
MULTILINGUAL COMPONENT
PROGRAMMING IN RACKET

Matthias Felleisen (PLT)

Saturday, October 22, 2011

I am a salesman,
and I will sell you Racket.

Saturday, October 22, 2011

LISP

Saturday, October 22, 2011

LISP

Scheme

Saturday, October 22, 2011

LISP

Scheme

Racket

Saturday, October 22, 2011

LISP

Scheme

Racket

Typed Racket

Saturday, October 22, 2011

LISP

Scheme

Racket

Typed Racket
Lazy Racket

Saturday, October 22, 2011

LISP

Scheme

Racket

Typed Racket
Lazy Racket

FrTime

Saturday, October 22, 2011

LISP

Scheme

Racket

Typed Racket
Lazy Racket

FrTime
Scribble

Saturday, October 22, 2011

LISP

Scheme

Racket

Typed Racket
Lazy Racket

FrTime
Scribble

Slidesh

Saturday, October 22, 2011

LISP

Scheme

Racket

Typed Racket
Lazy Racket

FrTime
Scribble

SlideshThere are literally
too many to fit on
this slide, margin

or body.

Saturday, October 22, 2011

The Racket language
 - higher-order functions
 - classes and objects
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

Saturday, October 22, 2011

The Racket language
 - higher-order functions
 - classes and objects
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

Saturday, October 22, 2011

The Racket language
 - higher-order functions
 - classes and objects
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

Saturday, October 22, 2011

The Racket language
 - higher-order functions
 - classes and objects
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The Scribble language:
 - scoped documentation
 - integrated documentation

Saturday, October 22, 2011

The Racket language
 - higher-order functions
 - classes and objects
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The Scribble language:
 - scoped documentation
 - integrated documentation

FrTime

WebServer/Insta

Slideshow

Saturday, October 22, 2011

The Racket language
 - higher-order functions
 - classes and objects
 - cross-platform GUIs
 - extensive libraries
 - rich web programming

The Lazy Racket language
 - streams
 - lazy trees

The Typed Racket language
 - union types & subtyping
 - first-class polymorphism
 - accommodates existing idioms

The Scribble language:
 - scoped documentation
 - integrated documentation

FrTime

WebServer/Insta

Slideshow

The Foundation: Racket Core (VM)

generate actual code

Saturday, October 22, 2011

#lang racket

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table
(define (fib-tab l)
 ;; [Listof Natural] -> Any
 (define (result lst)
 (if (cons? (rest (rest lst))) (third lst) "..."))
 ;; Any -> PARAGRAPH
 (define (b x)
 (make-paragraph (make-style #f '[]) (format "~a" x)))
 ;; -- IN --
 (make-table (make-style 'boxed '())
 (cons (map b (list "n" "n+1" "n+2"))
 (let loop ([l l])
 (if (empty? (rest l))
 '()
 (cons (map b (list (first l) (second l) (result l)))
 (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket

#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Scribble

#lang typed/racket

(define (! n rho)
 (cond
 [(number? n) n]
 [(variable? n) (lookup-variable n rho)]
 [(eq? ‘lambda (first n)) (make-closure n rho)]
 [else (apply-closure (! (first n) rho)) (! (second n) rho))]))

(define (apply-closure f a)
 (match f
 [(struct closure code env-ptr)
 (! (body code) (extend-with-variable env-ptr (var code) a)]
 [else error]))

Typed Racket

#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Lazy

Saturday, October 22, 2011

#lang racket

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table
(define (fib-tab l)
 ;; [Listof Natural] -> Any
 (define (result lst)
 (if (cons? (rest (rest lst))) (third lst) "..."))
 ;; Any -> PARAGRAPH
 (define (b x)
 (make-paragraph (make-style #f '[]) (format "~a" x)))
 ;; -- IN --
 (make-table (make-style 'boxed '())
 (cons (map b (list "n" "n+1" "n+2"))
 (let loop ([l l])
 (if (empty? (rest l))
 '()
 (cons (map b (list (first l) (second l) (result l)))
 (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket

#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Scribble

#lang typed/racket

(define (! n rho)
 (cond
 [(number? n) n]
 [(variable? n) (lookup-variable n rho)]
 [(eq? ‘lambda (first n)) (make-closure n rho)]
 [else (apply-closure (! (first n) rho)) (! (second n) rho))]))

(define (apply-closure f a)
 (match f
 [(struct closure code env-ptr)
 (! (body code) (extend-with-variable env-ptr (var code) a)]
 [else error]))

Typed Racket

#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Lazy

values flow back and forth

Saturday, October 22, 2011

#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

doc.scrbl

html

Saturday, October 22, 2011

#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5,9,14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

doc.scrbl

Saturday, October 22, 2011

Ouch!

