23 YEARS OF
Brrr> FOR UNT TFES
L ANGUAGES

Matthias Felleisen, PLT & NUPRL

A Personal Walk through Type Land

| am an untyped
academic (1987)

modularity
ontracts

type inference,

a la Heintze
type inferehge,

a la Hindley &

for untyped langNages

INncremwental
& Idiomatic

performant (?)

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

modularity
ontracts

type inference,
a la Heintze

type inferehge,
a la Hindley & M

for untyped langdages

performant (?)
INncremweQqtal

& 1diomatic

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

modularity
ontracts

type inference,
a la Heintze

e inference,

for untyped langdages

performant (?)
INncremweQqtal

& 1diomatic

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

modularity

type inference, ontracts

a la Heintze

e inferenge,

for untyped langdages

performant (?)
INncremweQqtal

& 1diomatic

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

‘ ‘ modularity

type inference, ontracts
a la Heintze

for untyped langdages

performant (?)
INncremweQqtal

& 1diomatic

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

o ©

e inference,
ley & Miqer

fvpe inference,
Sntze 8Aaffar

explicit static types
for untyped langdages

INncremwental
& 1diomatic

modularity
s contracts

performant (?)

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

‘ ‘ modularity

tvpe inference, ~contracts
Sntze 8Aaffar

e inference,
ley & Miqer

explicit static §ypes
for untyped langbages

INncremwental
& 1diomatic

performant (?)

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

‘ ‘ modularity

tvpe inference, ~contracts
Sntze 8Aaffar

e inference,
ley & Miqer

it static types
ngdages

INncremwental
& 1diomatic

performant (?)

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

‘ ‘ modularity

tvpe inference, ~contracts
Sntze 8Aaffar

e inference,
ley & Miqer

it static types
ngdages

INncremwental
& 1diomatic

performant (?)

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

‘ ‘ modularity

tvpe inference, ~contracts
Sntze 8Aaffar

e inference,
ley & Miqer

it static types
ngdages

performant (?)
INncremweQqtal

& 1diomatic

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

soft typing,
with modules
via cCor{racts

soft typing,
with accessible
type eryors

HL soft typyg,
sound and at scale
interlanguage
refactor{ng
Increxpental
& idiomsatic

TypeRacket

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

Mike Fagan

HL soft typyg,
sound and at scsle

Andrew Wright

soft typing,
with accessible
type erpors

interlanguage
refactor{ng

soft typing,
with modules
via coriracts

Increnental

& 1dio

satic

TypeRacket

functional &
object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

soft typing,
with modules
via coriracts

Cormac Flanagan
soft typing,
with accessible

Mike Fagan
HL soft tydiog, B/ DEREBPOIES
sound and at scale
interlanguage
refactor{ng
iIncréxnental
& 1diomsatic

TypeRacket

Andrew Wright

functional &

object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

M 1
soft typing, -y

with modules
via cCoRtracts

Cormac Flanagan
soft typing,
with accessible

Philippe Meunier

Mike Fagan
HL soft tydiog, B/ DEREBPOIES
sound and at scale
interlanguage
refactor{ng
Increxpental
& idiorsatic

TypeRacket

Andrew Wright functional &

object-oriented

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

Mike Fagan
HL soft typyg,
sound and at scsle

Andrew Wright

Cormac Flanagan

M
soft typing, -y

with modules

Philippe Meunier
via CoRr{racts

soft typing,
with accessible

type erpors

interlanguage
refactor{ng

Increxpental
& idiomatic
TypeRacket

functional &
object-oriented

Sam Tobin-Hochstadt

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

Mike Fagan
HL soft typyg,
sound and at scsle

Andrew Wright

Cormac Flanagan
soft typing,
with accessible
type erpors

interlanguage
refactor{ng

soft typing,
with modules
via coriracts

Increnental

& 1dio

satic

TypeRacket

I

Philippe Meunier

fiimctional &

. t-oriented

Ik

Asumu Takikawa

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

Mike Fagan
HL soft typyg,
sound and at scsle

Andrew Wright

Cormac Flanagan
soft typing,
with accessible
type erpors

interlanguage
refactor{ng

soft typing,
with modules
via coriracts

Increnental

& 1dio

satic

TypeRacket

Ik

Asumu Takikawa

fiimctional &

Philippe Meunier

]

Ben Greenman

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

Mike Fagan

HL soft typwog,
sound and at sCa/ ke sl

soft typing,
with modules
Via CoR{racts

Cormac Flanagan

it typing,

N cssible
R 1A)

L/

| interlanguage
o et .
RS SRS refactor{ng

Increxnental
& 1diorsatic
Typ&a-Racket

Andrew Wright

A

Asumu Takikawa

fiinctional &
t-oriented

Philippe Meunier

l

Ben Greenman

| still am an untyped
academic (2016).

