
MATTHIAS FELLEISEN, RACKETEER

TYPES ARE LIKE THE WEATHER, TYPE
SYSTEMS ARE LIKE WEATHERMEN

TYPES @ STRANGE LOOP

Mr. Misunderstood

Types Types

MY OWN PATH TO APPRECIATION

1981 Prolog

1984 Scheme 84

1985 Russel

1987 Types for Scheme Robert “Corky” Cartwright

1978 Algol 60, Simula 67, Pascal, C

1991 The Meaning of Types

1994 Soft Scheme, HM-based inference Andrew Wright

Racket, née PLT Scheme Matthew Flatt1995

1997 MrSpidey, SBA-based inference

1993 CMU: ML

Cormac Flanagan

2005 Typed Racket, big-bang & universe Sam Tobin-Hochstadt

Harper, Lee, Reynolds & Scott

MY OWN PATH TO APPRECIATION

1981 Prolog

1984 Scheme 84

1985 Russel

1987 Types for Scheme

1978 Algol 60, Simula 67, Pascal, C

1991 The Meaning of Types

1994 Soft Scheme, HM-based inference

Racket, née PLT Scheme1995

1997 MrSpidey, SBA-based inference

1993 CMU: ML

2005 Typed Racket, big-bang & universe} Development & Maintenance

TWO TYPES OF TYPES

int x = 10;

In some languages (C), types are
merely instructions to the compiler.

int x = 10;

In others (ML), types assist
developers with maintaining

software

MAINTENANCE OF LARGE CODE BASES

int x = 10;

In others (ML), types assist
developers with maintaining

software

Maintain >>500,000 of Racket

TWO MEANINGS OF “DEVELOP”

int x = 10;

In others (ML), types assist
developers with maintaining

software

Maintain 100Kloc — 500Kloc

develop re-develop re-developdeploy deploy re-develop

TYPES ARE LIKE THE WEATHER …

THERE IS NOTHING YOU CAN DO ABOUT IT. WEATHER HAPPENS.

THERE IS NOTHING YOU CAN DO ABOUT IT. COMPUTATION HAPPENS.

OFTEN, EVERYTHING’S JUST FINE. AND THE ANSWER IS ALWAYS

BUT IF YOU’RE OLD ENOUGH, YOU REMEMBER THE BLUE SCREEN OF DEATH.

AND YES, YOU CAN GET THOSE ON UNIX AND LINUX SYSTEMS, TOO.

PROGRESS! ALL YOU GOT WAS A NULL POINTER EXCEPTION.

WELL, YES. EXCEPTIONS EXIST IN YOUR FAVORITE LANGUAGE, TOO.

TYPE SYSTEMS ARE LIKE THE WEATHERMEN

WEATHERMEN USE MATHEMATICAL MODELS TO PREDICT THE WEATHER

‣ This prediction is partial but useful.

‣ It is mostly accurate.

WEATHERMEN USE MATHEMATICAL MODELS TO PREDICT THE WEATHER

some partial predictions

and the emphasis is
on mostly in accurate

LANGUAGES USE MATHEMATICAL MODELS TO PREDICT COMPUTATIONS

‣ This prediction is partial but useful.

‣ It is mostly accurate.

LANGUAGES USE MATHEMATICAL MODELS TO PREDICT COMPUTATIONS

(fn [x] x) : “whatever
you give me, I give back”

(fn [x] (* x x)) : “give
me a number, and I give
you a number back”And what about accuracy?

TAKE AWAY 1

▸ Types are the language of prediction.

▸ Type systems use them to make more predictions.

▸ The questions are:

▸ Is that useful?

▸ Is it meaningful?

THE MEANING OF TYPES ~ SOUNDNESS

A COMPUTATION IS A RANDOM WALK IN THE UNIVERSE OF BITS.

0010 1000
0100 0110

0110 1110

+

What if these bits don’t
represent numbers?

(def main []
… (+ x 23) …)

This + means machine
addition, and it doesn’t

care where the bits
come from.

Can that happen?

CAN IT GO WRONG? CAN WE FALL OFF THE CLIFF?

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

Yes, in an Unsafe
Language. And Life

Goes on. Bits are bits.

IT DEPENDS.

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

What happens next?

IN AN UNSOUND LANGUAGE SUCH AS C++:

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

If you’re lucky:

The computation
ends in a segfault.

IN AN UNSOUND LANGUAGE SUCH AS C++:

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

And if not:
The computation

ends in ’42’ and you
never, ever find out

that something went
wrong.

Problematic bit manipulations may escape discovery
during testing, even if your testing covers the particular

path on which things go wrong.