9

#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5,9,14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

doc.scrbl

Saturday, October 22, 2011

#lang lazy

(require "syn-support.rkt")

;; fib: 1, 1, 2, 3, 5, ...
(define fib$
 (cons 1
 (cons 1
 ((rec add-2
 (lambda (str$)
 (cons (+ (first str$) (second str$))
 (add-2 (rest str$)))))
 fib$))))

(provide fib$ take)

fib.rkt

Saturday, October 22, 2011

#lang lazy

(require "syn-support.rkt")

;; fib: 1, 1, 2, 3, 5, ...
(define fib$
 (cons 1
 (cons 1
 ((rec add-2
 (lambda (str$)
 (cons (+ (first str$) (second str$))
 (add-2 (rest str$)))))
 fib$))))

(provide fib$ take)

fib.rkt

#lang racket

(define-syntax-rule
 (rec f e)
 ;; ==>
 (letrec ((f e)) f))

(provide rec)

etc.rkt

Saturday, October 22, 2011

#lang lazy

(require "syn-support.rkt")

;; fib: 1, 1, 2, 3, 5, ...
(define fib$
 (cons 1
 (cons 1
 ((rec add-2
 (lambda (str$)
 (cons (+ (first str$) (second str$))
 (add-2 (rest str$)))))
 fib$))))

(provide fib$ take)

fib.rkt

#lang racket

(define-syntax-rule
 (rec f e)
 ;; ==>
 (letrec ((f e)) f))

(provide rec)

etc.rkt

fib$: the stream of fibonacci numbers
take: a library function of the lazy lang

Saturday, October 22, 2011

#lang scribble/base

@(require lazy/force "fib.ss")

@title{The Fibonacci Sequence}

@(define fib7 (map number->string (!! (take 7 fib$))))

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
@(string-join fib7 “, “)
because 1 + 1 is 2, 2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ..

doc-v2.scrbl

Saturday, October 22, 2011

#lang scribble/base

@(require lazy/force "fib.ss")

@title{The Fibonacci Sequence}

@(define fib7 (map number->string (!! (take 7 fib$))))

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
@(string-join fib7 “, “)
because 1 + 1 is 2, 2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ..

doc-v2.scrbl

Saturday, October 22, 2011

We can do better still -- add a table.

Saturday, October 22, 2011

#lang scribble/base

@(require lazy/force "fib.rkt" "tabulate.rkt")

@title{The Fibonacci Sequence}

@(define fib7 (map number->string (!! (take 7 fib$))))

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
@(string-join fib7)
because 1 + 1 is 2, 2 + 3 is 5, and so on. Another way
to illustrate this idea is with this kind of table:

@(tabulate fib7)
...

doc-v3.scrbl

html

We can do better still -- add a table.

Saturday, October 22, 2011

#lang scribble/base

@(require lazy/force "fib.rkt" "tabulate.rkt")

@title{The Fibonacci Sequence}

@(define fib7 (map number->string (!! (take 7 fib$))))

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
@(string-join fib7)
because 1 + 1 is 2, 2 + 3 is 5, and so on. Another way
to illustrate this idea is with this kind of table:

@(tabulate fib7)
...

doc-v3.scrbl

html

We can do better still -- add a table.

Saturday, October 22, 2011

doc-v3

tabulate fib

etc

scribble

lazyracket

racket

How the modules hang together

Saturday, October 22, 2011

doc-v3

tabulate fib

etc

scribble

lazyracket

racket

How the modules hang together

maintenance
require

Saturday, October 22, 2011

#lang racket

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table
(define (tabulate l)
 ;; [Listof Natural] -> Any
 (define (result lst)
 (if (cons? (rest (rest lst))) (third lst) "..."))
 ;; Any -> PARAGRAPH
 (define (b x)
 (make-paragraph (make-style #f '[]) (format "~a" x)))
 ;; -- IN --
 (make-table
 (make-style 'boxed '())
 (cons (map b (list "n" "n+1" "n+2"))
 (let loop ([l l])
 (if (empty? (rest l))
 '()
 (cons (map b (list (first l) (second l) (result l)))
 (loop (rest l))))))))

(require scribble/core)

(provide tabulate)

tabulate.rkt

You need to recall the “types”
you had in mind originally.

Saturday, October 22, 2011

#lang typed/racket

(: fib-tab ((cons Natural (cons Natural [Listof Natural])) -> table))
;; convert a list of at least two Nats into a scribble table
(define (tabulate l)
 (: result ([Listof Natural] -> Any))
 (define (result lst)
 (if (cons? (rest (rest lst))) (third lst) "..."))
 (: b (Any -> paragraph))
 (define (b x)
 (make-paragraph (make-style #f '[]) (format "~a" x)))
 ;; -- IN --
 (make-table
 (make-style 'boxed '())
 (cons (map b (list "n" "n+1" "n+2"))
 (let loop ([l l])
 (if (empty? (rest l))
 '()
 (cons (map b (list (first l) (second l) (result l)))
 (loop (rest l))))))))

(require/typed scribble/core (struct style ...) ...)

(provide tabulate)

tabulate.rkt

You might as well make them
explicit and checkable.