A Personal Walk through Type Land

| am an untyped
academic (1987)

soft typing,
with modules
via coriracts

Cormac Flanagan

it typing,

B cssible
DO)

L/

Philippe Meunier

Mike Fagan
HL soft typwog,
sound and at sCa/ e 3=

iInterl3

T "?.,':,f_ 3399 § Aal Typeful Programming

Luca Cardelli

Digitad Equipment Corpoeation, Systems Rescarch Center
130 Lyuon Avense, Pdo Ao, CA 301

Abstract

'5 A
™
= "-
y

n Greenman

There exists an wentifiable programming style based on the widesprend e of 1ype

information handled through mechanionl typechecking techmigoes

And rew ergh-t This typefind prograenmiong style is o n sense independent of the kngunge i Is embedded i, it

adapes equally well to functional, imperative, otwect aniented, and alpebean programmeng, and it »
st Incompatible with relational and concurrent peogramenng

| still am an untyped
academic (2016).

Ik

Asumu Takikawa

Robert “Corky" Cartwright

User-Defined Data lypes as an
Aid to Verifying LISP Programs
ICALP 1976, pp. 228-256.

Robert “Corky" Cartwright

User-Defined Data lypes as an
Aid to Verifying LISP Programs
ICALP 1976, pp. 228-256.

Write functional LISE instead of imperative Algol:

» write functional programs

» describe them with user-defined types

» use these types to prove theorems

Functional programs are theories of first-order logic.

Robert “Corky" Cartwright

User-Defined Data lypes as an
Aid to Verifying LISP Programs
ICALP 1976, pp. 228-256.

Write functional LISE instead of imperative Algol:
» write functional programs

» describe them with user-defined types

» use these types to prove theorems

Functional programs are theories of first-order logic.

When | arrived at Rice in 198/:

“let's add types to Scheme.”

VWhat does “adding types to Scheme mean?! Why Is it hard?

;5 RussianDoll = ‘doll u (cons RussianDoll ‘())

RussianDoll -> Natural
(define (depth r)
(cond
[(symbol? r) 0]

[else (+ 1 (depth (first r)))]1))

(depth ‘doll) ;; —> ©

EpECC(dolLl))) 1 => 3

Representing Russian dolls and computing their depth

VWhat does “adding types to Scheme mean?! Why Is it hard?

Representing propositions and checking tautology

;» Proposition = Boolean u [Boolean -> Proposition]

Proposition -> Boolean
(define (tautology? p)
(cond
[(boolean? p) pl

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

type proposition = InL of bool | InR of (bool -> proposition)
let rec is_tautology p =
match p with

| InL b -> Db

| InR p -> is_tautology(p true) && is _tautology(p false)

is _tautology (InR(fun x -> InL true))

is_tautology (InR(fun x -> InR(fun y -> or (InL x) (InL y))))

My idea: add a universal type to the program and add
Injections and projections where needed. Thats a practical
version of Scott's view that untyped languages are unityped.

type proposition
let rec is_tautology p
match p with

| InL b -> Db

| InR p -> is_tautol

is_tautology (InR(fun

Dameguntr

-> proposition)

is_tautology (InR(fun x -> InR(fun y -> or (InL x) (InL y))))

Fagan uses a record type algebra a la Remy [POPL '88] instead
of the ->, +, * algebra and then run Hindley Milner.

Mike Fagan

Fagan uses a record type algebra a la Remy [POPL '88] instead
of the ->, +, * algebra and then run Hindley Milner.

Mike Fagan

s=(t— int) s = ((double—char) —¥int)
> |t = (v = char) > |t = (double—char)
O v = double v = double

Fagan uses a record type algebra a la Remy [POPL '88] instead

of the ->, +, * algebra and then run Hindley Milner.

¢ stocd)]
S stock])] —
¥ (ord howmvalues tdee-cld) v — O u e
(losap-tale rore
- value nare action))) ——————
o))

think of all
missing type
declarations as

unification

[d

Gaussian
variables, derive elimination
system of

equations

Mike Fagan

> |t = (v = char) 5

s = ((double—char)—int)
t = (double—char)
v = double

Fagan uses a record type algebra a la Remy [POPL '88] instead
of the ->, +, * algebra and then run Hindley Milner.

Mike Fagan

s=(t— int) s = ((double—char) —¥int)
> |t = (v = char) > |t = (double—char)
O v = double v = double

Fagan uses a record type algebra a la Remy [POPL '88] instead
of the ->, +, * algebra and then run Hindley Milner.

Mike Fagan

s =(t = int) s = ((double—char)—int)
> |t = (v = char) > |t = (double—char)
v = double v = double

sC dom:t,rng:int 'u num:0
t € dom :v,rng :char,num : 0
v C double

Fagan uses a record type algebra a la Remy [POPL '88] instead
of the ->, +, * algebra and then run Hindley Milner.

