LOVE, MARRIAGE & HAPPINESS

MATTHIAS FELLEISEN, NU PRL

G*DDAMN FOREIGNER

G*DDAMN FOREIGNER

WHAT'S LOVE GOT TO DO WITH IT

You are here because
you fell in love with
something about

programming languages.

P nrogramming
Y P

4
/ A
/ 4

Vo,

Aanguages

YOU CAN'T JUST KEEP YOUR FINGERS OFF

e Ve |, nrogramming

iy / Aanguages
The most fundamental area \

of computer science. If you
don’t have a language, you
can't compute.

YOU CAN'T JUST KEEP YOUR FINGERS OFF

Developers primarily use
programming languages.

The tc?ols we build have 3 N rog ramm | N g

meaning for them.

4
/ 4

© Aanguages

The most fundamental area \/

of computer science. If you
don’t have a language, you
can't compute.

YOU CAN'T JUST KEEP YOUR FINGERS OFF

You will get to work with
elegant mathematics and,
some of you will develop
new mathematics.

Developers primarily use
programming languages.

The tc?ols we build have N 3 N rog ramm | N g

meaning for them.

4
/ 4

\\{/ Aanguages

The most fundamental area
of computer science. If you
don’t have a language, you
can't compute.

YOU CAN'T JUST KEEP YOUR FINGERS OFF

Where else do
you get to work

with the coolest
You will get to work with professors on

elegant mathematics and, the planet?
some of you will develop

new mathematics.

Developers primarily use
programming languages.

The tools we build have N 3 N rog ramm | N g

meaning for them.

/
//

/ Aanguages

The most fundamental area \/

of computer science. If you
don’t have a language, you

can't compute.

SO WHAT'S IT LIKE TO GET MARRIED TO PL RESEARCH

2
.

-, .
‘. o~
‘i -

w won't l ave /h.'r

w won't l ave /h.'r

w won't l ave /h.'r

w won't l ave /h.'r

w won't l ave /h.'r

TYPES FOR UNTYPED LANGUAGES, HOW LOVE WORKS

CORKY CARTWRIGHT
“LET'S WORK ON TYPES
FOR SCHEME®

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

CORKY CARTWRIGHT
“LET'S WORK ON TYPES
FOR SCHEME®

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

CORKY CARTWRIGHT
“LET'S WORK ON TYPES
FOR SCHEME®

COOL! WORKING WITH
CARTWRIGHT AND FAGAN

THE ONLY USER OF
ANDREW WRIGHT'S SOFT
SCHEME

CORKY CARTWRIGHT
“LET'S WORK ON TYPES
FOR SCHEME®

i‘z e
® C0OL! WORKING WITH
" CARTWRIGHT AND FAGAN

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

CORKY CARTWRIGHT 1995/97] /
“LET'S WORK ON TYPES ‘

i
FOR SCHEME 1993/ 7

.L' k' h M .} J ///
1989%

/

1 9187
.,:‘:l ‘j' 1A L /

! //
I))
/

Lp. //
' /

7
s
J

A

s &)

@A' -

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

7
l /
1", b ,/"

199§/2003 /

7

1995/97{ /
>
1 993/9_fl X/

Ned /S
| y /

B 4/
1989 /
N\ /

19L87

I

T
e
| &/

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

TYPED RACKET W/
TOBIN-HOCHSTADT

/
/

J . //

199§/2003/
CORKY CARTWRIGHT 1995/97/ "/
“LET'S WORK ON TYPES i
FOR SCHEME' 1893/9 3,

T g .‘l |/
1989%

/

19187

y :‘:l 1’ A L /7
™ \

‘ ” J //'/

. ;,///

A

s &)

(\'A' -

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)
(bond
[(boolean? p) pl

[else (and (tautology? (p true)) (tautology? (p false)))]))

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)
(bond

[(booleavé‘55i1]

[else (anai(iautology?f(p tfuef) (tautology? (p false)))l]))

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)
(bond

[(boolea'§53{?]

[else (anat(iautology?f(p tfuef) (tautology? (p false)))l]))

THERE IS LOTS OF LISP OUT THERE
AND THEY MAY WANT TYPES.

