racket/base

   
... (typed-f 3) ... (typed-f 202) ... )

typed.rkt: expanded

fully expanded
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#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt
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#lang racket

(define-syntax f
 (if “I end up in typed-context”
      typed-f
      contracted-f))
   
... (f 3) ... (f 202) ...

untyped: expanded

expand

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt
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#lang racket

(define-syntax f
 (if “I end up in typed-context”
      typed-f
      contracted-f))
   
... (f 3) ... (f 202) ...

untyped: expanded

expand

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

(module typed.rkt racket/base

   ... (contracted-f 3) ... 
      (contracted-f 202) ... )

untyped: expanded

fully expanded
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Culpepper & Flatt et al:
Languages as Libraries, PLDI 2011
Fortifying Macros, ICFP 2010
Debugging Macros, GPCE 2008
Composable, Compilable Macros, 
      ICFP 2002

The World of Macros 

• Racket, the language 
• the macro tools 
• experience 
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CONCLUSION
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•a macro system to implement entire languages 

• safe component interaction in a multi-lingual world

Two ideas from Racket for everyone at GPCE.
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•hygienic and fortified macros

•macros as module exports

•module-level macros 

Macros for entire languages require: 
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•hygienic and fortified macros

•macros as module exports

•module-level macros 

Macros for entire languages require: 

We have built dozens of large and little 
languages. How can you import the ideas?
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• languages have invariants

• interactions must respect these invariants

•example: sound typed-untyped interactions

A multi-lingual world isn’t free.
Safe interaction among multi-lingual components.
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• languages have invariants

• interactions must respect these invariants

•example: sound typed-untyped interactions

A multi-lingual world isn’t free.
Safe interaction among multi-lingual components.

Many more problems exist in this area, 
and you are in a position to tackle them. 
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THE END

Sam Tobin-Hochstadt (Northeastern) 

Matthew Flatt (Utah)

Robby Findler (Northwestern)

language, compiler, macros

contracts, IDE

types

Ryan Culpepper (Utah) macros, macros, macros

Shriram Krishnamurthi (Brown) macros and modules

http://racket-lang.org/

Saturday, October 22, 2011

http://racket-lang.org
http://racket-lang.org