) ;Q..‘ l'
- i\l .

l\/|'i|<le Fagan

s =(t = int) s = ((double—char)—int)
> |t = (v = char) > |t = (double—char)
v = double v = double

sC dom:t,rng:int 'u num:0
t € dom :v,rng :char,num : 0
v C double

|

s dom:t,rng:int 'u num:0 ' u
t dom:v,rng:char,num:0 ' u
v -~ double u

Fagan uses a record type algebra a la Remy [POPL '88] instead

of the ->, +, * algebra and then run Hindley Milner. “ad
.Mi<e Fagan
s = (t = int) s = ((double—char)—int)
Am o — (V — M)_ ol (dOUb'G_’Chi)_
v = double v = double

dom:t,rng:int 'u num:0
dom :v, rng : char,num : 0

+
N 1N

v C double
unification

~

elimination

l Gaussian

S = ...
il | e
v = double

s dom:t,rng:int 'u num:0 ' u
t -~ dom:v,rng:char,num:0 ' u

v — double u

Fagan uses a record type algebra a la Remy [POPL '88] instead
of the ->, +, * algebra and then run Hindley Milner.

Mike Fagan
s = (t— int) s = ((double—char)—int)
> |t = (v = char) > |t = (double—char)
v = double v = double
sC dom:t,rng:int 'u num:0
t € dom :v,rng :char,num : 0
if they are not @
= d Uble e we found a
unification
Gaussian
elimination

S = ...
il | e
v = double

s dom:t,rng:int 'u num:0 ' u
t dom:v,rng:char,num:0 ' u

v — double u

Fagan’s “soft typer’ works on all of our "hard” examples

;; Representing Russian dolls and computing their depth

;5 RussianDoll = “doll u (cons RussianDoll °())

.. RussianDoll -> Natural
(define (depth r)
(cond

[(symbol? r) 0]

[else (+ 1 (depth (first

[[M (rd) (U ‘doll (cons RussianDoll “()))]

(depth ‘doll) ;; —> © —2

uepEEeCC(dol L))) 55 => 3 Natural]

Fagan’s “soft typer’ works on all of our “hard” examples

,; Representing propositions and checking tautology

,; Proposition = Boolean u [Boolean -> Proposition]

,; Proposition -> Boolean
(define (tautology? p)
(cond

[(boolean? p) pl

[else (and (tautology? (p truc

[[M (p) (U Boolean (—> Boolean p))]

(tautology? true) —

(tautology? (lambda (x) (lambda (y) ¢ EASSHE=ClN

Fagans’ soft typer cannot
» present types In an accessible manner
» deal with more than small toy programs
» cope with anything but the core functional language

Fagans’ soft typer cannot
» present types In an accessible manner
» deal with more than small toy programs
» cope with anything but the core functional language

Can we deal with 777
» 1,000 lines of code
» full Scheme (assignment, continuations)
» explain types
» report errors in an “actionable” manner

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

» modify type algebra (add in set!, call/cc)

» improve implementation of type algebra

» report type errors at source level

» use types for optimization

Andrew Wright

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

» modify type algebra (add in set!, call/cc)

» improve implementation of type algebra

» report type errors at source level

» use types for optimization

Andrew Wright

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

» modify type algebra (add in set!, call/cc)

» improve implementation of type algebra

» report type errors at source level

» use types for optimization

sC dom:trng:int u num:0
t £ dom :v,rng:char,num:0
v C double

Andre Wright

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

» modify type algebra (add in set!, call/cc)

» improve implementation of type algebra

» report type errors at source level

» use types for optimization

sC dom:trng:int u num:0

Andre Wright

t £ dom :v,rng:char,num:0
v C double

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

» modify type algebra (add in set!, call/cc)

» improve implementation of type algebra

» report type errors at source level

» use types for optimization

sC dom:trng:int u num:0

Andre Wright

t £ dom :v,rng:char,num:0
v C double

Wright’s 1992-1993 engineers Soft Scheme (based on Chez)
into an ML-like variant of Scheme with idiomatic type inference

» modify type algebra (add in set!, call/cc)

» improve implementation of type algebra

» report type errors at source level

» use types for optimization

sC dom:trng:int u num:0

Andre Wright

t £ dom :v,rng:char,num:0
v C double

v

chez program.ss -o03

My first sabbatical (1993-94) Shriram Krishnamurthi’s starter project

Write many 1,000 line programs Analyze Sitaram’s SLaleX (now a
iIn SML and Soft Scheme (Foxnet, benchmark) with Soft Scheme
“extensible den. semantics’) (3,500 lines of real-world code)

My first sabbatical (1993-94)

Write many 1,000 line programs
iIn SML and Soft Scheme (Foxnet,
“extensible den. semantics’)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaleX (now a
benchmark) with Soft Scheme

(3,500 lines of real-world code)

RESULT: It works.

My first sabbatical (1993-94)

Write many |,000 line programs
iIn SML and Soft Scheme (Foxnet,
“extensible den. semantics’)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaleX (now a
benchmark) with Soft Scheme

(3,500 lines of real-world code)

RESULT: It works.