IN AN UNSOUND LANGUAGE SUCH AS C++:

CATASTROPHE!

Now imagine a program that controls
your grandmother’s heart pacemaker.

IN AN SOUND LANGUAGE SUCH AS ML:

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

And in a sound
language?

IN AN SOUND LANGUAGE SUCH AS ML:

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

It immediately
raises an EXN.

IN AN SOUND LANGUAGE SUCH AS ML:

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

Are developers
better off?

THIS IS THE
SOURCE (THOUGH NOT

NECESSARILY THE
LOGICAL BUG).

IN AN SOUND LANGUAGE SUCH AS ML:

0010 1000
0100 0110

0110 1110

+

(def main []
… (+ x 23) …)

Are users
better off? SOMETHING

BAD HAPPENED.
SOMETHING WORSE MAY

HAVE BEEN
PREVENTED.

TAKE AWAY 2

▸ As a user, don’t trust
anything a program
outputs.

▸ As a developer, beware
of programs that seem to
work.

▸ Even segfaults can
happen far, far away in a
different galaxy.

▸ As a user, consider
yourself lucky when you
encounter an exception.

▸ As a developer, an EXN
puts you much closer to
the bug than a segfault.

▸ in an unsound language ▸ in an sound language

The benefits of
soundness make up

a wide spectrum,
but they shouldn’t

be ignored.

IS CLOJURE SOUND?

Clojure comes with
a single type: “the
program will run”.

Bob Harper citing Dana Scott

A language with a
single type can be
sound.

Matthias with Andrew Wright

THE USEFULNESS OF TYPES

THE EXPRESSIVE POWER OF TYPES

A single type isn’t very useful, except that it frees
the developer from writing it down everywhere.

(let [m (:adam 1 :eve “paradise”)]

 .. do stuff ..)

TheOneType

(def f [x] … x …)

(fn f [] “hello world”)

THE EXPRESSIVE POWER OF TYPES

In an imperative world, Void is almost like the
one type that some languages provide.

for x in Map do {

 .. do stuff ..}

Void

void f()
… x …

f = “hello world”;

THE EXPRESSIVE POWER OF TYPES

Clojure developers have many types in their mind.
They just don’t have a language to write them down.

(let [m (:adam 1 :eve “paradise”)]

 .. do stuff ..)

-> STRING

(def f [x] … x …)

(fn f [] “hello world”)

MAP

[-> STRING] -> STRING

WE CAN ALWAYS WRITE DOWN TYPES AS COMMENTS.

Developers have
these thoughts
because this is how
they ‘predict’ that
their programs
work correctly.

But some
languages do not
provide the means
to write down these
thoughts other than
in comments.

And that is a problem, because code is written
for others to understand the developers
thoughts, and it accidentally runs on computers.

;; start reading here:

(define (compile-block decls statements next-label context add-to-top-level?)

 (let* ([labels-with-numbers (map car statements)]

 [labels (map (lambda (l)

 (if (stx-number? l)

 (datum->syntax l (string->symbol (format "~a" (syntax-e l))) l l)

 l))

 labels-with-numbers)]

 .. 138 more lines like this ..))

SO HERE IS A RACKET PROGRAM FROM 15 YEARS AGO

A MISTAKE!
OH NO!!

20 MINUTES LATER; THE L SHOULD HAVE
BEEN A 1, EASY!

;; start reading here:

;; [Listof Declarations] [Listof Statement] [Listof Symbol] Boolean -> Code

(define (compile-block decls statements next-label context add-to-top-level?)

 (let* ([labels-with-numbers (map car statements)]

 [labels (map (lambda (l)

 (if (stx-number? l)

 (datum->syntax l (string->symbol (format "~a" (syntax-e l))) l l)

 l))

 labels-with-numbers)]

 .. 138 more lines like this ..))

WE LEARNED OUR LESSON. WE WROTE DOWN COMMENTS!

WHAT’S THE PROBLEM NOW?4 INPUT TYPES FOR 5 PARAMETERS!4 INPUT TYPES FOR 5 PARAMETERS!

1 2 3 4

A B C D E

;; start reading here:

(: compile-block [Listof Declarations] [Listof Statement] [Listof Symbol] [Listof Symbol] Boolean

 -> Code)

(define (compile-block decls statements next-label context add-to-top-level?)

 (let* ([labels-with-numbers (map car statements)]

 [labels (map (lambda (l)

 (if (stx-number? l)

 (datum->syntax l (string->symbol (format "~a" (syntax-e l))) l l)

 l))

 labels-with-numbers)]

 .. 138 more lines like this ..))

