
Matthias Felleisen, PLT

Socially Responsible Software Development

I, Me, Myself

• programming language researcher

• … who cares about programming

• founded PLT, which is behind the Racket language

• maintained student-facing sw (appr. 50-100 Kloc) for ~30 years

• developed a software development curriculum for ~25 years

• .. starting with an alternative programming curriculum for K12 and freshmen

Software Development

writes

code

read

comprehend

Another maintainer.

read

comprehend

modify

code

read

comprehend

modify

code

cost centerscost centerscost centerscost centerscost centers

Older version of you or
your friend or …

Older version of you or
your friend or …

The maintainer.

Structure & Interpretation
of Computer Programs

… a violent psychopath who knows
where you live. John F. Woods

http://groups.google.com/group/comp.lang.c++/browse_thread/thread/ad808ee729f8957c/e977f9cd160865e9?q=Always+code+as+if+the+guy+who+ends+up+maintaining+your+code+will+be+a+violent+psychopath+who+knows+where+you+live.

Socially Responsible Software Development

writes

code

read

comprehend

Another maintainer.

read

comprehend

modify

code

The maintainer.

read

comprehend

modify

code

must think of recipient must think of recipient

• reduced cost

• happier developers

Socially Responsible Software Development

How do we get there?
• Social (“Soft”) Skills

• Us

• I

• Technical (“Hard”) Skills

The Big Picture: How to turn novices into basic sw devs

• five core courses (plus one 6-month co-op)

• key ideas across all courses, scaled from
5-liners to 15Kloc per semester:

• fundamentals are more important than
currently fashionable industry ideas

• design code systematically (techn. or
“hard” skills)

• programming is a people discipline
(social or “soft” skills)

• final course is about “grace under
pressure”

Fundamentals I
sys. design
pair prog.

Fundamentals II
sys. design w/

typed OO;
pair prog.

Logic
stating properties
run-time checks

static checks

Fundamentals III
code that does not
fit into your head

Fundamentals IV
very large, distr.

inspections

6-mo co-op

How to Design Programs

Let’s talk about “Us”

interface IDirection {

 // the starting point for sliding this row

 public int start();

 // are there hasNext tiles to slide in this row?

 public boolean hasNext(int i);

 // the index of the next tile to slide in this row

 public int next(int i);

}

Us

create code

what is sufficiently
intelligent to check
my thinking while I

create code?

AI !
LATER

A Human Partner !!

Us

what?

how?

why?

create code

Us, Pair Programming

what?

how?

why?

create code

What: All code is
created by pairs of

software developers.

Us, Pair Programming

what?

how?

why?

create code
How: One developer

drives the
development, the other

questions the code.

How: Every so often
the developers
switch roles.

Us, Pair Programming

what?

how?

why?

create code

Why? Oh why are
two people being

paid to develop one
piece of code?

Us, Pair Programming

two people

create code

represents the future receipient of this code:
— is is readable?
— does it work properly?
— are we designing it systematically?

shared knowledge: one is here
— when the other quits, moves to another company
— when one person is out sick for a week
— when someone travels

pair programming spreads coding skills and habits
— I like to learn from others
— when I teach, I learn because I have to justify ideas

some programming tasks are dull; par programming
can reduce the dull part and avoid bugs due to

carelessness

Let’s talk about “Us” some more

rotate through pairs in a team

Us, Pair Programming

two people

create code

Echo Chamber

Us, Pair Programming

two people

create code

Echo Chamber

use github to review PRs

use github to review PRs

Us, Pair Programming

• useful? yes!

• stress? it is a social network.

• bad patterns? very much so.

• big picture idea? usually not!

• teaching moments? no.

Us, Pair Programming

two people

create code

Echo Chamber

$:-89,39, 309  2574;020398 3 5747,2236:,9 ,3/574/:.9;9 ,;0 -003
4-9,30/974:90:80411472,3850.943841/083,3/.4/02574;020398,70
2,/05488-0-41 ,88902,9.,3/011.039/083,3/.4/0;071.,943574.088
90/0130/74081473850.9435,79.5,398%02,33073.3850.943
/,9,8.,90470/,3/2,/08:9,-0147574.088,3,888,325479,391,.9473
,99,33902574;020398988439,9-:833850.943708:98,20.,382
14739,0774770/:.9431440/-0;072574;3077477,908.,3-0,.0;0/

083,3/.4/03850.94389470/:.0077478
35747,2/0;0452039

-,,3

$:..0881:2,3,0203941,3574.088706:7085,33320,8:702039,3/.439743
5747,223/0;04520399080706:702039897,38,90394/0133905747,223
574.08839072841,80708414507,94380,.4507,943,;3984309.7907,
0990702:89-0842020,384120,8:73.42509030884190574/:.9,9,35439
4198/0;0452039-3850.943847908933/13,9020,8:70//,9,2:89-0
:80/147.43974390574.088%8,5574,.834943.43.059:,39070893-:9
,8-003,550/8:..0881:380;07,5747,2235740.9802-7,.3889028,3/
,55.,94385747,223-49,70,3/82,9 ,8349-00314:3/9409390
,415747,223-:9,83890,/03,-0/07570/.9,-99,3490720,38
,3/90:80413850.9438,82574;0/574/:.9;9,3/574/:.96:,9%05:75480
41985,50789405,3905,33320,8:702039,3/.439741:3.9438,890,70
,110.90/-3850.943835747,22390728