Type errors in SML/
NJ were torture.

My first sabbatical (1993-94)

Write many |,000 line programs
iIn SML and Soft Scheme (Foxnet,
“extensible den. semantics’)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaleX (now a
benchmark) with Soft Scheme

(3,500 lines of real-world code)

RESULT: It works.

Type errors in SML/
NJ were torture.

Soft Scheme’s were
violations of the
Geneva convention.

My first sabbatical (1993-94) Shriram Krishnamurthi’s starter project

Write many |,000 line programs Analyze Srtaram's SLaTeX (now a
in SML and Soft Scheme (Foxnet, benchmark) with Soft Scheme
“extensible den. semantics’) (3,500 lines of real-world code)

Type errors in SML/
NJ were torture.

RESULT: It works.

Soft Scheme’s were
violations of the
Geneva convention.

Soft Scheme supports my
module’s but is not modular.

My first sabbatical (1993-94) Shriram Krishnamurthi’s starter project

Write many |,000 line programs Analyze Srtaram's SLaTeX (now a
in SML and Soft Scheme (Foxnet, benchmark) with Soft Scheme
“extensible den. semantics’) (3,500 lines of real-world code)

Type errors in SML/
NJ were torture.

RESULT: It works.

Soft Scheme’s were
violations of the
Geneva convention.

Soft Scheme supports my
module’s but is not modular.

Errors matter. Developers matter.

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar's SBA

Cormac Flanagar

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar's SBA

toce Qe
(regees rere))))))
ref porL® g
(oo le
Qoo The o rurtes
(get ¢ oct
(Lt (1 cction)
{rep (lorb ¢ :
(LetYPere stocd)]
oL o stock)]
i {erd hove walies 4o
{losep-tatle rare
(lerbids () (get e
et alue rore oc
(corpary rore records)))

double < dom(t)

t C rng(v)
dom(v) € double

Cormac Flanagar

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar's SBA

(stoce quote

double € dom(t)
t C rng(v)
dom(v) € double

= (-> double (-> double ..

)

transitive
closure through

constructors

the solution is a
least-fix point in

a lattice

Cormac Flanagar

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar's SBA

S [Listof XJ € dom

[Pairof Y Z] € dom(first @2) v

)

transitive
closure through

the solution is a

least-fix point in
constructors

a lattice

double € dom(t) T
t C rng(v) >t =
dom(v) C double V= (> double (-> double ..

Cormac Flanagar

compare with
specifications for
primitive
oberations

Flanagan uses a regular type algebra, but solves inequations instead
of equations, via an approach inspired by Heintze & Jaffar's SBA

Cormac Flanagar

[Listof X] < dom(first @1) X
< because (first ’()) raises an exn

[Pairof Y Z] € dom(first @2) v

compare with
specifications for

primitive
double C dom(t) B operations
: C rng(v) =
dom(v) C double Nis (> double (-> double ...))

transitive o
the solution is a

least-fix point in

closure through

constructors !
a lattice

® HM performs in near- ® SBA performs in linear

linear time in practice time up to 2,500 loc
® HM is easy to ® SBA is also easy to
understand in principle explain to
programmers
® HM “smears” origin
information across ® SBA pushes information
solution due to bi- only along actual edges

directional flow in the flow graph

® HM performs in near- ® SBA performs in linear

linear time in practice time up to 2,500 loc

® HM is easy to ® SBA is also easy to
understand in principle explain to

programmers

® HM “smears” origin
information across ® SBA pushes information
solution due to bi- only along actual edges
directional flow in the flow graph

And we can

visualize those!

File Edit Windows Actions Show Clear Filter Help

; reachable : sgn graph —> graph
; to produce a graph whose wisited fields are marked
; true if the nodes are reachable from a-—-node
; false if not
; effect: to mark all those nodes in graph that are reachable from a—node
define (reachable a-node graph)
(letrec ((reachable
(lambda (a—node)
{cond
[{(boolean? a-—node) graph]
[(node—visited a—node) (wvoid)]
[else (begin
(set—node—visited! a—-node true)
(reachable (node-—next a-node)))]1)1)))

PR L L L L

{(cond
[(empty? graph) empty]
[else (begin
(for—each (lambda (n) (set-node-—wvisited! n false)) graph)
{reachable (first graph)))]l)))

$| TEST SUITE == s e s s s s i s e i i s s e e i i 2 e S S 2 s S S s s 2 s 2 s s
(route—exists? (lookup ‘A the—graph) (loockup B the—graph) the—graph)
(route—exists? (loockup ‘A the—graph) (loockup “C the—graph) the—graph)
(route—exists? (lookup ‘A the—graph) (loockup *E the—graph) the—graph)

(not {(route—exists? (loockup 2 the—graph) (locockup *F the—graph) the—graph))
(not {(route—exists? (loockup A the—graph) (lookup ‘D the—-graph) the—graph))
(not {(route—exists? (loockup *F the—graph) (lookup ‘& the—graph) the—graph))
| #