Saturday, October 22, 2011

doc-v3

tabulate fib

syn-support

scribble

lazytyped racket

How the modules hang together,
still, even with types added.

racket

Saturday, October 22, 2011

Two ideas worth studying

Saturday, October 22, 2011

•generative programming to implement languages

• safe component interaction in a multi-lingual world

Two ideas worth studying

Saturday, October 22, 2011

SAFE INTERACTIONS

Saturday, October 22, 2011

#lang racket

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table
(define (fib-tab l)
 ;; [Listof Natural] -> Any
 (define (result lst)
 (if (cons? (rest (rest lst))) (third lst) "..."))
 ;; Any -> PARAGRAPH
 (define (b x)
 (make-paragraph (make-style #f '[]) (format "~a" x)))
 ;; -- IN --
 (make-table (make-style 'boxed '())
 (cons (map b (list "n" "n+1" "n+2"))
 (let loop ([l l])
 (if (empty? (rest l))
 '()
 (cons (map b (list (first l) (second l) (result l)))
 (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket
#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

FrTime

values

How does a reactive program
safely access Racket’s GUI library?

Saturday, October 22, 2011

#lang racket

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table
(define (fib-tab l)
 ;; [Listof Natural] -> Any
 (define (result lst)
 (if (cons? (rest (rest lst))) (third lst) "..."))
 ;; Any -> PARAGRAPH
 (define (b x)
 (make-paragraph (make-style #f '[]) (format "~a" x)))
 ;; -- IN --
 (make-table (make-style 'boxed '())
 (cons (map b (list "n" "n+1" "n+2"))
 (let loop ([l l])
 (if (empty? (rest l))
 '()
 (cons (map b (list (first l) (second l) (result l)))
 (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket
#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Lazy

values

Lazy values are promises of plain values.
How do we ensure safe access?

Saturday, October 22, 2011

#lang racket

;; (cons Natural (cons Natural [Listof Natural])) -> TABLE
;; convert a list of at least two Nats into a scribble table
(define (fib-tab l)
 ;; [Listof Natural] -> Any
 (define (result lst)
 (if (cons? (rest (rest lst))) (third lst) "..."))
 ;; Any -> PARAGRAPH
 (define (b x)
 (make-paragraph (make-style #f '[]) (format "~a" x)))
 ;; -- IN --
 (make-table (make-style 'boxed '())
 (cons (map b (list "n" "n+1" "n+2"))
 (let loop ([l l])
 (if (empty? (rest l))
 '()
 (cons (map b (list (first l) (second l) (result l)))
 (loop (rest l))))))))

(require scribble/core)

(provide fib-tab)

Racket
#lang scribble/base

@title{The Fibonacci Sequence}

The Fibbonacci sequence begins with two copies of
the number 1 and continues @emph{forever} by adding
the two most recent numbers together to get the next
number. The first seven numbers of the sequence are
1, 1, 2, 3, 5, 9, 14, ... because 1 + 1 is 2,
2 + 3 is 5, and so on.

@section{Fibs in nature}

It is a well-known rumor that rabbits ...

Typed Racket

values

Typed values are plain values.
But how do you guarantee type soundness?

Saturday, October 22, 2011

What is type safety in a world of
typed and untyped components?

Saturday, October 22, 2011

#lang typed/racket

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i)
 (+ i 5))

(provide inc5)

inc.rkt
#lang racket

(require “inc.rkt”)

(printf “~a\n” (inc5 6))

main.rkt

Saturday, October 22, 2011

#lang typed/racket

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i)
 (+ i 5))

(provide inc5)

inc.rkt
#lang racket

(require “inc.rkt”)

(printf “~a\n” (inc5 6))

main.rkt

This works because typed
and untyped Racket use the

same set of values.

Saturday, October 22, 2011

#lang typed/racket

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i)
 (+ i 5))

(provide inc5)

inc.rkt
#lang racket

(require “inc.rkt”)

(printf “~a\n” (inc5 true))

main.rkt

Saturday, October 22, 2011

#lang typed/racket

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i)
 (+ i 5))

(provide inc5)

inc.rkt
#lang racket

(require “inc.rkt”)

(printf “~a\n” (inc5 true))

main.rkt

bang!

W/o care, the typed
component will be blamed for
a type error in the untyped

module.

Saturday, October 22, 2011

#lang typed/racket

(: inc5 (Integer -> Integer))
;; increment argument by 5
(define (inc5 i)
 (+ i 5))

(provide inc5)

inc.rkt
#lang racket

(require “inc.rkt”)

(printf “~a\n” (inc5 true))

main.rkt

Solution: check
Integer on call

bang!

W/o care, the typed
component will be blamed for
a type error in the untyped

module.

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket

(require “encode.rkt”)

(define (code i)
 (format "~a: hello world" i))

(printf "~a\n" (encode code))

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket

(require “encode.rkt”)

(define (code i)
 (format "~a: hello world" i))

(printf "~a\n" (encode code))

bang!