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)

(bond

D (tautology? (p false)))1))

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

D (tautology? (p false)))l))

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

D (tautology? (p false)))l))

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

ITLL COME TRUE IN P /.
10 OR 20 YEARS.

l:u/’:x(if‘rit@f
y @ Y @ \

PROGRAMMERS DO NOT WANT TO
COPE WITH THE IDIOSYNCRASIES OF
TYPE SYSTEMS.

i
(bond 0. CVA/
WE WANT WIDE-SPECTRUM ;= :
PROGRAMMING. j N

MMMMMMMMM

THERE IS LOTS OF LISP OUT THERE
AND THEY MAY WANT TYPES.

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)
(cond
[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x vy))))

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)
(cond
[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

b))

|

(tautology? (lambda (x) (lambda (y)?(or X yX

WHAT'S THE TYPE OF AN UNTYPED PROGRAM?

(define (tautology? p)
(cond
[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (y)?(or X yi%))

|

EASY! TYPE INFERENCE! ML HAS HAD IT SINCE 1978.

WE CAN SAY IT IN OCAML

type proposition = InL of bool | InR of (bool -> proposition)

let rec is_tautology p =
match p with
| InL b ->D

| InR p -> is_tautology(p true) && is tautology(p false)

is_tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or then InL x else InL y)))

WE CAN SAY IT IN OCAML

type proposition = oposition)
let rec 18 tautolog
match p with
| InL b ->Db
| InR p ->Js_taut 0 false)
is_tautology (InR(f

is_tautology (InR(f X else InL y)))

WE CAN SAY IT IN OCAML

type proposition = oposition)

let rec 18 tautolog

match p with
| InL b -> Db
| InR p ->Js_taut o false);;

is_tautology (InR(f

is_tautology (InR(f X else InL y)))

SOFT TYPING & &

o Al
. 'A_‘A)‘
!

Robert Cartwright, Mike Fagan®
Department of Computer Science
Rice University

Houston, TX 77251-1892

replace ML's type algebra (x, *, ->, ...)
with Remy’s extensible records exclusively

make it work for 100-line purely functional
programs in quasi-Scheme

replace ML's type algebra (x, *, ->, ...)

with Remy’s extensible records exclusively

Department of Computer Science
Rice University . .
Houston, TX 77251-1892 programs in quasi-Scheme

make it work for 100-line purely functional

grow it to full Chez Scheme A Practical Soft Type System for Scheme

Who'e_program inference Andrew K. \'Vl‘ight' Robert ('arl,wright’

partment of Computer Science
Rice University
Houston, TX 77251-1892

success: speed-up

vright,cartwright }@cs.rice.edu

WHAT SOFT SCHEME CAN DO

(define (tautology? p)
(cond

[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

infer via modified HM

(-> (U (Proposition)

(+ Boolean (-> Boolean Proposition)))

Boolean)

WHAT SOFT SCHEME CAN DO

(define (tautology? p)
(cond

[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

infer via modified HM

(-> (U (Proposition)

(+ Boolean (-> Boolean Proposition)))

Boolean)

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

WRIGHT CAN CHECK 1,000 LINES

FAGAN CAN CHECK 100 LINES.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

WRIGHT CAN CHECK 1,000 LINES

l:‘ :
£|1989' 199//94

? A
- l ' ' /

4

s’

f;’/

FAGAN CAN CHECK 100 LINES.

YOURS TRULY STRUGGLES WITH
DOZENS OF SMALL AND LARGE
PROGRAMS.

WHAT SOFT SCHEME CAN'T DO,

(define (tautology? p)
(cond

[(boolean? p) p]

[else (and (tautology? (p true)) (p false))]))

WHAT SOFT SCHEME CAN'T DO,

(define (tautology? p)

(cond

[(boolean? p) p]

—

{ DOZENS OF LINESFOR ¢
¢ THE TYPE MISMATCH W/O §
{ TELLING THE DEV WHERE §
§ THINGS WENT WRONG §

[else (and (tautology? (p true))?{b falséf;]))

RAdket
WHAT SOFT SCHEME CAN'T DO, @

(define (tautology? p) P)
(cond > |
[(Eoailcan? 3) o] | formulat/'
[else (and (tautology? (p true)) (B faiéé) 1))

{ DOZENS OF LINESFOR ¢
¢ THE TYPE MISMATCH W/O §
{ TELLING THE DEV WHERE §
§ THINGS WENT WRONG §

any sensible type-error
message,

just one, please ..