(map node—mame
{reachable (first the—-graph) the—graph))

1=

Welcome to MrSpidey, version 102416,

CHECEKS :

map check in file "graph-—-spidey.ss": line 93, column 2
first check in file "graph-—-spidey.ss": line 94, column 18
TOTAL CHECEKS: 2 {of 56 possible checks is 3.5%)

.|

| e

1=

I Collect] 30437376

Unlocked

bl

ral) DIQE DIQE

File Edit Windows Actions Show Clear Filter Help

; reachable : sgn graph —> graph
; to produce a graph whose wisited fields are marked
; true if the nodes are reachable from a-—-node
; false if not
; effect: to mark all those nodes in graph that are reachable from a—node
define (reachable a-—node graph)

(letrec ((reachable

(lambda (a—node)

PR L L L L

.|

b Y

{cond a
[{(boolean? a-—node) graph] PO = O
[(node—visited a—node) (wvoid)]
[else (begin
(set—node—visited! a—-node true)
(reachable (node-—next a-node)))]))
{(cond
[(empty? graph) empty]
[else (begin
(for—each (lambda (n) (set-—-node- ed! 1se)) graph)
{reachable (first graph)))])
(route—exists? (lookup ‘A the—gr { lookup 2 he—graph) the—-graph)
(route—exists? (loockup 2 th rh) {(look C the—graph) the—graph)
(route—exists? (loockup ‘A —graph) (lo E the—graph) the—graph)
(not (route—exists? ookup ‘A the-— rh) {(lookup ’*F the—graph) the—graph))
(not (route—exi 7 (lookup A th raph) {(lookup ‘D the—graph) the—graph))
(not (route— sts? (loockup ‘F e—graph) (lookup ‘& the—graph) the—graph))
| #
{map nojfle—mname :
eachable the—graph) the—graph))
1=
Welcome to MrSpidey, version 102416,
CHECEKS :
map check in file "graph-—-spidey.ss": line 93, column 2
first check in file "graph-—-spidey.ss": line 94, column 18
TOTAL CHECEKS: 2 {of 56 possible checks is 3.5%)
1=
I Collect| 30437376 Unlocked

Jray) DIQe DIGE

File Edit Windows Actions Show Clear Filter Help

;; false if not

;; effect: to mark all those nodes in graph that are reachable from a—-node

(define (reachable a—-node graph)
(letrec ((reachable
(lambda (a—-node)
(cond

[(boolean? a—-node) graph]

[(node—wvisited a—node)
[else (begin

(void)]

(set—node—-visited! a-node true)
(reachable (node—-next a-node)))]))))

(cond
[(empty? graph) empty]
[else (begin

(for—-each (lambda (n) (set-node-wvisited!

(reachable (first graph)))]1)))

n false)) graph)

#| TEST SUITE ===
(route—-exists? (loockup ‘A the—-graph) (lookup B the—-graph) the—-graph)
(route—exists? (loockup A the—-graph) (lookup *C the—-graph) the—-graph)
(route—exists? (loockup ’A the—-graph) (lookup *E the—-graph) the—-graph)

(not (route—-exists? (loockup A the—graph) (locockup ’*F the—graph) the—-graph))
(not (route—-exists? (lookup ‘A the—-graph) (lookup D the—-graph) the—-graph))
(not (route—-exists? (lookup ’F the—-graph) (loockup ‘A the—graph) the—-graph))

| #

{(map node—name

(rec

(reachable (first the—graph) the—-graph)| {(union nil woid (cons ¥yl

({{vl (structure:node sym bool (union vyl false))))

{listof w1)))))

‘Welcome to MrSpidey, version 102/16.
CHECKS:

map check in file "graph-spidey.ss": line 93, column 2

first check in file "graph-spidey.ss":

line 94, column 18

TOTAL CHECKS: 2 {of 56 possible checks is 3.5%)

X L____jL_\

I Collect| 30437376 Unlocked

qraj) DIQe DIAE

File Edit Windows Actions Show Clear Filter Help

;; false if not
;; effect: to mark all those nodes in graph that are reachable from a—-node
{(define (reachable a—-node graph)
(letrec ((reachable
(lambda (a—-node)
(cond
[(boolean? a—-node) graph]
[(node—wvisited a—-node) (void)]
[else (begin
(set—node—-visited! a-node true)
(reachable (node—-next a-node)))]))))
(cond
[(empty? graph) empty]
[else (begin
(for-each (lambda (n) (set-node-wvisited! n false)) graph)
(reachable (first graph)))]l)))

#| TEST SUITE ==============s===
(route—-exists? (loockup ‘A the—-graph) (lookup B the—-graph) the—-graph)
(route—exists? (loockup A the—-graph) (lookup *C the—-graph) the—-graph)
(route—exists? (loockup ’A the—-graph) (lookup *E the—-graph) the—-graph)