The typed component will
be blamed for a type error in

the untyped module.

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket

(require “encode.rkt”)

(define (code i)
 (format "~a: hello world" i))

(printf "~a\n" (encode code))

Solution: check
(Integer -> Integer)

on call

bang!

The typed component will
be blamed for a type error in

the untyped module.

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket

(require “encode.rkt”)

(define (code i)
 (format "~a: hello world" i))

(printf "~a\n" (encode code))

Solution: check
(Integer -> Integer)

on call

bang!

The typed component will
be blamed for a type error in

the untyped module.

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket

(require “encode.rkt”)

(define (main i)
 (format "~a: hello world" i))

(printf "~a\n" (encode hello))

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket

(require “encode.rkt”)

(define (main i)
 (format "~a: hello world" i))

(printf "~a\n" (encode hello))

Solution 1: wrap contract
(integer? -> integer?)

around code

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang racket

(require “encode.rkt”)

(define (main i)
 (format "~a: hello world" i))

(printf "~a\n" (encode hello))

Solution 1: wrap contract
(integer? -> integer?)

around code

Solution 2: contract
(integer? -> integer?)

checks each call to code

Saturday, October 22, 2011

#lang racket

;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket

(require “encode.rkt”)

(define (code i)
 (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode code))

Saturday, October 22, 2011

#lang racket

;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket

(require “encode.rkt”)

(define (code i)
 (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode code))

stop!

The typed component needs
a type for the untyped
import for type checking.

Saturday, October 22, 2011

#lang racket

;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket

(require/typed “encode.rkt”
 (encode ((Integer -> Integer) -> Integer)))

(define (main i)
 (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Saturday, October 22, 2011

#lang racket

;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket

(require/typed “encode.rkt”
 (encode ((Integer -> Integer) -> Integer)))

(define (main i)
 (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Solution 1: state type
((Integer -> Integer) -> Integer)

for import main

Saturday, October 22, 2011

#lang racket

;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.rkt
#lang typed/racket

(require/typed “encode.rkt”
 (encode ((Integer -> Integer) -> Integer)))

(define (main i)
 (format "~a: hello world" (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Solution 1: state type
((Integer -> Integer) -> Integer)

for import main

Solution 2: interpret
types as contracts

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.
#lang typed/racket

(require“encode.rkt”)

(define (main i)
 (format "~a: hello world"
 (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

encode.rkt main.
#lang typed/racket

(require“encode.rkt”)

(define (main i)
 (format "~a: hello world"
 (encode (λ (x) x))))

(printf "~a\n" (encode hello))

Interactions between
components of the same
kind do not need controls.

Saturday, October 22, 2011

(lambda (f) (if (= (f 0) 0) 4 2))

Ty
pe

d

U
nt

yp
ed

((Integer -> Integer) -> Integer)

step 1: typed ‘modules’ must specify types for all
imported variables and specify types for all exports

Saturday, October 22, 2011

(lambda (f) (if (= (f 0) 0) 4 2))

Ty
pe

d

U
nt

yp
ed

((Integer -> Integer) -> Integer)

step 1: typed ‘modules’ must specify types for all
imported variables and specify types for all exports

(lambda (f*)
 (define (f x)
 (check integer? ‘BLAME+
 (f* (check integer? ‘BLAME- x)))
 (check string? ‘BLAME-
 (if (= (f 0) 0) “h” “w”)))

step 2: when values cross component boundaries,
types are interpreted as contracts and wrapped
around values to protect the typed components

Saturday, October 22, 2011

(lambda (f) (if (= (f 0) 0) 4 2))

Ty
pe

d

U
nt

yp
ed

((Integer -> Integer) -> Integer)

step 1: typed ‘modules’ must specify types for all
imported variables and specify types for all exports

(lambda (f*)
 (define (f x)
 (check integer? ‘BLAME+
 (f* (check integer? ‘BLAME- x)))
 (check string? ‘BLAME-
 (if (= (f 0) 0) “h” “w”)))

step 2: when values cross component boundaries,
types are interpreted as contracts and wrapped
around values to protect the typed components

step 3: value flow between typed modules is free

Saturday, October 22, 2011

Blame Theorem: Let P be a mixed program with checked
types in interfaces interpreted as contracts. Then

• P yields to a value,
• P diverges, or
• P signals an error that blames a specific untyped module.

Sam Tobin-Hochstadt
Dynamic Language Symposium
Portland. OR. 2006

Saturday, October 22, 2011

LANGUAGES FROM MACROS

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

(: decode (Integer -> ((Integer -> Integer) -> Integer)))
;; decodes input for f
(define (decode f)
 (if (f 0) (lambda (g) (g 42)) (lambda (h) (h 0))))

Saturday, October 22, 2011

#lang typed/racket

(: encode ((Integer -> Integer) -> Integer))
;; encode output of f
(define (encode f)
 (+ (f 21) 42))

(provide encode)

(: decode (Integer -> ((Integer -> Integer) -> Integer)))
;; decodes input for f
(define (decode f)
 (if (f 0) (lambda (g) (g 42)) (lambda (h) (h 0))))

What does this mean?