WHAT SOFT SCHEME CAN'T DO,

(define (tautology? p)
(cond

[(boolean? p) pl

R EHEE] e Problem:

Gaussian elimination over equations in an
uninterpreted algebras cannot point back to
program when the system (of eqgs) is inconsistent.

any sensible error message,

just one, please

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

WRIGHT CAN CHECK 1,000 LINES

£293 i/ /

W/

LT i
l,1989 J'1/9//94
- 11 /

l‘v
ral /
, %

FAGAN CAN CHECK 100 LINES.

YOURS TRULY STRUGGLES WITH
DOZENS OF SMALL AND LARGE
PROGRAMS.

Catching Bugs in the Web of Program Invariants

Cormac Flanagan Matthew Flatt Shriram Krishnamurthi Stephanie Weirich
Matthias Felleisen

ent of Com]

Rice Univer
ston, Texas 7
ormac@cs.r

derive sub-typing constraints from code
24 elormifd) < mgfig) er it < elem|) Componential Set-Based Analysis

solve via the transitive closure through the

: : CORMAC FLANAGAN
constructors in the constraint algebra

Compaqg Systems Research Center

and
MATTHIAS FELLEISEN
Rice University

find type errors by comparing specified
constraints for prime with computed ones

WHAT SPIDER CAN DO

(define (tautology? p)
(cond
[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

infer via componential SBA

(-> (U (Proposition)

Boolean (-> Boolean Proposition)))

Boolean)

(define (tautology? p)
(cond

[(boolean? p) pl

[else (and (tautology? (p true)) (p false))l]))

(-> (M (Proposition)

(U Boolean (-> Proposition)))

Boolean)

(define (tautology? p)
(cond
[(boolean? p) pl

[else (and (tautology? (p true)) (p false))l]))

EVEN WITH 3RD
UNDERGRADUATES

(-> (M (Proposition)

(U Boolean (-> Proposition)))

Boolean)

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

FLANAGAN CAN CHECK 3,000 LINES
STUDENT PROGRAMS

FLANAGAN CAN EXPLAIN ERRORS

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

FLANAGAN CAN CHECK 3,000 LINES
STUDENT PROGRAMS

1995-97- 4 f P
" I

FLANAGAN CAN EXPLAIN ERRORS ~
| 1998

WE CANNOT ANALYZE THE
COMPLETE CODE BASE OF THE
SYSTEM ITSELF OR ITS CONTEXT.
WE CAN'T EVEN ‘MODULARIZE
THE ANALYSIS PROPERLY.

WHAT THEY CAN'T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

o

1,000 1ines ~ 1 min ; ,»/’
2,000 lines ~ 2 min
3,000 1ines ~ 3 min

3,500 1ines ~ 20 min

40,000 lines ~ 10 hrs 4

an analysis of large
programs or a truly modular
analysis of such systems

WHAT THEY CAN'T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

1,000 1lines ~ 1 min

2,000 1ines ~ 2 min

3,000 1ines ~ 3 min

~

3,500 1ines ~ 20 min

40,000 l1lines ~ 10 hrs

o

an analysis of large
programs or a truly modular
analysis of such systems

WHAT THEY CAN'T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

1,000 1lines ~ 1 min

2,000 1ines ~ 2 min

~

3,000 1ines ~ 3 min

1 |3.500 lines ~ 20 min 7

40,000 l1lines ~ 10 hrs

o

{ WE KNOW TRANSITIVE CLOSUREIS |
| BASICALLYON~3) .BUT.; |

an analysis of large
programs or a truly modular
analysis of such systems

WHAT THEY CAN'T DO, ABSOLUTELY NOT, NOT FOR CRYING OUT LOUD

-
=

1,000 1lines ~ 1 min

2.000 lines ~ 2 min ‘ e e e e e e N DA ’
§ WE KNOW TRANSITIVE CLOSUREAS |
I BASICALLY O(NAJ) ..BUT..7 ¢

g B . = P =

3,000 1ines ~ 3 min

O nA8) of large

3 Selectors Make Set-Based Analysis Too Hard a truly modular

f such systems
nd Mitchell

College of Computer and Information Science ' Department of Computer Science
Northeastern University University of Chicago
[}()St()", MA 02115 (_,'hz(jag()" IL {)'()()“)7
{meunier, steck,wand}@ccs.neu. edu robby@cs.uchicago.edu