(not (route—-exists? (lookup ‘A the—graph) (lookup ’F the—-graph) the-
(not (route—-exists? (lookup ‘A the—graph) (lookup ‘D the—graph) tkL
(not (route—-exists? (lookup °F the—-graph) (loockup ‘A the—-graph e—graph))
| #

{(map node—name

look at types

\

(rec
({{vl (structure:node sym bool (union vyl false))))
(reachable (first the—graph) the—graph)| (union nil woid (cons w1 (listof w1)))))]
1=
‘Welcome to MrSpidey, version 102/16.
CHECKS :
map check in file "graph-spidey.ss": line 93, column 2
first check in file "graph-spidey.ss": line 94, column 18
TOTAL CHECKS: 2 {of 56 possible checks is 3.5%)

| I—

I Collect| 30437376 Unlocked

\

Jrajl PDIGE DIGE

File Edit Windows Actions Show Clear Filter Help

;; false if not
;; effect: to mark all those nodes in graph that are reachable from a—-node
{(define (reachable a—-node graph)
(letrec ((reachable
(lambda (a—-node)
(cond
[(boolean? a—-node) graph]
[(node—wvisited a—-node) (void)]
[else (begin
(set—node—-visited! a-node true)
(reachable (node—-next a-node)))]))))
(cond
[(empty? graph) empty]
[else (begin
(for-each (lambda (n) (set-node-wvisited! n false)) graph)

(reachable (first graph)))]))) |OO|< at typeS

(route—-exists? (loockup ‘A the—-graph) (lookup B the—-graph) the—-graph)

(route—exists? (loockup A the—-graph) (lookup *C the—-graph) the—-graph) F.
(route—exists? (loockup ’A the—-graph) (lookup *E the—-graph) the—-graph)

(not (route—-exists? (lookup ‘A the—graph) (lookup ’F the—-graph) the-
(not (route—-exists? (lookup ‘A the—graph) (lookup ‘D the—graph) tkL
(not (route—-exists? (lookup °F the—-graph) (loockup ‘A the—-graph
| #

{(map node—name

(reachable (first the—graph) the—graph)| {(union nig vl (listof wl1))))

({vl (stru Q pool (union yl false))))

void may flow here

1=

‘Welcome to MrSpidey, version 102/16.

CHECES :

map check in file "graph-spidey.ss": line 93, column 2
first check in file "graph-spidey.ss": line 94, column 18
TOTAL CHECEKS: 2 {of 56 possible checks is 3.5%)

X L____jL_\

I Collect] 30437376

Unlocked

qraj) DIAE DIAE

File Edit Windows Actions Show Clear Filter Help

;; false if not

;; effect: to mark all those nodes in graph that are reachable from a—-node

{(define (reachable a—-node graph)
letrec ((reachable
(lambda (a—-node)

dgond
[(bo 2_a-node) graph]
[(node—wvisited a—= wvoid)]

[else (begin
(set—node—-visited! a-node true)
(reachable (node-—next a-node)))]1))))

cond
mpty?| graph) empty]
[els begin

for-each (lambda (n) (set-node-wisited! n false)) graph)
reachable (first graph)))])))

|

{route—exists? (loockup & the—-graph) (locockup B the—graph) the—-graph)
{route—exists? (loockup A the—graph) (loockup ’*C the—graph) the—-graph)
(roufe—-exists? (loockup A the—-graph) (locockup *E the—graph) the—-graph)

(not
(not
(not
| #

{route—exists? (lookup ‘A the—-graph) (lookup *F the—-graph) the—-graph)
{route—exists? (lookup A the—graph) (lookup D the—-graph) the—-graph)
{route—exists? (lookup *F the—graph) (loockup 2 the—-graph) the—-graph)

{(map [node—name

EST SUITE ==

)
)
)

(rec

({vl (structure:node sym bool (union vyl false))))
(reachable (first the—graph) the—-graph)| (union nil woid (cons vl (listof w1))))

‘Welcome to MrSpidey, version 102/16.

CHECES:

map check in file "graph-spidey.ss": line 93, column 2
first check in file "graph-spidey.ss": line 94, column 18
TOTAL, CHECKS: 2 {of 56 possible checks is 3.5%)

1=

X L____;L_\

I Collect] 30437376

Unlocked

A~ graph-spidey.ss - MrSpidey

File Edit Windows Actions Show Clear Filter Help

;; false if not
;; effect: to mark all those nodes in graph that are reachal
{(define (reachable a—-node graph)
letrec ((reachable

(lambda (a—-node)

dgond
[(boo 2_a—-node) graph]
[(node—visited a= wvoid)]

[else (begin
(set—node—-visited! a-node true)
(reachable (node—-next a-node)))]l))))

cond
mpty?| graph)
[els begin
for—-each (lambda (n) (set-node-—-wvisited!
\ireachahle (first graph)))1)))

empty]

the source of void

a-node

n false)) graph)

