TYPES ARE LIKE THE WEATHER, TYPE
SYSTEMS ARE LIKE WEATHERMEN

MATTHIAS FELLEISEN, RACKETEER

S0

Two four six eight.

Who do we appreciate?

Types We think it's Types

Mr. Misunderstood

MY OWN PATH TO APPRECIATION

1985

1993

1978

1981

1984

1987

1991

1994

1995

1997

2005

Algol 60, Simula 67, Pascal, C

Prolog

Scheme 84

Russel

Types for Scheme

The Meaning of Types

CMU: ML
Soft Scheme, HM-based inference
Racket, née PLT Scheme
MrSpidey, SBA-based inference

Typed Racket, big-bang & universe

Robert “"Corky” Cartwright

Harper, Lee, Reynolds & Scott
Andrew Wright

Matthew Flatt

Cormac Flanagan

Sam Tobin-Hochstadt

MY OWN PATH TO APPRECIATION

1978 Algol 60, Simula 67, Pascal, C
1981 Prolog
1984 Scheme 84

1985 Russel
1987 Types for Scheme
1991 The Meaning of Types

1993 CMU: ML
1994 Soft Scheme, HM-based inference
1995 Racket, née PLT Scheme
1997 MrSpidey, SBA-based inference Development & Maintenance
2005 Typed Racket, big-bang & universe

TWO TYPES OF TYPES

MAINTENANCE OF LARGE CODE BASES

TWO MEANINGS OF “DEVELOP”

TYPES ARE LIKE THE WEATHER ...

THERE IS NOTHING YOU CAN DO ABOUT IT. WEATHER HAPPENS.

THERE IS NOTHING YOU CAN DO ABOUT IT. COMPUTATION HAPPENS.

OFTEN, EVERYTHING'S JUST FINE. AND THE ANSWER IS ALWAYS

BUT IF YOU'RE OLD ENOUGH, YOU REMEMBER THE BLUE SCREEN OF DEATH.

An error has occurred. To continue:
Press Enter to return to Windouws, or

Press CTRL+ALT+DEL to restart your computer. If you do this,
you will lose any unsaved information in all open applications.

Error: OE : 016F : BFF9B3D4

Press any key to continue

AND YES, YOU CAN GET THOSE ON UNIX AND LINUX SYSTEMS, TOO.

HP-UX 11i v3 coreadm *

caﬂadm

global core file pattern:
init(1M) core file pattern:

global core dumps: disabled
per-process core dumps: enabled
global setid core dumps: disabled

per-process setid core dumps: disabled

e _
Salesforce.com Integration Error

Fault Code (0}, java.lang.MullPointerException
at common.udd.object. XmiRpcEntityDescribe. addFields{XmlIRpcEntityDescribe. java:515)
at common.udd,object, XmIRpcEntityDescribe, getDescribe(XmIRpcEntityDescribe. java: 75)
at common.udd.object, EntityObject, get¥mlRpcDescribe(EntityObject . java: 4137)
at common. api. xmirpc. XmiRpcDispatcher.innerDispatch{(XmlIRpcDispatcher.java: 396)
at common.api.xmirpc. XmiRpcDispatcher . dispatch(¥mlRpcDispatcher . java: 280)
at common. api.xmirpc. XmiRpcDispatcher . innerExecute{XmlRpcDispatcher . java: 255)
at common.api.xmirpc. XmiRpcDispatcher . execute{XmlRpcDispatcher.java: 118)
at helma.xmirpc, ¥miRpcServer$Worker . execute(XmiRpcServer.java: 161)

at helma.xmirpc. ¥miRpcServer . execute(XmlRpcServer.java: 97)

at common. api. xmlrpc. Api,doPosk{ Api.java: 253)

at javax.serviet, http, HekpServiet, service(HttpServlet. java: 152)

at javax,.servlet, http HtkpServlet, service(HtkpServlet, java: 90)

at com.caucho.server . dispatch. ServietFilterChain, doFilter(ServletFilterChain, java: 99)
at system.filter . PreGzipFilter

WELL, YES. EXCEPTIONS EXIST IN YOUR FAVORITE LANGUAGE, TOO.

user=> (pst)
clLojure.core/eval

user/eval 2007

user/make-exception

user/update-row
user/make-jdbc-update-worker/reify/do-work

user/jdbc-update

java.sql .SQLException: Database failure

core.

clj:

REPL Input

user.
user.
user.
user.