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

FLANAGAN CAN CHECK 3,000 LINES

FLANAGAN CAN EXPLAIN ERRORS

WE CANNOT ANALYZE THE
COMPLETE CODE BASE OF THE
SYSTEM ITSELF OR ITS CONTEXT.
WE CAN'T EVEN ‘MODULARIZE
THE ANALYSIS PROPERLY.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

FLANAGAN CAN CHECK 3,000 LINES

J's,_)
1995-97 M(/
W
1998
¥/
.“‘///

;‘ "l: M ry
k L N/

FLANAGAN CAN EXPLAIN ERRORS

WE CANNOT ANALYZE THE
COMPLETE CODE BASE OF THE
SYSTEM ITSELF OR ITS CONTEXT.
WE CAN'T EVEN ‘MODULARIZE
THE ANALYSIS PROPERLY.

Modular Set-Based Analysis from Contracts

Philippe Meunier Robert Bruce Findler Matthias Felleisen

Department of Computer Science, College of Computer and Information
University of Chicago Science, Northeastern University
robby@cs.uchicago.edu matthias@ccs.neu.edu

Contracts for Higher-Order Functions

modules comes with contracts

type inference turns contracts into Robert Bruce Findler’ Matthias Felleisen
constraints g Northeastern University

b College of Computer Science
ston, Massachusetts 02115, USA

.. and stores derived constraints per
module

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE DREAM COME TRUE. WE'RE DONE.

2002/03 A

1
o

W/
/

MEUNIER'S MRSPIDE
CAN DO ITALL

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE DREAM COME TRUE. WE'RE DONE.

2002/03 W f /

| /

A ‘201»5 '!,

MEUNIER'S MRSPIDE
CAN DO ITALL

THE TYPES BECOME HUGE AND

INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS,

MODULAR ANALYSIS REMAINS A
PROGRAMMERS DON'T REALLY PIPE DREAM.

WRITE GOOD CONTRACTS.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE DREAM COME TRUE. WE'RE DONE.

2002/03 -y } /
L./ ¢
W, 1»5/

/4

| V4
MEUNIER’S MRSPIDE | gl 'y

CAN DO IT ALL . N

S il

A

A

THE TYPES BECOME HUGE AND .
INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS, n‘

MODULAR ANALYSIS REMAINS A
PROGRAMMERS DON'T REALLY PIPE DREAM.

WRITE GOOD CONTRACTS.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE DREAM COME TRUE. WE'RE DONE.

2002/03 W f /

’) . ,
Mlooes
/7

MEUNIER'S MRSPIDE
CAN DO ITALL

p TG
* <

THE TYPES BECOME HUGE AND %

INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS, n‘

MODULAR ANALYSIS REMAINS A
PROGRAMMERS DON'T REALLY PIPE DREAM.

WRITE GOOD CONTRACTS.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE DREAM COME TRUE. WE'RE DONE.

2002/03 . | /

) /! et
W05 N\
/

MEUNIER'S MRSPIDE
CAN DO ITALL

p TG
* <

THE TYPES BECOME HUGE AND %

INCOMPREHENSIBLE. EVEN WITH GOOD CONTRACTS, 0‘

MODULAR ANALYSIS REMAINS A
PROGRAMMERS DON'T REALLY PIPE DREAM.

WRITE GOOD CONTRACTS.

LET'S ADD TYPES INCREMENTALLY
T0 A CODE BASE AND MAKE SURE
THE COMBINATION IS SOUND.