Saturday, October 22, 2011

Racket languages are
components that implement

a compiler and
a run-time library.

Saturday, October 22, 2011

 Syntax Rewriting
+ Run-time Functions
= New Languages

Saturday, October 22, 2011

 (define-syntax-rule
 (pop x)

 ;; ==>>

 (begin0 (first x) (set! x (rest x))))

Pattern-based Syntax Rewriting

Saturday, October 22, 2011

 (define-syntax-rule
 (pop x)

 ;; ==>>

 (begin0 (first x) (set! x (rest x))))

Pattern-based Syntax Rewriting

Saturday, October 22, 2011

 (define-syntax-rule
 (pop x)

 ;; ==>>

 (begin0 (first x) (set! x (rest x))))

Pattern-based Syntax Rewriting

Saturday, October 22, 2011

(define-syntax (define-un-serialize stx)
 (syntax-parse stx
 [(_ name:id (argument:id ...) unparser:expr parser:expr)

 (define serialize (postfix stx "serialize" (syntax-e #'name)))
 (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

 #`(define-values (#,serialize #,deserialize)
 (values (lambda (argument ...) unparser)
 (lambda (msg) parser)))]))

Procedural Syntax Rewriting

Saturday, October 22, 2011

(define-syntax (define-un-serialize stx)
 (syntax-parse stx
 [(_ name:id (argument:id ...) unparser:expr parser:expr)

 (define serialize (postfix stx "serialize" (syntax-e #'name)))
 (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

 #`(define-values (#,serialize #,deserialize)
 (values (lambda (argument ...) unparser)
 (lambda (msg) parser)))]))

Procedural Syntax Rewriting

Saturday, October 22, 2011

(define-syntax (define-un-serialize stx)
 (syntax-parse stx
 [(_ name:id (argument:id ...) unparser:expr parser:expr)

 (define serialize (postfix stx "serialize" (syntax-e #'name)))
 (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

 #`(define-values (#,serialize #,deserialize)
 (values (lambda (argument ...) unparser)
 (lambda (msg) parser)))]))

Procedural Syntax Rewriting

Saturday, October 22, 2011

(define-syntax (define-un-serialize stx)
 (syntax-parse stx
 [(_ name:id (argument:id ...) unparser:expr parser:expr)

 (define serialize (postfix stx "serialize" (syntax-e #'name)))
 (define deserialize (postfix stx "deserialize" (syntax-e #'name)))

 #`(define-values (#,serialize #,deserialize)
 (values (lambda (argument ...) unparser)
 (lambda (msg) parser)))]))

Procedural Syntax Rewriting

Saturday, October 22, 2011

 Syntax Rewriting
+ Run-time Functions
= New Languages

Saturday, October 22, 2011

 Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

Saturday, October 22, 2011

 Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

Saturday, October 22, 2011

 Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

(define (expand identifier module-path)
 (form-full-path identifier module-path ‘()))

(define (normalize type)
 (sort-unions (get-type-names type)))

(define (insert identifier its-type))
 (send *type-environment* add-set
 identifier its-type)))

Saturday, October 22, 2011

 Syntax Rewriting
+ Run-time Functions
= New Languages

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

(define (expand identifier module-path)
 (form-full-path identifier module-path ‘()))

(define (normalize type)
 (sort-unions (get-type-names type)))

(define (insert identifier its-type))
 (send *type-environment* add-set
 identifier its-type)))

typed/racket.rkt

Saturday, October 22, 2011

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

(define (expand identifier module-path)
 (form-full-path identifier module-path ‘()))

(define (normalize type)
 (sort-unions (get-type-names type)))

(define (insert identifier its-type))
 (send *type-environment* add-set
 identifier its-type)))

typed/racket.rkt
#lang typed/racket

(: f (Integer -> Integer))
...

Substitution 1: Macro bodies are substituted for macro calls.

Saturday, October 22, 2011

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

(define (expand identifier module-path)
 (form-full-path identifier module-path ‘()))

(define (normalize type)
 (sort-unions (get-type-names type)))

(define (insert identifier its-type))
 (send *type-environment* add-set
 identifier its-type)))

typed/racket.rkt
#lang typed/racket

(: f (Integer -> Integer))
...

expand

#lang typed/racket

(let ([identifier
 (expand ‘f (this-module))]
 [its-type
 (normalize
 ‘(Integer -> Integer)))])
 (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls.

Saturday, October 22, 2011

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

(define (expand identifier module-path)
 (form-full-path identifier module-path ‘()))

(define (normalize type)
 (sort-unions (get-type-names type)))

(define (insert identifier its-type))
 (send *type-environment* add-set
 identifier its-type)))

typed/racket.rkt
#lang typed/racket

(: f (Integer -> Integer))
...

expand

#lang typed/racket

(let ([identifier
 (expand ‘f (this-module))]
 [its-type
 (normalize
 ‘(Integer -> Integer)))])
 (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls.