SELECT FOO, BAR, BAZ

FROM GNIP

failed with ABC123

SQLState: "ABC™
errorCode: 123

java. Lang.RuntimeException: Failure updating row
java. lang.RuntimeException: Request handling exception

nil
user=> [}

clj:
clj:
clj:
clj:

2852

31
23
18

4

TYPE SYSTEMS ARE LIKE THE WEATHERMEN

WEATHERMEN USE MATHEMATICAL MODELS TO PREDICT THE WEATHER

Provincetown

R
= ow53°
-‘ S lt

..- Pediont e

.
! Newport Nantucket
I 1ES FILES PLAN YO RENOVATE THE BACK BAY NETA STATION GOVERNOR CHAI

i PETaa

Ot ou Qx,1)
— =k —

of ax < C p

o‘u L, &u
—=C =

ot ax”
Su S'u o'u

—=tmtz=Vu=0
oxt oyt &°

3 X 3
U U ¢ u - .
4?'*'\—1-4 St }:(.\',/J

-

» This prediction is partial but useful.

> It is mostly accurate.

WEATHERMEN USE MATHEMATICAL MODELS TO PREDICT THE WEATHER

" > B 5 M u.r,‘.:'
8 .
: - 5}'—“
S6 48
. L D .A
3 e 80
3 . port Al

I 1ES FILES PLAN NOVA ETNE BACK BAV NETA STATION GOVERNOR CHAI
| o b

some partial predictions
\ \ /

Su S 'u ,
—f—+—=Vu=0 ‘
o' oyt &’
p‘

ou (‘ u o 1/
:é‘?,-

= o8By~ g (x:2)

-

k\

N
N\ and the emphasis is
ALINL e on mostly in accurate

\/

H) ype=a

B =int

ay = array(double)

function
7\

int array

double

LANGUAGES USE MATHEMATICAL MODELS TO PREDICT COMPUTATIONS

1) ype=a

/\

et 8, array(double)

double

X 17
ﬁ: int Int

ver
ve back”

TAKE AWAY 1

» Types are the language of prediction.
» Type systems use them to make more predictions.
» The questions are:

» Is that useful?

» Is it meaningful?

THE MEANING OF TYPES ~ SOUNDNESS

A COMPUTATION IS A RANDOM WALK IN THE UNIVERSE OF BITS.

(def main []

(+ x 23) ..)

N\
Can that happen?

~.J
- 01000110

This + means machine
addition, and it doesn’t
care where the bits ’: I

come from.

CAN IT GO WRONG? CAN WE FALL OFF THE CLIFF?

(def main []

1&iib(+ x 23) ..)

Yes, in an Unsafe
Language. And Life

Goes on. Bits are bits.

IT DEPENDS.

(def main []

(+ x 23) ..)

What happens next?

IN AN UNSOUND LANGUAGE SUCH AS C++:

(def main []

(+ x 23) ..)

f ’ [J
® An error has occurred. To continue:
Press Entes indous, or
Press CTRL + your computer. If you
you will 1 f wmation i

The computation
ends in a segfault.

IN AN UNSOUND LANGUAGE SUCH AS C++:

(def main []
(+ X 23) ..)

/

The computation
ends in ‘42" and you
never, ever find out
that something went
wrong.

A<

IN AN UNSOUND LANGUAGE SUCH AS C++:

Problematic bit manipulations may escape discovery
during testing, even if your testing covers the particular
path on which things go wrong.

CATASTROPHE!

Now imagine a program that controls
your grandmother’s heart pacemaker.