ADD TYPES INCREMENTALLY

Proposition = Boolean | (Boolean -> Proposition)

Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda () true)) true)
® £ - (define (tautology? p)

(tautology?
(define (tautology? p)
(check-expect
P (cond
(cond
lambda (x) (tautology?
[(boolean? p) pl
[(boolean? p) pl
(or x y))))
[else (and (tautology? (p true))
[else (and (tautology? (p true))
false)
?
lambda (x) (tautology? (p false)))1))
(tautology? (p false)))1))
(or x y))))
;; Proposition = Boolean | (Boolean -> Proposition)
lambda (x)
false)
;; Proposition -> Boolean
Proposition = Boolean | (Boolean -> Proposition) (IR S2RY)
(check-expect (tautology? (lambda (_) true)) true)
false)

Proposition -> Boolean
Proposition = Boolean | (Boolean -> Proposition)

(check-expect

i ?
(check-expect (tautology? (lambda (_) true)) true) (CeEEtautal cevige)

Proposition -> Boolean

(tautology?

(check-expect (cond

(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?

ADD TYPES INCREMENTALLY

;s Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

;s Proposition = Boolean | (Boolean -> Proposition)

;s Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(or x y))))
;; Proposition -> Boolean
false)
(check-expect (tautology? (lambda (_) true)) true)

You want to add types.

And now you have two problems:

You should not change code that works, other
than adding type annotations and definitions.

Respect existing idioms of the language.

You want the existing untyped code to play well
with the newly typed code. Respect the central
theorem of programming languages, type
soundness.

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology?
(p false)))1))

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

(define (tautology? p)

pl

autology? (p true))

autology? (p false)))l))

blean -> Proposition)

oda (_) true)) true)

(lambda (_) true)) true)

ADD TYPES INCREMENTALLY

Proposition = Boolean | (Boolean -> Proposition)

Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda () true)) true)
® £ - (define (tautology? p)

(tautology?
(define (tautology? p)
(check-expect
P (cond
(cond
lambda (x) (tautology?
[(boolean? p) pl
[(boolean? p) pl
(or x y))))
[else (and (tautology? (p true))
[else (and (tautology? (p true))
false)
?
lambda (x) (tautology? (p false)))1))
(tautology? (p false)))1))
(or x y))))
;; Proposition = Boolean | (Boolean -> Proposition)
lambda (x)
false)
;; Proposition -> Boolean
Proposition = Boolean | (Boolean -> Proposition) (IR S2RY)
(check-expect (tautology? (lambda (_) true)) true)
false)

Proposition -> Boolean
Proposition = Boolean | (Boolean -> Proposition)

(check-expect

i ?
(check-expect (tautology? (lambda (_) true)) true) (CeEEtautal cevige)

Proposition -> Boolean

(tautology?

(check-expect (cond

(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?

ADD TYPES INCREMENTALLY

(define (tautology? p)
(cond
[(boolean? p) pl

[else (and (tautology? (p true)) (tautology? (p false)))]l))

Cm(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

ADD TYPES INCREMENTALLY

(define (tautology? p)
(cond
[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

Cm(tautology? true)

(tautology? (lambda () (lambda () (or x vy))))

ADD TYPES INCREMENTALLY

; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition) (1909
(check-expect (tautology? (lambda (_) true)) true) oy
;5 Proposition -> Boolean
false)

(check-expect

check-expect (tautology? (lambda (_) true)) true)
(® (gy? (« (define (tautology? p)

(tautology?
heck- t
(check-expec (cond
lambda (x) tautol ?
Geenisanesy [(boolean? p) pl
(or x y))))
[else (and (tautology? (p true))
false)
?
lambda (x) (tautology? (p false)))1))
(or x y))))
lambda (x)
false)
(or x y))))
false)

;; Proposition = Boolean | (Boolean -> Proposition)

(define (tautology? p)

;; Proposition -> Boolean

(cond

(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl I N
Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?

Interlanguage Migration: From Scripts to Programs

Sam Tobin-Hochstadt . _ Matthias Felleisen
Northeastern University o Northeastern University
Boston, MA Boston, MA

samth@ccs.neu.edu ' matthias@ccs.neu.edu

The Design and Implementation of Typed Scheme

Sam Tobin-Hochstadt Matthias Felleisen

PLT, Northeastern University
Boston, MA 02115

Logical Types for Untyped Languages *

Sam Tobin-Hochstadt Matthias Felleisen

Northeastern University
{samth,matthias } @ccs.neu.edu

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda (_) true)) true)
P & - (define (tautology? p)

(tautology?