Saturday, October 22, 2011

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

(define (expand identifier module-path)
 (form-full-path identifier module-path ‘()))

(define (normalize type)
 (sort-unions (get-type-names type)))

(define (insert identifier its-type))
 (send *type-environment* add-set
 identifier its-type)))

typed/racket.rkt
#lang typed/racket

(: f (Integer -> Integer))
...

expand

#lang typed/racket

(let ([identifier
 (expand ‘f (this-module))]
 [its-type
 (normalize
 ‘(Integer -> Integer)))])
 (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls.

Saturday, October 22, 2011

(define-syntax-rule
 (: id a-type)
 ;; ==>>
 (let ([identifier (expand ‘id (this-module))]
 [its-type (normalize ‘a-type))])
 (insert identifier its-type)))

(define (expand identifier module-path)
 (form-full-path identifier module-path ‘()))

(define (normalize type)
 (sort-unions (get-type-names type)))

(define (insert identifier its-type))
 (send *type-environment* add-set
 identifier its-type)))

typed/racket.rkt
#lang typed/racket

(define (expand x) 42)
(: f (Integer -> Integer))
...

expand

#lang typed/racket

(define (expand x) 42)
(let ([identifier
 (expand ‘f (this-module))]
 [its-type
 (normalize
 ‘(Integer -> Integer)))])
 (insert identifier its-type))
...

Substitution 1: Macro bodies are substituted for macro calls.

Saturday, October 22, 2011

(define-syntax-rule
 (define-type T Type)
 ;; ==>>
 (begin
 (define NormalType (normalize ‘Type))

 (define T NormalType)))

...

(define (normalize type)
 (sort-unions (get-type-names type)))

...

typed/racket.rkt
#lang typed/racket

(define-type Shapes (U Square Circle))
...

Substitution 2: Macro arguments are substituted into macro bodies.

Saturday, October 22, 2011

(define-syntax-rule
 (define-type T Type)
 ;; ==>>
 (begin
 (define NormalType (normalize ‘Type))

 (define T NormalType)))

...

(define (normalize type)
 (sort-unions (get-type-names type)))

...

typed/racket.rkt
#lang typed/racket

(define-type Shapes (U Square Circle))
...

Substitution 2: Macro arguments are substituted into macro bodies.

Saturday, October 22, 2011

(define-syntax-rule
 (define-type T Type)
 ;; ==>>
 (begin
 (define NormalType (normalize ‘Type))

 (define T NormalType)))

...

(define (normalize type)
 (sort-unions (get-type-names type)))

...

typed/racket.rkt
#lang typed/racket

(define-type Shapes (U Square Circle))
...

expand

#lang typed/racket

(define NormalType (normalize ‘Type))

(define T NormalType))

Substitution 2: Macro arguments are substituted into macro bodies.

Saturday, October 22, 2011

(define-syntax-rule
 (define-type T Type)
 ;; ==>>
 (begin
 (define NormalType (normalize ‘Type))

 (define T NormalType)))

...

(define (normalize type)
 (sort-unions (get-type-names type)))

...

typed/racket.rkt
#lang typed/racket

(define-type Shapes (U Square Circle))
...

expand

#lang typed/racket

(define NormalType (normalize ‘Type))

(define T NormalType))

Substitution 2: Macro arguments are substituted into macro bodies.

Saturday, October 22, 2011

(define-syntax-rule
 (define-type T Type)
 ;; ==>>
 (begin
 (define NormalType (normalize ‘Type))

 (define T NormalType)))

...

(define (normalize type)
 (sort-unions (get-type-names type)))

...

typed/racket.rkt
#lang typed/racket

(define (NormalType x) x)
(define-type Shapes (U Square Circle))
...

expand

#lang typed/racket

(define (NormalType x) x)
(define NormalType (normalize ‘Type))

(define T NormalType))

Substitution 2: Macro arguments are substituted into macro bodies.

Saturday, October 22, 2011

Macro hygiene ensures that two different
substitutions work as intended by default.

Saturday, October 22, 2011

Macro hygiene ensures that two different
substitutions work as intended by default.

 Programmers can override the defaults.

Saturday, October 22, 2011

Contrary to rumors in the CL world:
Hygienic macros increase the expressive

power of the macros system.

Saturday, October 22, 2011

But macros are only half the story.

Saturday, October 22, 2011

But macros are only half the story.

Macros are (mostly) context-free rewriting rules.
Implementing languages requires context-sensitivity.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)Imagine a

language that
requires type

checking.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

expand

(: f (Int -> Int))
(define f ...)

Imagine a
language that
requires type

checking.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

expand

(: f (Int -> Int))
(define f ...)

Imagine a
language that
requires type

checking.