3 370/039  9,9 ;082,2:25,94 90 5,333 20,8:702039  ,3/.43974
00203988.43889039,3/;474:8/8.530',7,-07:08,3/.43;039438,7090
:8:,3/.,947841,,.41/8.5303743.,//8.53043,7:08..,3
8910  5747,223  47  8  349  706:70/  -:9  3890,/  9070  84:/  -0  ,  .0,7
:3/0789,3/341  90  10-9  47 343 10-9 41 0,. 41  90  7:08 ,550/ 94
;,74:8,850.9841905740.930,2504110-92,-0,;3907:09,9
,2,35,98-090890/14790.,800707050,90/9089341,;035,9
4.,/43424709,3,//05038030,2504130.088,7310-94:/-0
9,9,.4/02:89-03850.90/.0,789,90203941905740.97:08,3/.,30894
90807:08,4391,91:,/0703.094907:084,43,94,7/57,.9.3
90706:70/5740.9/8.530

OFFICE OF SAFETY AND MISSION ASSURANCE NASA-GB-A302

SOFTWARE FORMAL INSPECTIONS GUIDEBOOK

National Aeronautics and
Space Administration
Washington, DC 20546

Approved: August 1993

NASA:

Formal Code Inspection

Fagan:

Code Inspections

in person code inspections

in person code inspections

Us, Pair Programming

two people

create code

Echo Chamber

How: small panels

 — head (moderator)

 — reader (1 or 2)

 — secretary?

in person code inspections

Us, Pair Programming

two people

create code

Echo Chamber

What:

 creators present

 readers inspect

 — readability

 — bugs

 — design flaws

in person code inspections

Us, Pair Programming

two people

create code

Echo Chamber

Why:

 — presenting forces focus

 — real-time conversations

 — develop human resources

code inspections

Us, Pair Programming

two people

create code

Echo Chamber

Cost:

 — training

 — time for reviews

 — stress of facing people

 with not-so-great code

is this really a cost?

Let’s talk about “I” or really “Ego”

I, Ego

create code

• bad reviews, no sales

• booed at premier

• “ouch” at vernissage

who fail

• gets paid

• authors

• composers

• painters

• …

• developers

Creators

I, Ego

be satisfied &
happy with

out “output”

ego

ill-designed!

buggy!

incomprehensible

thank you

I, Ego

be satisfied &
happy with

out “output”

ego

ill-designed!

buggy!

Incomprehensible

Scanned with CamScanner

egoless
programming:

critique doesn’t hurt our ego,
it improves our creation

I, Ego

• create code that you are happy about, put some “ego” into it

• solicit feedback, often

• take negative feedback for help to improve this product of yours

• improve code, rinse and repeat

egoless programming taken seriously:

Social Skills
to develop software in a socially responsible manner, we need

• a mental state of ``egoless’’ programming

• welcome critique

• continuous feedback to our thinking while we code

• read code aloud to a partner

• active milestone reviews

• github at a minimum

• presentations to the team

• formal panel reviews at a maximum

Let’s talk about Technical Skills

The Big Picture: How to turn novices into basic sw devs

• five core courses (plus one 6-month co-op)

• key ideas across all courses, scaled from
5-liners to 15Kloc per semester:

• fundamentals are more important than
currently fashionable industry ideas

• design code systematically (techn. or
“hard” skills)

• programming is a people discipline
(social or “soft” skills)

• final course is about “grace under
pressure”

Fundamentals I
sys. design
pair prog.

Fundamentals II
sys. design w/

typed OO;
pair prog.

Logic
stating properties
run-time checks

static checks

Fundamentals III
code that does not
fit into your head

Fundamentals IV
very large, distr.

imspections

6-mo co-op

How to Design Programs

Technical Skills: The Purpose

writes

code

read

comprehend

• method

• class

• module

• package

Every unit of code needs a

focused purpose statement:

Technical Skills: The Purpose

writes

code

read

comprehend

Every method needs a

focused purpose statement:

• what it computes relative to the
class

• `this`

• clarifies whether

• it is atomic.

• it is composite.

Technical Skills: The Purpose

class Car {
 …
}

the thing in itself

(“das Ding ansich”)

Every class (collection) needs a

focused purpose statement:

• data represents information

• abstraction!

• clarifies how to turn

• an actual car into an instance of Car

• interpret an instance of Car in the
real world

class Car {

 int shortest_Distance;

 int move_Car() {

 ... }

}

Technical Skills: The Purpose

To what?

To where?

We know we need GREAT NAMES
for methods and fields and so on.