$| TEST SUITE = m s s o o o o e e e e e e e e

{route—exists? (loockup & the—-graph) (locockup B the—graph) the—-graph)
{route—exists? (loockup A the—graph) (loockup ’*C the—graph) the—-graph)
{route—-exists? (lookup A the—-graph) (loockup *E the—-graph) the—-graph)

the—-graph))
the—graph))

{structure:node sym bool (union vl false))))

(not| (route—exists? (lookup 2 the—-graph) (loockup ’F the—-graph)
(not| (route—exists? (lookup 2 the—-graph) (lookup ‘D the—-graph)
(not | (route—exists? (lookup ’F the—-graph) (loockup 2 the—-graph) the—-graph))
| #
(map |node—name
(rec
((vl
(reachable (first the—graph) the—-graph)| (union nil woid (cons vyl

(listof w1))))

Welcome to MrSpidey, version 102A16.

CHECES:

map check in file "graph-spidey.ss": line 93, column 2
first check in file "graph-spidey.ss": line 94, column 18
TOTAL, CHECKS: 2 {of 56 possible checks is 3.5%)

I Collect] 30437376

Unlocked

X L____PL_\

A~ graph-spidey.ss - MrSpidey

File Edit Windows Actions Show Clear Filter Help

;; false if not
;; effect: to mark all those nodes in graph that are reachal
{(define (reachable a—-node graph)
letrec ((reachable

(lambda (a—-node)

dgond
[(boo 2_a—-node) graph]
[(node—visited a= wvoid)]

[else (begin
(set—node—visited! a—-node true)
(reachable (node—-next a-node)))]l))))

cond
mpty?| graph)
[els begin
for—-each (lambda (n) (set-node-—-wvisited!
Kireachahle (first graph)))1)))

empty]

{route—exists? (loockup A the—graph)
{route—-exists? (lookup ‘A the—graph)

{route—-exists? (lookup ‘A the—graph)

’D the—éraph) the—graph))
’2 the—-graph) the—-graph))

the source of void

a-node

n false)) graph)

the flow of void to first

(not| (route—exist -y
(not| (r {lookup ’2 the—-graph) (lookup
{not | (route—exists? (lookup °F the—-graph) (lookup
| #
(map |node—name
(rec
((vl
(reachable (first the—graph) the-—-graph)

{union nil woid {(cons vl

{structure:node sym bool (union vl false))))

(listof w1))))

Welcome to MrSpidey, version 102A16.

CHECES:

map check in file "graph-spidey.ss": line 93, column 2
first check in file "graph-spidey.ss": line 94, column 18
TOTAL, CHECKS: 2 {of 56 possible checks is 3.5%)

I Collect] 30437376

Unlocked

X L____PL_\

Flanagan can deal with
» 2,000 lines of code
» full Scheme (assisnment, continuations)
» explain types
» report errors in an “actionable” manner

Flanagan can deal with
» 2,000 lines of code
» full Scheme (assisnment, continuations)
» explain types
» report errors in an “actionable” manner

2!
Can we deal with
» get juniors and seniors to use it (future devs)
» Improve precision (e.g., arity of functions)
» “modules” (independently developed pieces)!

The good news

File Edit Windows Actions Show Clear Filter Help

;; false if not
to mark all those nodes in graph that are reachable from a-node

EVEN WITH JUNIORS AND

;; effect:
(define (reachable a—-node graph)
letrec ((reachable

(lambda (a-—-node)

dgond
[(bo 2_a-node) graph]
[(node—wvisited a= wvoid)]

[else (begin
(set—node—-wvisited! a—-node true)
(reachable (node—-next a-node)))]))

SENIORS

cond
mpty?| graph)
[els begin
for—-each (lambda (n) (set-node—-visited!
\greachahle (first graph)))]11)) -

empty]

false)) graph)
- — — e —

(route—exists? (loockup A the—-graph) (lookup
(route—-exists? (lookup A the—-graph) (lookup

(roufte—-exists? (loockup A the—-graph)

(not| {(route—-exists? (lookup A the—graph) (1lo
(not| (route—exists? (lookup ‘2 the—-graph) (108
{not | (route—exists? (lookup ’F the—-graph) (lookup 'A the—graph) the—graph
| #
{(map node—name
(rec
({yvl {(structure:node sym bool (union yl false))))
(reachable (first the—graph) the—graph)| {(union nil woid {(cons vl (listof w1))))

{ lookup

- A::-:-
e . aih))
))

Welcome to MrSpidey, version 102/16.
CHECKS :

map check in file "graph-spidey.ss":
first check in file
TOTAL CHECKS: 2

"graph—-spidey.ss":

line 93, column 2
line 94, column 18

{of 56 possible checks is 3.5%)

I=

A —

I Collect] 30437376

Unlocked

=

The not so good news

;; Natural Symbol -> S-expression
(define (wrap depth stuff)
(cond
[(zero? depth) stuff]