(define (tautology? p)

(check-expect
(cond

BSR (define-type Proposition (U Boolean (Boolean -> Proposition)))

tautology? (Proposition -> Boolean))

false)

;s Propos

; Propos

(check-ex

(check-ex
(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda (_) true)) true)
P & - (define (tautology? p)

(tautology?

(define (tautology? p)

(check-expect
(cond

BSR (define-type Proposition (U Boolean (Boolean -> Proposition)))

tautology? (Proposition -> Boolean)) - PROPOSITION

false)

;s Propos

; Propos

(check-ex

(check-ex
(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda (_) true)) true)
P & - (define (tautology? p)

(tautology?

(define (tautology? p)

(check-expect
(cond

BSR (define-type Proposition (U Boolean (Boolean -> Proposition)))

tautology? (Proposition -> Boolean)) - PROPOSITION

false)

: BOOLEAN

;s Propos
; Propos

(check-ex

(check-ex
(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?

ADD TYPES INCREMENTALLY: ACCOMMODATING GROWN PROGRAMMING IDIOMS

; Proposition = Boolean | (Boolean -> Proposition)

;; Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda (_) true)) true)
P & - (define (tautology? p)

(tautology?

(define (tautology? p)

(check-expect
(cond

BSR (define-type Proposition (U Boolean (Boolean -> Proposition)))

(: tautology? (Proposition -> Boolean)) - PROPOSITION

false)

: BOOLEAN

;s Propos

- f : (-=> BOOLEAN PROPQPSITION)

(check-ex

(check-ex
(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl
(tautology? 2 ;; Proposition = Boolean | (Boolean -> Proposition)

(check-expect

[else (and (tautology? "
(p true)) ;; Proposition -> Boolean

(tautology?

(tautology? (check-expect (tautology? (lambda (_) true)) true)
(p false)))1))

(check-expect

(tautology?

ADD TYPES INCREMENTALLY:

ACCOMMODATING GROWN PROGRAMMING IDIOMS

ean | (Boolean ->

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

Proposition)

lambda (x)

(or x y))))

false)

(define (tautology? p)

Sam Tobin-Hochstadt

[(boolean? p) pl
[else (and (tautology?
(p true))

(tautology?

(p false)))1))

lambda (x)
Propositi Boolean | (Boolean -> Proposition)
(or x y))))
P iti Bool
g false)

(check-expect (tautology? (lambda () true)) true)
® £ - (define (tautology? p)

(check-expect

Matthias Felleisen

Northeastern University
{samth,matthias } @ccs.neu.edu

ICFP 2010

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

; Proposition = Boolean | (Boolean -> Proposition)

;5 Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

lambda (x)

(or x y))))

false)

(define (tautology? p)

(cond

[(boolean? p) pl

[else (and (tautology?

(p true))

(tautology?

(p false)))1))

lambda (x)
;s Proposition = Boolean | (Boolean -> Proposition)
module A o
; Proposition -> Boolean
false)

(check-expect (tautology? (lambda (_) true)) true)
P & - (define (tautology? p)

(check-expect
P (cond

(tautology?

[(boolean? p) pl

[else (and (tautology? (p true))

(tautology? (p false)))]))

false)

; Proposition = Boolean | (Boolean -> Propositi

;; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

module B

(tautology?

(require A)

(big? “hello world”)

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

; Proposition = Boolean | (Boolean -> Proposition)

;5 Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

module A

;s Proposition = Boolean | (Boolean -> Proposition)

; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

(check-expect (tautology? (lambda (_) true)) true)

[(boolean? p) pl

(check-expect

[else (and (tautology?
(p true))

(tautology?