Technical Skills: The Purpose

class Car {

 int shortest_Distance_To_Car_On_The_Left_From_Front_Left_In_CM;

 int move_x_CM_to_the_Right_Relative_to_Front_Right_of_Car() {

 ... }

}

Technical Skills: The Purpose

class Car {

 int shortest_Distance_To_Car_On_The_Left_From_Front_Left_In_CM;

 int move_x_CM_To_The_Right_Relative_To_Front_Right_of_Car() {

 ... }

}

F# to the RescueF# to the Rescue

Technical Skills: The Purpose

class Car {

 int shortest_Distance_To_Car_On_The_Left_From_Front_Left_In_CM;

 int move_x_CM_To_The_Right_Relative_To_Front_Right_of_Car() {

 ... }

}

Every reader must parse names
such as these.

Technical Skills: The Purpose

Other than `cm` little about this
name can be enforced.

Where do we stop with this name
game?

class Car {

 // shortest_distance to car on the left from front left
 int distance_To_Left; // in cm

 // determine how many CM THIS car’s front must move to the right
 int moveTo_The_Right() {

 ... }

}

Technical Skills: The Purpose

Technical Skills: The Method

writes

code

read

comprehend

Every method must convey the

“how” in a concise manner. It

is either atomic or composite.

An atomic method comes with

a purpose statement that explains

what it computes (and occasionally

how it computes).

A composite method comes with

a purpose statement that enumerates

the tasks it composes. (And if the names of the

“subroutines” are well-
chosen, we can erase the
purpose statement.)

Technical Skills: The Method

Squeak [2020] consists of 600,000 lines of code.

How long is the average method?

writes

six lines

reads

six lines

Six lines.

Technical Skills: The Method

class GameState {
 // is the game over according to the rules?
 public boolean gameOver() {
 return
 this.allPlayersEliminated()
 || this.aPlayerHasGoodScore()
 || this.allCardsBought()
 || this.noPebblesOrBuyers();
 }
}

class GameState {
 // is the game over according to the rules?
 public boolean gameOver() {
 if (this.players.isEmpty())
 return true;
 if (this.cards.isEmpty())
 return true;
 for(Player p : this.players) {
 if (p.score >= PlayerWins)
 return true;
 for(Player p : this.players) {
 if (! p.canBuy(this.cards))
 return false;
 return true;
 }
}

Technical Skills: The Method class GameState {
 // is the game over according to the rules?
 public boolean gameOver() {
 return
 this.allPlayersEliminated()
 || this.aPlayerHasGoodScore()
 || this.allCardsBought()
 || this.noPebblesOrBuyers();
 }
}

passes the exact same testspasses the exact same tests

Technical Skills: The Tests

writes

code

&

tests

reads

comprehends

because of

examples

• unit tests encode examples

• … that help comprehension

• unit tests discover simple bugs

• … and sometimes complex ones

• have you considered property tests?

• how good are your test suites?

• mutation testing helps answer this question

Every method needs tests.

Technical Skills: Mutation

writes

code

with

=

reads

comprehends

Object-oriented programming is not C with
class and extends sprinkled over the code.

Alias
ing

Technical Skills: Mutation

“OOP came from many
motivations, two were
central. … the small scale
one was to find a more
flexible version of
assignment, and then to try
to eliminate it altogether.”

Alan Kay.

The Early History of SmallTalk.

Technical Skills: Mutation

“Favor Immutability.”

(chapter 4)

Technical Skills
to develop software in a socially responsible manner, we need

• learn to write focused purpose statements

• learn to check focused purpose statements

• distinguish between atomic and composite units of code

• challenge any method that is longer than 10 lines

• use mutation when needed

• avoid it whenever possible

I wish you could …

• .. read

• .. write

• .. stop, drop, …

AI

I wish you could read & write.

What if the co-
worker is an AI?

AI

Write “code”
in English.

Spits out
Python.

Reads Python “code”
and

checks whether it has
something to do with

the English.

I wish you could write.

What if the co-
worker is an AI?

AI

• precise, focused purpose statements

• with a clear distinction between

• atomic units of code

• composite units of code

• a properly organized plan

What does it take to get an AI

to create the code that we want?

I wish you could read.

What if the co-
worker is an AI?

AI

What does it take to get an AI

to create code?go

od

Why should we doubt AI-generated code?

• bugs and git-reverts

• safety holes

• security holes

I wish you could read.

https://www.theregister.com/2022/12/21/ai_assistants_bad_code/

New GitHub Copilot Research Finds 'Downward Pressure on Code Quality’

Visual Studio Magazine, 25 Jan 2024

I wish you could read.

“Google’s Chrome team, writes, “AI tools help
experienced developers more than beginners.”

Asleep at the Keyboard?

CACM 21 Jan 2025

https://addyo.substack.com/p/the-70-problem-hard-truths-about

How do I learn to read and write?

Books.

I wish you would stop, drop, …

… and reflect.

Thanks for listening.

The End

Technical Skills: Classes

Every class must convey the

“how” in a concise manner. It

is either atomic or composite.

An atomic class comes with

a purpose statement that explains

what unique information it represents.

A composite class comes with

a purpose statement that indicates

to which classes it delegates.

Favor Composition
Over Inheritance.

(chapter 4)