WRITE DOWN TYPES WHEN YOU STRUGGLE TO RECONSTRUCT THEM, AND GET THEM CHECKED.

TYPES ARE CHECKED A MAINTAINER CAN RELY ON THEM

ccs.neu.edu/home/matthias/HtDP2e/MIT Press

TYPES ALSO HELP DEVELOP MAINTAINABLE CODE IN THE FIRST PLACE

… even in an Untyped language such as Clojure …

http://ccs.neu.edu/home/matthias/HtDP2e/index.html

TAKE AWAY 3

▸ All developers “think” types while they create code.

▸ In some languages they can’t write down those thoughts
and get them cross-checked with the program.

▸ If they can’t write down types, they must reconstruct them.

▸ That costs time (with spouses, kids, vacation) and money.

▸ What can we do about this?

CAN’T WE JUST INFER THE TYPES?

HOW ABOUT TYPE INFERENCE? HASKELL IS SO COOL.

No.

HOW ABOUT TYPE INFERENCE? ML HAS IT, TOO.

No, it’s really not a good idea.

HOW ABOUT TYPE INFERENCE?

Why are you asking again? I said ‘no’ twice.

CAN’T WE JUST RECONSTRUCT THEM FROM THE SOURCE TEXT?

▸ Hindley-Milner type inference (ML, Haskell)

▸ Hindley-Milner with revised type algebra

▸ type inference with set-based analysis

▸ … with support from contracts

after 15 years of research

FUNDAMENTALLY, WE NEED A LANGUAGE OF TYPES
FIRST, AND UNTYPED LANGUAGES DON’T HAVE ONE

BY DEFINITION.

ADDING TYPES TO AN UNTYPED LANGUAGE

HOW ADDING EXPLICIT STATIC TYPES OUGHT TO WORK

Just add types.
Otherwise code
must not change,
because it works.

IdiomaticWhen you have a code
base of 500,000 lines,
you cannot add types
to all of this at once.

Incremental

The addition of types ought
to narrow down the source
of exceptions to cut down
on future development time.

Sound

SOUNDNESS IN AN UNTYPED WORLD

(define (f x) ;; [NEListof Number] -> Number

 .. (g x) ..)

(define (g y) ;; [NEListof Number] -> Number

 .. (h y) ..)

(define (h z) ;; [NEListof Number] -> Number

 .. (first z) ..)

(f ‘())

WHAT’S THE PROBLEM?

SOUNDNESS IN AN TYPED WORLD

(define (f x) :[NEListof Number] -> Number

 .. (g x) ..)

(define (g y) :[NEListof Number] -> Number

 .. (h y) ..)

(define (h z) :[NEListof Number] -> Number

 .. (first z) ..)

(f ‘())

THIS IS NOT NON-EMPTY.

;; approximate area of shape

(((define (area~ s)

 (cond

 [(circle? s) (area~ci s)]

 [(square? s) (area~sq s)]

 [(cons? s)

 (+ (area~ (car s))

 (area~ (cdr s)))]))

UNTYPED IDIOMS COME FROM SET-BASED THINKING AND BASIC LOGIC

;; shape is one of:

;; — [square size]

;; — [circle radius], or

;; — a cons-pair of two shapes

;; examples:

(define s [square 1])

(define c [circle 2])

(define p (cons s c))

SHAPE

SQUARE

CIRCLE

SHAPE

SHAPE

One and the same
variable has different
types — depending
on where it occurs.

(: area~ (-> Shape Number))

(((define (area~ s)

 (cond

 [(circle? s) (area~ci s)]

 [(square? s) (area~sq s)]

 [(cons? s)

 (+ (area~ (car s))

 (area~ (cdr s)))]))

A TYPE SYSTEM FOR AN UNTYPED LANGUAGE MUST UNDERSTAND THIS TOO.

;; shape is one of:

;; — [square size]

;; — [circle radius], or

;; — a cons-pair of two shapes

;; examples:

(define s [square 1])

(define c [circle 2])

(define p (cons s c))

SHAPE

SQUARE

CIRCLE

SHAPE

SHAPE

Occurrence typing
combines simple set-
based reasoning with

basic logic.

HOW ARE TYPES ADDED INCREMENTALLY?

In Typed Racket,
developers must
equip entire
modules with type
annotations.

In Reticulated
Python, developers
may add types to
any name, whenever,
wherever .

