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WHAT'S LOVE GOT TO DO WITH IT

You are here because
you fell in love with
something about

programming languages.

P nrogramming
Y P

4
/ A
/ 4

Vo,

Aanguages



YOU CAN'T JUST KEEP YOUR FINGERS OFF
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don’t have a language, you
can't compute.
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You will get to work with
elegant mathematics and,
some of you will develop
new mathematics.
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YOU CAN'T JUST KEEP YOUR FINGERS OFF

Where else do
you get to work

with the coolest
You will get to work with professors on

elegant mathematics and, the planet?
some of you will develop

new mathematics.

Developers primarily use
programming languages.

The tools we build have N 3 N rog ramm | N g

meaning for them.
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TYPES FOR UNTYPED LANGUAGES, HOW LOVE WORKS
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THE ONLY USER OF
ANDREW WRIGHT'S SOFT
SCHEME
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WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)
(bond
[ (boolean? p) pl

[else (and (tautology? (p true)) (tautology? (p false)))]))
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WHAT'S THE TYPE OF AN UNTYPED PROGRAM?
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(define (tautology? p)
(cond
[ (boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)
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EASY! TYPE INFERENCE! ML HAS HAD IT SINCE 1978.



WE CAN SAY IT IN OCAML

type proposition = InL of bool | InR of (bool -> proposition)

let rec is_tautology p =
match p with
| InL b ->D

| InR p -> is_tautology(p true) && is tautology(p false)

is_tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or then InL x else InL y)))
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type proposition = oposition)
let rec 18 tautolog
match p with
| InL b ->Db
| InR p ->Js_taut 0 false)
is_tautology (InR(f

is_tautology (InR(f X else InL y)))
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match p with
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make it work for 100-line purely functional
programs in quasi-Scheme
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(-> (U (Proposition)

(+ Boolean (-> Boolean Proposition)))

Boolean)
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DOZENS OF SMALL AND LARGE
PROGRAMS.
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WHAT SOFT SCHEME CAN'T DO,

(define (tautology? p)

(cond

[ (boolean? p) p]

—
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¢ THE TYPE MISMATCH W/O §
{ TELLING THE DEV WHERE §
§ THINGS WENT WRONG §

[else (and (tautology? (p true))?{b falséf;]))
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(define (tautology? p) P )
(cond > |
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§ THINGS WENT WRONG §

any sensible type-error
message,

just one, please ..




WHAT SOFT SCHEME CAN'T DO,

(define (tautology? p)
(cond

[ (boolean? p) pl

R EHEE] e Problem:

Gaussian elimination over equations in an
uninterpreted algebras cannot point back to
program when the system (of eqgs) is inconsistent.

any sensible error message,

just one, please




THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

WRIGHT CAN CHECK 1,000 LINES

£293 i/ /

W/

LT i
l,1989 J'1/9//94
- 11 /

l‘v
ral /
, %

FAGAN CAN CHECK 100 LINES.

YOURS TRULY STRUGGLES WITH
DOZENS OF SMALL AND LARGE
PROGRAMS.
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WHAT SPIDER CAN DO

(define (tautology? p)
(cond
[ (boolean? p) p]
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(define (tautology? p)
(cond
[ (boolean? p) pl

[else (and (tautology? (p true)) (p false))l]))

EVEN WITH 3RD
UNDERGRADUATES

(-> (M (Proposition)

(U Boolean (-> Proposition)))

Boolean)
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ADD TYPES INCREMENTALLY

Proposition = Boolean | (Boolean -> Proposition)

Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda () true)) true)
® £ - (define (tautology? p)

(tautology?
(define (tautology? p)
(check-expect
P (cond
(cond
lambda (x) (tautology?
[(boolean? p) pl
[(boolean? p) pl
(or x y))))
[else (and (tautology? (p true))
[else (and (tautology? (p true))
false)
?
lambda (x) (tautology? (p false)))1))
(tautology? (p false)))1))
(or x y))))
;; Proposition = Boolean | (Boolean -> Proposition)
lambda (x)
false)
;; Proposition -> Boolean
Proposition = Boolean | (Boolean -> Proposition) (IR S2RY)
(check-expect (tautology? (lambda (_) true)) true)
false)

Proposition -> Boolean
Proposition = Boolean | (Boolean -> Proposition)

(check-expect

i ?
(check-expect (tautology? (lambda (_) true)) true) (CeEEtautal cevige)

Proposition -> Boolean

(tautology?

(check-expect (cond

(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?




ADD TYPES INCREMENTALLY

;s Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

;s Proposition = Boolean | (Boolean -> Proposition)

;s Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(or x y))))
;; Proposition -> Boolean
false)
(check-expect (tautology? (lambda (_) true)) true)

You want to add types.

And now you have two problems:

You should not change code that works, other
than adding type annotations and definitions.

Respect existing idioms of the language.

You want the existing untyped code to play well
with the newly typed code. Respect the central
theorem of programming languages, type
soundness.

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology?
(p false)))1))

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

(define (tautology? p)

pl

autology? (p true))

autology? (p false)))l))

blean -> Proposition)

oda (_) true)) true)

(lambda (_) true)) true)
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(define (tautology? p)
(cond
[ (boolean? p) pl

[else (and (tautology? (p true)) (tautology? (p false)))]l))

Cm(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))




ADD TYPES INCREMENTALLY

(define (tautology? p)
(cond
[ (boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

Cm(tautology? true)

(tautology? (lambda ( ) (lambda ( ) (or x vy))))




ADD TYPES INCREMENTALLY

; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition) ( 1909
(check-expect (tautology? (lambda (_) true)) true) oy
;5 Proposition -> Boolean
false)

(check-expect

check-expect (tautology? (lambda (_) true)) true)
( ® ( gy? ( « (define (tautology? p)

(tautology?
heck- t
(check-expec (cond
lambda (x) tautol ?
Geenisanesy [(boolean? p) pl
(or x y))))
[else (and (tautology? (p true))
false)
?
lambda (x) (tautology? (p false)))1))
(or x y))))
lambda (x)
false)
(or x y))))
false)

;; Proposition = Boolean | (Boolean -> Proposition)

(define (tautology? p)

;; Proposition -> Boolean

(cond

(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl I N
Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?
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ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda (_) true)) true)
P & - (define (tautology? p)

(tautology?

(define (tautology? p)

(check-expect
(cond

BSR (define-type Proposition (U Boolean (Boolean -> Proposition)))

tautology? (Proposition -> Boolean))

false)

;s Propos

; Propos

(check-ex

(check-ex
(check-expect (tautology? (lambda (_) true)) true)

[ (boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?
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; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)
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