(f (sin pi)) (f x)

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

expand

(: f (Int -> Int))
(define f ...)

Imagine a
language that
requires type

checking.

(f (sin pi)) (f x)

?? ??

Saturday, October 22, 2011

 Macros rewrite trees.
They cannot communicate to contexts.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

(f (sin pi)) (f x)

Languages require
 whole-module processing.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

(f (sin pi)) (f x)

Languages require
 whole-module processing.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

(f (sin pi)) (f x)

Languages require
 whole-module processing.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

(f (sin pi)) (f x)

(#%module-begin

)

Languages require
 whole-module processing.

Saturday, October 22, 2011

(define: f
 (Int -> Int)
 ...)

(f (sin pi)) (f x)

(#%module-begin

)

Languages require
 whole-module processing.

And languages may redefine
#%module-begin.

Saturday, October 22, 2011

Let’s make context-sensitive
processing concrete.

Saturday, October 22, 2011

Let’s make context-sensitive
processing concrete.

#lang racket

(provide
 ... ;; additional exports
 (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
 (new-module-begin mexpr ...)
 ;; ==>>
 (#%module-begin
 (begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 mexpr)
 ...))

silly.rkt

Saturday, October 22, 2011

Let’s make context-sensitive
processing concrete.

#lang racket

(provide
 ... ;; additional exports
 (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
 (new-module-begin mexpr ...)
 ;; ==>>
 (#%module-begin
 (begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 mexpr)
 ...))

silly.rkt

Saturday, October 22, 2011

Let’s make context-sensitive
processing concrete.

#lang racket

(provide
 ... ;; additional exports
 (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
 (new-module-begin mexpr ...)
 ;; ==>>
 (#%module-begin
 (begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 mexpr)
 ...))

silly.rkt
#lang s-exp "silly.rkt"

(define (f x)
 (+ (g (* 10 x)) 1))

(define (g y)
 (/ y 2))

client.rkt

Saturday, October 22, 2011

Let’s make context-sensitive
processing concrete.

#lang racket

(provide
 ... ;; additional exports
 (rename-out (new-module-begin #%module-begin)))

(define-syntax-rule
 (new-module-begin mexpr ...)
 ;; ==>>
 (#%module-begin
 (begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 mexpr)
 ...))

silly.rkt
#lang s-exp "silly.rkt"

(define (f x)
 (+ (g (* 10 x)) 1))

(define (g y)
 (/ y 2))

client.rkt

Saturday, October 22, 2011

#lang s-exp "silly.rkt"

(define (f x) (+ (g (* 10 x)) 1))

(define (g y) (/ y 2))

client.rkt

Saturday, October 22, 2011

#lang s-exp "silly.rkt"

(define (f x) (+ (g (* 10 x)) 1))

(define (g y) (/ y 2))

client.rkt

(module simple-in-silly "silly.rkt"
 (#%module-begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (f x) (+ (g (* 10 x)) 1)))
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (g y) (/ y 2)))))

client.rkt : expanded

expand

Saturday, October 22, 2011

(module simple-in-silly "silly.rkt"
 (#%module-begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (f x) (+ (g (* 10 x)) 1)))
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (g y) (/ y 2)))))

client.rkt : expanded

Saturday, October 22, 2011

(module simple-in-silly "silly.rkt"
 (#%module-begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (f x) (+ (g (* 10 x)) 1)))
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (g y) (/ y 2)))))

client.rkt : expanded

Welcome to DrRacket, version 5.2.0.1--2011-10-16
(2a43c68/g) [3m].
Language: s-exp "silly.rkt".
evaluating the 1st part
evaluating the 2nd part
> (f 1)
6
>

client.rkt : run

run

Saturday, October 22, 2011

(module simple-in-silly "silly.rkt"
 (#%module-begin
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (f x) (+ (g (* 10 x)) 1)))
 (count++)
 (printf "evaluating the ~a~a part\n" (count) (st-or-th))
 (define (g y) (/ y 2)))))

client.rkt : expanded

Welcome to DrRacket, version 5.2.0.1--2011-10-16
(2a43c68/g) [3m].
Language: s-exp "silly.rkt".
evaluating the 1st part
evaluating the 2nd part
> (f 1)
6
>

client.rkt : run

run

Saturday, October 22, 2011

(define-syntax (typed-module-begin stx)
 (syntax-parse stx
 [(_ s ...)
 (with-syntax ([(_ core-s ...) (local-expand #’(#%module-begin s ...))])

 (for-each typecheck (syntax->list #’(core-s ...)))

 #’(#%module-begin core-s ...))]))

Typed Racket’s module-begin,
mostly.

Saturday, October 22, 2011

(define-syntax (typed-module-begin stx)
 (syntax-parse stx
 [(_ s ...)
 (with-syntax ([(_ core-s ...) (local-expand #’(#%module-begin s ...))])

 (for-each typecheck (syntax->list #’(core-s ...)))

 #’(#%module-begin core-s ...))]))