(tautology?
(p false)))1))

(require A)

lambda (x)

(or x y))))

false)

(define (tautology? p)

(cond

[(boolean? p) pl

[else (and (tautology? (p true))

(tautology? (p false)))]))

module B

(big? “hello world”)

;s Proposition = Boolean | (Boolean -> Proposition)

lambda (x)
;s Proposition -> Boolean
;; Proposition = Boolean | (Boolean -> Proposition)
(or x y))))
(check-expect (tautology? (lambda (_) true)) true)
;5 Proposition -> Boolean
false)
(check-expect (p rov.i d e .
check-expect (tautology? (lambda true true
(g (7 e » J (define (tautology? p)
(tautology?
(big? (-> Integer Bool)) (check-expect cond
con
tautology?
lambda (x) (gy [(boolean? p) pl

(or x y)))) [else (and

(tautology? (p true))

(tautology? (p false)))l))

Interlanguage Migration: From Scripts to Programs

;5 Proposition =

Sam Tobin-Hochstadt DLS 2006 Matthias Felleisen

Northeastern University Northeastern University
— Boston, MA Boston, MA

samth@ccs.neu.edu matthias@ccs.neu.edu

;s Proposition -

(check-expect

?
(tautology? [(boolean? p) pl

[else (and (tautology?
(p true))

module B

(require A)

(tautology?
(p false)))1))

(big? “hello world”)

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

; Proposition = Boolean | (Boolean -> Proposition)

;5 Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

lambda (x)

(or x y))))

false)

(define (tautology? p)

(cond

[(boolean? p) pl

[else (and (tautology?
(p true))

(tautology?
(p false)))1))

(require A)

(provvide

module A

lambda (x)
;s Proposition = Boolean | (Boolean -> Proposition)
(or x y))))
; Proposition -> Boolean
false)

(check-expect (tautology? (lambda (_) true)) true)
P & - (define (tautology? p)

(check-expect
P (cond

(tautology?

[(boolean? p) pl

[else (and (tautology? (p true))

lambda (x)

(or x y))))

false)

(tautology? (p false)))]))

(all-from

(require £)

(big? “hello world”)

ADD TYPES INCREMENTALLY: PROTECTION FROM CONTRACTS

; Proposition = Boolean | (Boolean -> Proposition)

;5 Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

lambda (x)

(or x y))))

false)

(define (tautology? p)

(cond

[(boolean? p) pl

[else (and (tautology?
(p true))

(tautology?
(p false)))1))

module A

;s Proposition = Boolean | (Boolean -> Proposition)

; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

(require A)

(provvide

(all-from A))

lambda (x)

(or x y))))

false)

(define (tautology? p)

(cond

[(boolean? p) pl

[else (and (tautology? (p true))

(tautology? (p false)))]))

(big? “hello world”)

; Proposition = Boolean | (Boolean -> Proposition)

;s Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

lambda (x)

(or x y))))

false)

;5 Proposition = Booled

; Proposition -> Bool

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

Sam Tobin-Hochstadt

PLT, Northeastern University
Boston, MA 02115

(define (tautology? p)

(cond

[(boolean? p) pl

[else (and (tautology?
(p true))

(tautology?
(p false)))1))

(require A)
(provvide

(all-from A))

;5 Proposition = Boolean | (Boolean -> Proposition)

; Proposition -> Boolean

(check-expect (tautology? (lambda (_) true)) true)

(check-expect

(tautology?

The Design and Implemel;tation of Typed Scheme

Matthias Felleisen

POPL 2008

tology?

lambda (x)

(or x y))))

false)

(define (tautology? p)

(cond

[(boolean? p) pl

[else (and (tautology? (p true))

(tautology? (p false)))]))

(big? “hello world”

bsition)

) true)

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010 THE CONTRACTS WORK

THE IDEA IS WORKED OUT

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006- 10 THE CONTRACTS WORK

THE IDEA IS WORKED OUT

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010 THE CONTRACTS WORK

THE IDEA IS WORKED OUT

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

THE CONTRACTS WORK

THE IDEA IS WORKED OUT

Gradual Typing for First-Class Classes ™

THERE IT

IS] Asumu Takikawa T. Stephen Strickland Christos Dimoulas
Sam Tobin-Hochstadt =~ Matthias Felleisen

1
A PLT, Northeastern University
?4?4'4,,: {asumu, sstrickl, chrdimo, samth, matthias}@ccs.neu.edu

——— THE EXISTING IDIOMS.
Towards Pract. | Gradual Typing®

Asumu Takikawa', Dan. | Feltey', Earl Dean?, Matthew Flatt®, [RACTS WORK
Robert Bruce Findler?, S. m Tobin-Hochstadt?, and Matthias
Felleisen!