IN AN SOUND LANGUAGE SUCH AS ML.:

(def main []

(+ x 23) ..)

And in a sound

language?

DOCTOR?
HAVE YOU EVER HEARD OF A

INullPointerException!?

RECENTLY IN THE OPERATING ROOM

IN AN SOUND LANGUAGE SUCH AS ML.:

(def main []

(iiibﬁ+-x 23) ..)

Are developers
better oft?

THIS IS THE
SOURCE (THOUGH NOT
NECESSARILY THE
LOGICAL BUG).

IN AN SOUND LANGUAGE SUCH AS ML.:

(def main []

(iiibﬁ+-x 23) ..)

Are users

better off? SOMETHING

BAD HAPPENED.
SOMETHING WORSE MAY
HAVE BEEN
PREVENTED.

TAKE AWAY 2

» in an unsound language » in an sound language

» As a user, don't trust » As a user, consider
anything a program yourself lucky when you
outputs. encounter an exception.

» As a developer, beware » As a developer, an EXN
of programs that seem h closer to
work. a segfault.

» Even segfaults can
happen far, far away in
different galaxy.

IS CLOJURE SOUND?

Clojure comes with
a single type: “the
program will run”.

Bob Harper citing Dana Scott

A language with a
single type can be
sound.

Matthias with Andrew Wright

THE USEFULNESS OF TYPES

THE EXPRESSIVE POWER OF TYPES

A single type isn't very useful, except that it frees
the developer from writing it down everywhere.

(let [m (Tadam 1 :eve “paradi

. do stuff ..)
(fn £ [] “hello world”)

(def £ [x] ... X ...)

THE EXPRESSIVE POWER OF TYPES

In an imperative world, Void is almost like the
one type that some languages provide.

for x 1 ap do {

. do stuff ..}
f = “hello world”;

void f()

THE EXPRESSIVE POWER OF TYPES

Clojure developers have many types in their mind.
They just don’t have a language to write them down.

(let [m (:adam

. do stuff ..

(fn £ [] “hello world”)

(def £ [x] .. X ..)

WE CAN ALWAYS WRITE DOWN TYPES AS COMMENTS.

Developers have But some

these thoughts languages do not
because this is how provide the means
they ‘predict’ that to write down these
their programs thoughts other than
work correctly. in comments.

And that is a problem, because code is written
for others to understand the developers
thoughts, and it accidentally runs on computers.

SO HERE IS A RACKET PROGRAM FROM 15 YEARS AGO

;; start reading here:

(define (compile-block decls statements next-label contex
(let* ([labels-with-numbers (map car statements)]
[labels (map (lambda (1)
(1f (stx-number? 1)

(datum->syntax 1 (stpfing->symbol (format "~a" (syntax-e 1))) 1 1)

1))

labels-with-numbers)]

138 more lines like this ..))

'\‘f_&b'ﬁi
WE LEARNED OUR LESSON. WE WROTE DOWN COMMENTS! ‘*“*f-‘ |

;; start reading here:

;; [Listof ‘ations] [Li‘Statement] |‘f Symbol] B‘ -> Code
1 con‘add—t'level?)

)]

(define (compile-bloc
(let* ([labels-with-nu

[label

if (stx-number? 1)

(datum->syntax 1 (string->s

bol (format "~a" (syntax-e 1))) 1 1)

1))

els-with-numbers)]

es like this ..))

WRITE DOWN TYPES WHEN YOU STRUGGLE TO RECONSTRUCT THEM, AND GET THEM CHECKED.