SOUNDNESS REVISITED

#lang racket

(provide redo)

;; String Natural -> String

(define (redo s n))

A PLAIN RACKET MODULE

EXPORT ONE FUNCTION

THE FUNCTION

AND A COMMENT ABOUT ITS TYPE

SOUNDNESS REVISITED

#lang racket

(provide redo)

;; String Natural -> String

(define (delete s n)

 .. (string-ref s n) ..)

#lang racket

(require “redo.rkt”)

.. (delete s0 n0) ..

.. (delete s1 n1) ..

redo.rkt

SOUNDNESS REVISITED

#lang typed/racket

(provide redo)

(: delete (String Natural -> String))

(define (delete s n)

 .. (string-ref s n) ..)

#lang racket

(require “redo.rkt”)

.. (delete s0 n0) ..

.. (delete s1 n1) ..

redo.rkt

SOUNDNESS REVISITED

#lang typed/racket

(provide redo)

(: delete (String Natural -> String))

(define (delete s n)

 .. (string-ref s n) ..)

#lang racket

(require “redo.rkt”)

.. (delete s0 n0) ..

.. (delete 5 “hello”) ..

redo.rkt

Function abuse in
an unchecked module

What should happen?

WHAT’S THE PROBLEM?

SOUNDNESS REVISITED

#lang racket

(provide redo)

;; String Natural -> String

(define (redo s n))

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

Function abuse in an
unchecked module far,
far away

What should happen
when the mistake

happens far away?

TYPED RACKET

SOUNDNESS REVISITED

#lang racket

(provide redo)

;; String Natural -> String

(define (redo s n))

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

Function abuse in
an unchecked module

Typed Racket
generates contracts
between TYPED and
UNTYPED modules,
& contract violations
pinpoint the source,

even far, far away.

TYPED RACKET

SOUNDNESS REVISITED

#lang racket

(provide redo)

;; String Natural -> String

(define (redo s n))

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

#lang racket

(require “redo.rkt”)

.. (redo s0 n0) ..

.. (redo s1 n1) ..

Function abuse in
an unchecked module

Once again, the
developer saves time.

TYPED RACKET

What happens if we don’t generate contracts?

DO WE NEED TO KNOW THIS?

#lang untyped

(require "voting-machine.rkt")

.. (setup '("Donald Duck" ..)) ..

.. (update "Donald Duck" -234) ..

#lang typed

(provide setup update ..)

(: setup (-> [Listof Name] a))

(define (setup lon) ..)

(: update (-> Name N a))

(define (update name precinct) ..)

voting-machine.rkt

No Contracts.

Nothing. The computation
proceeds and Donald
Duck loses 234 votes.
Nobody will ever notice.

WHAT’S THE PROBLEM HERE?

Without contracts, you get all the unsoundness of C++ back.

DO WE NEED TO KNOW THIS?

And that’s precisely what
Typed Clojure does ~ it

masks the bugs.

TAKE AWAY 4

▸ .. must speak the grown idioms.

▸ .. must allow gradual additions.

▸ .. ought to come with soundness because

▸ it reduces developer time

▸ it won’t mask errors

Types for Untyped languages

THE COST IS AN OPEN PROBLEM.

THE BIG TAKE-AWAY

THE BIG TAKE AWAY

Always code as if the guy who ends
up maintaining your code will be a
violent psychopath who knows where
you live. John F. Woods

http://groups.google.com/group/comp.lang.c++/browse_thread/thread/ad808ee729f8957c/e977f9cd160865e9?q=Always+code+as+if+the+guy+who+ends+up+maintaining+your+code+will+be+a+violent+psychopath+who+knows+where+you+live.

THE BIG TAKE-AWAY: VALUE YOUR DEVELOPERS AND USERS

UNTYPED
PROGRAMMING MAKES

FOR A GOOD START

ADD TYPES IF YOU
VALUE YOUR

DEVELOPER’S TIME.
ADD TYPES IF YOU

VALUE YOUR
GRANDMOTHER’S LIFE.

WE ARE BUILDING HYBRID
LANGUAGES BUT TO SOME

EXTENT, IT’S ALL STILL
RESEARCH.

THE END

▸ Matthew Flatt, the Racket Man

▸ Robby Findler, Dr. Racket, a
Man with Contracts

▸ Cormac Flanagan, Mr. Spidey

▸ Stevie Strickland, with Class

▸ Sam Tobin-Hochstadt, Typed

▸ Asumu Takikawa, TOOR

▸ Ben Greenman and Max New,
Performance Matters

▸ Alex Knauth, Alexis King, 2
wonderful freshmen

▸ … and many many others for
contributions to the code base

▸ and even more for theoretical
underpinnings, ideas, etc.

QUESTIONS?