1 Northeastern University
Boston, Massachusetts JRKED OUT
asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu
Indiana University
Bloomington, Indiana
samth@cs.indiana.edu, edean@cs.indiana.edu
University of Utah
Salt Lake City, Utah
mflatt@cs.utah.edu
Northwestern University
Evanston, Illinois
robbyQeecs.northwestern.edu

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

2006-2010 THE CONTRACTS WORK

THE IDEA IS WORKED OUT

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

20042010 THE CONTRACTS WORK
WE HAVE A DESIGN FOR 00 RACKET.

THE IDEA IS WORKED OUT

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

20042080 THE CONTRACTS WORK

WE HAVE A DESIGN FOR 00 RACKET.

THE IDEA IS WORKED OUT

WE HAVE AN IMPLEMENTATION.

THE UPS AND DOWNS OF ONE OF MY OWN RESEARCH TOPICS

‘ bt I THE TYPE SYSTEMS ACCOMMODATES
THE EXISTING IDIOMS.

20042080 THE CONTRACTS WORK

WE HAVE A DESIGN FOR 00 RACKET.

THE IDEA IS WORKED OUT

WE HAVE AN IMPLEMENTATION.

; Proposition = Boolean | (Boolean -> Proposition)

;s Proposition -> Boolean lambda (x)
lambda (x)
;; Proposition = Boolean | (Boolean -> Proposition)
(check-expect (tautology? (lambda (_) true)) true) (or x y))))
(or x y))))
;; Proposition -> Boolean
(check-expect false)
false)

(check-expect (tautology? (lambda (_) true)) true) X
(define (tautology? p)

(tautology?
(define (tautology? p)
(check-expect
(cond
(cond
lambda (x) (tautology?
[(boolean? p) pl
[(boolean? p) pl
(or x y))))

[else (and (tautology? (p true))

[else (and (tautology? (p true))

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen
Northeastern University, Boston, MA

POPL 2016

PERFORMANCE. PERFORMANCE.
PERFORMANCE.

BACK TO THIS LOVE AND PHD BUSINESS.

IS SOUND GRADUAL TYPING DEAD?

TYPE INFERENCE

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

IS SOUND GRADUAL TYPING DEAD?

TYPE INFERENCE

IS SOUND GRADUAL TYPING DEAD?

TYPE INFERENCE

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

AL TYPING DEAD?

PROGRAM

TYPE INFERENCE

IS SOUND GRADUAL TYPING DEAD?

TYPE INFERENCE

WHAT DO YOU DO WHEN YOU GET INTO SUCH A BAD SITUATION?

AL TYPING DEAD?

TYPE INFERENCE

PhD research, like a
relationship, has its

ups and downs. The memories of
“falling in love” can
get you going again.

The downs can feel

very down. Really.

PHD RESEARCH: BE PREPARED FOR UPS AND DOWNS

PhD research, like a
relationship, has its

ups and downs. The memories of

“falling in love” can
get you going again.

——

‘;I'he ups feel good.

4 %‘, |

/

(l‘ THE MOTIVATION NEEDS AN 127100 AL ELEMENT.

PhD research, like a
relationship, has its
ups and downs.

The memories of
“falling in love” can
get you going again.

The downs can feel

very down. Really.

» And your advisor’s emotional
wavelength matters, a lot.

» So choose your advisor well.

PHD RESEARCH: BE PREPARED FOR UPS AND DOWNS

PhD research, like a
relationship, has its

ups and downs. The memories of
“falling in love” can
get you going again.

—

Tl’\g INII\\AIY\C’ 7~ N 'FQQI

' !

» And your advisor’s emotional
wavelength matters, a lot.

» So choose your advisor well.

THE END

Herrn G. Dopfer, my high school
mathematics teacher, for encouraging me to
not take English, focus on math and physics,

and go to university, a first for our family » Daniel Friedman, my advisor,
for showing me what an advisor
can do for a PhD student

» And two dozen PhD students, who had
the guts to work with me and believed
| could be their scientific and
emotional guide

QUESTIONS?