;; start reading here:
(: compile-block [Listof Declarations] [Listof Statement] [Listof Symbol] [Listof Symbol] Boolean

-> Code)

(define (compile-block decls statemghts next-label context add-to-top-leygel?)
(let* ([labels-with-numbers (m car statements)]
[labels (map (lambda)

(1f tx-number? 1)

(datum->syntax 1 (string->symbol (format 1 1)

1))

How to Design Programs, Second Edition

Please send reports about mistakes to matthias @ ccs.neu.edu after double-
Preface checking in the the current draft
Prologue: How to
Program
| Fixed-Size Data
Intermezzo: BSL
I Arbitrarily Large Data

H OW T O D E S I G N P RO G R A M S ntermezzo: Quote, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi

Unquote
Il Abstraction

Intermezzo: Scope
and Abstraction

IV Intertwined Data

Intermezzo: The
Nature of Numbers

V Generative Recursion , . , .
o © 1 August 2014 MIT Press This material is copyrighted and provided under

of Computation the Creative Commons CC BY-NC-ND license [interpretation].
VI Accumulators

Epilogue: How Not to
Program

An Introduction to Programming and Computing

Matthias Robert Bruce Matthew Shriram ON THIS PAGE: Stable Release

Felleisen Findler Flatt Krishnamurthi Howto Design Programs,
Second Edition

This document is the current, stable release of HtDP/2e. It is updated in sync
with semester breaks (summer, new years). It is thus well-suited for courses. In
contrast, the current draft changes on a frequent basis; it should be consulted
when people discover problems and/or errors in this document. If such flaws
exist in both documents, please report them to the first author.

Released on Thursday, August 6th, 2015 12:20:27pm

http://ccs.neu.edu/home/matthias/HtDP2e/index.html

TAKE AWAY 3

» All developers “think” types while they create code.

» In some languages they can’t write down those thoughts
and get them cross-checked with the program.

» If they can’t write down types, they must reconstruct them.
» That costs time (with spouses, kids, vacation) and money.

» What can we do about this?

CAN'T WE JUST INFER THE TYPES?

HOW ABOUT TYPE INFERENCE? HASKELL IS SO COOL.

No.

HOW ABOUT TYPE INFERENCE? ML HAS IT, TOO.

No, it's really not a good idea.

HOW ABOUT TYPE INFERENCE?

Why are you asking again? | said ‘'no’ twice.

CAN'T WE JUST RECONSTRUCT THEM FROM THE SOURCE TEXT?

after 15 years of research

» Hindley-Milner type inference (ML, Haskell)
» Hindley-Milner with revised type algebra

» type inference with set-based analysis

SEURRYVITd o: FUNDAMENTALLY, WE NEED A LANGUAGE OF TYPES
FIRST, AND UNTYPED LANGUAGES DON'T HAVE ONE

BY DEFINITION.

ADDING TYPES TO AN UNTYPED LANGUAGE

HOW ADDING EXPLICIT STATIC TYPES OUGHT TO WORK

Incremental

When you have a code Idiomatic
base of 500,000 lines, Just add types.
you cannot add types Otherwise code
to all of this at once. must not change,
because it works.

Sound

The addition of types ought
to narrow down the source
of exceptions to cut down
on future development time.

SOUNDNESS IN AN UNTYPED WORLD

OF
'\‘3‘.&“.5'3"&;1
A
=

—

(defini/}f X) ;; [NEListof Number] -> Number

(9 xX) ..)
W

(define (g y) ;; [NEListof Number] -> Number

(define (h z) ;; [NEListof Nuniper] -> Number

(£ “())

SOUNDNESS IN AN TYPED WORLD

Listof Number] -> Number

(define (g y) :[NELdtof Number] -> Number

(h y) ..)

(define (h z) :[NEListof Numbe —> Number

(first z) ..)

(£ “())

UNTYPED IDIOMS COME FROM SET-BASED THINKING AND BASIC LOGIC

; ; shape is one of:

;7 — [square size]

One and the same
variable has different
types — depending
on where it occurs.

(define ¢ [circle 2])

(define p (cons s c))

(((define (area~ s)

(+ ‘area~ (car s

square? s) (area-s

area~ci s)]

n

)]

))
)))1))

A TYPE SYSTEM FOR AN UNTYPED LANGUAGE MUST UNDERSTAND THIS TOO.