Typed Racket’s module-begin,
mostly.

Saturday, October 22, 2011

(define-syntax (typed-module-begin stx)
 (syntax-parse stx
 [(_ s ...)
 (with-syntax ([(_ core-s ...) (local-expand #’(#%module-begin s ...))])

 (for-each typecheck (syntax->list #’(core-s ...)))

 #’(#%module-begin core-s ...))]))

Typed Racket’s module-begin,
mostly.

Saturday, October 22, 2011

(define-syntax (typed-module-begin stx)
 (syntax-parse stx
 [(_ s ...)
 (with-syntax ([(_ core-s ...) (local-expand #’(#%module-begin s ...))])

 (for-each typecheck (syntax->list #’(core-s ...)))

 #’(#%module-begin core-s ...))]))

Typed Racket’s module-begin,
mostly.

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin,
one more bit.

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin,
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin,
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin,
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin,
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

Typed Racket’s module-begin,
one more bit.

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed context”
 typed-f
 contracted-f)

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed-context”
 typed-f
 contracted-f)

#lang racket

(provide typed-context entering-typed-context)
(define typed-context ...)
(define (entering-typed-context) ...)

typed/racket.rkt

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed-context”
 typed-f
 contracted-f)

#lang racket

(provide typed-context entering-typed-context)
(define typed-context ...)
(define (entering-typed-context) ...)

typed/racket.rkt

Saturday, October 22, 2011

#lang typed/racket

(: f (Byte -> Index))
(define (f x)
 (+ x 22))

(provide f)

server.rkt

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

insert
contracts

rely on
types

(if “I end up in typed-context”
 typed-f
 contracted-f)

#lang racket

(provide typed-context entering-typed-context)
(define typed-context ...)
(define (entering-typed-context) ...)

typed/racket.rkt

(entering-typed-context)

Saturday, October 22, 2011

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

Saturday, October 22, 2011

#lang racket

(entering-typed-context)
(define-syntax f
 (if “I end up in typed-context”
 typed-f
 contracted-f))

... (f 3) ... (f 202) ...

typed.rkt: expanded

expand

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

Saturday, October 22, 2011

#lang racket

(entering-typed-context)
(define-syntax f
 (if “I end up in typed-context”
 typed-f
 contracted-f))

... (f 3) ... (f 202) ...

typed.rkt: expanded

expand

#lang typed/racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

typed.rkt

(module typed.rkt racket/base

... (typed-f 3) ... (typed-f 202) ...)

typed.rkt: expanded

fully expanded

Saturday, October 22, 2011

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

Saturday, October 22, 2011

#lang racket

(define-syntax f
 (if “I end up in typed-context”
 typed-f
 contracted-f))

... (f 3) ... (f 202) ...

untyped: expanded

expand

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

Saturday, October 22, 2011

#lang racket

(define-syntax f
 (if “I end up in typed-context”
 typed-f
 contracted-f))

... (f 3) ... (f 202) ...

untyped: expanded

expand

#lang racket

(require “server.rkt”)

... (f 3) ... (f 202) ...

untyped.rkt

(module typed.rkt racket/base

 ... (contracted-f 3) ...
 (contracted-f 202) ...)

untyped: expanded

fully expanded

Saturday, October 22, 2011

Culpepper & Flatt et al:
Languages as Libraries, PLDI 2011
Fortifying Macros, ICFP 2010
Debugging Macros, GPCE 2008
Composable, Compilable Macros,
 ICFP 2002

The World of Macros

• Racket, the language
• the macro tools
• experience

Saturday, October 22, 2011

CONCLUSION

Saturday, October 22, 2011

•a macro system to implement entire languages

• safe component interaction in a multi-lingual world

Two ideas from Racket for everyone at GPCE.

Saturday, October 22, 2011

•hygienic and fortified macros

•macros as module exports

•module-level macros

Macros for entire languages require:

Saturday, October 22, 2011

•hygienic and fortified macros

•macros as module exports

•module-level macros

Macros for entire languages require:

We have built dozens of large and little
languages. How can you import the ideas?

Saturday, October 22, 2011

• languages have invariants

• interactions must respect these invariants

•example: sound typed-untyped interactions

A multi-lingual world isn’t free.
Safe interaction among multi-lingual components.

Saturday, October 22, 2011

• languages have invariants

• interactions must respect these invariants

•example: sound typed-untyped interactions

A multi-lingual world isn’t free.
Safe interaction among multi-lingual components.

Many more problems exist in this area,
and you are in a position to tackle them.

Saturday, October 22, 2011

THE END

Sam Tobin-Hochstadt (Northeastern)

Matthew Flatt (Utah)

Robby Findler (Northwestern)

language, compiler, macros

contracts, IDE

types

Ryan Culpepper (Utah) macros, macros, macros

Shriram Krishnamurthi (Brown) macros and modules

http://racket-lang.org/

Saturday, October 22, 2011

http://racket-lang.org
http://racket-lang.org