;; shape is one of:

;3 — [square size]

e!
(define ¢ [circle 2])

(define p (cons s c))

Shape Number))

(((define (area~ s)

area~cili s)]

square? s) (area-~s

(+ (area~ (car—s))
*me“w))) 1))

n

)]

HOW ARE TYPES ADDED INCREMENTALLY?

In Typed Racket, In Reticulated

developers must Python, developers
Hmay add types to
any name, whenever,

equip entire
annotations. wherever .

modules with type

SOUNDNESS REVISITED

#lang racket

A —

;7 String Natural -> String

(define (re

SOUNDNESS REVISITED

redo.rkt

#lang racket
(provide redo)

(define (delete s n)

(string-ref s n)

String Natural -> String

#lang racket
(require “redo.rkt”)

(delete s0 nO0)

(delete sl nl)

SOUNDNESS REVISITED

redo.rkt

#lang typed/racket

(provide redo)

(: delete (String Natural -> String))
(define (delete s n)

(string-ref s n) ..)

#lang racket
(require “redo.rkt”)

(delete s0 nO0)

(delete sl nl)

REALM OF

mm
SOUNDNESS REVISITED 5&9

redo.rkt

#lang typed/racket

(provide redo)

(: delete (String Natural -> String))

(define (delete s n)

What should happen?

#lang racket
(require “redo.rkt”)
(delete s0 nO0)

(te 5 “hello”)

SOUNDNESS REVISITED

#lang racket

(provide redo)

;7 String Natural -> String

(define (redo s n))

#lang racket #lang racket

(require “redo.rkt”) (require “redo.rkt”)

What should happen el

. (redo sl nl) ..

when the mistake

happens far away?

#lang racket

(require “redo.rkt”)

. (redo s0 n0) ..

. (redo sl nl) ..

#lang racket

(require “redol rkt”)

. (redo s0 n0) ..

SOUNDNESS REVISITED

Typed Racket
generates contracts
between TYPED and
UNTYPED modules,
& contract violations
pinpoint the source,

even far, far away.

SOUNDNESS REVISITED

#lang racket

(provide redo)

;7 String Natural -> String

(define (redo s n))

Once again, the
developer saves time.

#lang racket #lang racket

(require “redo.rkt”)

(redo s0 no0)

(redo sl nl)

#lang racket

(require “redo.rkt”)

(redo s0 no0)

(redo sl nl)

#lang racket

(require “redo.rkt”)

(redo s0 no0)

\,

(redo sl nl)

DO WE NEED TO KNOW THIS?

What happens if we don’t generate contracts?

M OF
‘t‘f_ﬁim

£ Py

#lang untyped

(require "voting-machine.rkt")

.. (setup '("Donald Duck"”

.. (update "Donsa

voting-maching.rkt

#lang typed

(: setup (-> [Listof Na a)) Nothing. The computation
v proceeds and Donald "

(define (setup lon) ..) Duck loses 234 votes.

Nobody will ever notice.
(: update (-> Name N a))

r

(define (update name precinct)

DO WE NEED TO KNOW THIS?

And that's precisely what

Typed Clojure does ~ it
masks the bugs.

Without contracts, you get all the unsoundness of C++ back.

TAKE AWAY 4

Types for Untyped languages

» .. must speak the grown idioms.

» .. must allow gradual
» ..ought to come with soundness because
» it reduces developer time

» it won't mask errors

THE BIG TAKE-AWAY

Always code as if the guy who ends
up maintaining your code will be a
violent psychopath who knows where
you live. John F. Woods

http://groups.google.com/group/comp.lang.c++/browse_thread/thread/ad808ee729f8957c/e977f9cd160865e9?q=Always+code+as+if+the+guy+who+ends+up+maintaining+your+code+will+be+a+violent+psychopath+who+knows+where+you+live.

THE BIG TAKE-AWAY: VALUE YOUR DEVELOPERS AND USERS

THE END

4 /l* .‘.

» Stevie Stric

QUESTIONS?