[else (list (wrap (- depth 1) stuff)]l]))

(wrap 3 ‘pizza) ;; —> ‘(((pizza)))

(wrap 2 ‘doll) ;; -> “((doll))

The not so good news

~ (list depth stuff) = arg

(define (wrap)

(cond

[(zero? depth) stuff]

(Wrap 3 ‘pizza) ;; —>

(wrap 2 ‘doll) ;; ->

;; Natural Symbol -> S-expfession

[else (list (wrap (- depth 1) stuff)]l]))

“(((pizza)))

“((doll))

The not so good news

;; Natural Symbol -> S-expfession

(define (wrap)

(wrap 2 ‘doll) ;; -> “((doll))

(wrap 3 ‘pizza) ;; —> ‘(((pizza)))

~ (list depth stuff) = arg

~ (second arg)

The not so good news

~ (list depth stuff) = arg

;; Natural Symbol -> S-exp ' ~ (second arg)

(define (wrap

(Wwrap 3 ‘pizza) ;; —> ‘(((pizza)))

IR dol) > L((dollD) n*8)
Selectors Make Set-Based Analysis Too Hard

College of Computer and Information Science *Dcpaﬂmmt of Computer Science

Northeastern Uniwversity U t Jhi
Boston, MA 02115 (Tiffg;:; y]?,f 61(3(6‘07

{meume'r,steck,wand}@ccs.neu.edu robbydcs. uchzcago edu

The bad news

LI

Natural -> Table

’

’

)

. (extract (dispatch-table k) m)..

(define (dispatch-table n)
(let ([v (build-vector n (lambda (i) (lambda (x)

--- client code

Y

The bad news

(U False Window)

;; Natural -> Table
(define (dispatch-table n)
(let ([v (build-vector n (lambda (1) (lay
;; --- client code

)

. (extract (dispatch-table k) m)..

(X)

The bad news

(U False Window)

LI

Natural

LI

)

-> Table

(define (dispatch-table n)
(let ([v (build-vector n (lambda (i) (lag

client code

. (extract (dispatch-table k) m)..

(X)

o o
L

Natural

(for EET

-> Table

(define (dispatch-table n)
(define v (make-vector n))

v)) (vector-set!

. --- client code

.)

Vi

. (extract (dispatch-table k) m)..

S

The bad news

(U False Window)

;; Natural -> Table
(define (dispatch-table n)
(let ([v (build-vector n (lambda (1) (lay
;; --- client code

)

. (extract (dispatch-table k) m)..

(X)

(U False
;» Natural -> Table 0 !
(define (dispatch-table n) Mmore liNnes
(define v (make-vector n)) o
(for ((i1 v)) (vector-set! v i ..)) :
;; --- client code Window)
0

. (extract (dispatch-table k) m)..

The bad news

(U False Window)

;; Natural -> Table
(define (dispatch-table n)
(let ([v (build-vector n (lambda (i) (1 agss®
--- client code

(X)
...’)

. (extract (dispatch-table k) m)..

Small syntactic
changes without

semantic meaning (U False

R sl i 1Dly large changes

(define (dispatch-tabEyeRIsiiIaa=le types
(define v (make-ve

RiCIm @)D (vector-set! v 1. ..)) N
;; --- client code \/\/mdovv)

)

T (extract (dispatch-table k) m)..

20 more lines

The worse news

[t's not only n”8, it's also whole-
program only.

3,500 lines 20 min

40,000 lines ~ 10 hrs

The worse news

[t's not only n”8, it's also whole-
program only.

1,000 1lines ~ 1 mi

2,000 1lines ~

Components

3,500 lines 20 min

40,000 lines ~ 10 hrs

The worse news

[t's not only n”8, it's also whole-

program only.

1,000 1lines ~ 1 mi
2,000 1lines ~ 2

3,000 lines ~

3,500 lines 20 min

40,000 lines ~ 10 hrs

Constraints

Components

\

\

s € \dom :t,rng :int
tC dom:v: u num:0
v C double

uc dom:s
i € ' dom:v) u num:0
w C double

\ 4
h € dom:t,rng:int
t C integer
j € double

The worse news

[t's not only n”8, it's also whole-

program only.

1,000 1lines ~ 1 mi
2,000 lines ~ 2

3,000 lines ~

3,500 lines 20 min

40,000 lines ~ 10 hrs

Components

Constraints

\

\

v C double

s € \dom :t,rng :int
t< dom:v: u num:0

uc dom:s
i € ' dom:v) u num:0
w C double

\/
h € dom:t,rng:int
t C integer
j € double

Solution

\

explicit sets &

The worse news

[t's not only n”8, it's also whole-

program only.

1,000 1lines ~ 1 mi
2,000 lines ~ 2

3,000 lines ~

3,500 lines 20 min

40,000 lines ~ 10 hrs

Components

Constraints

\

\

v C double

s € \dom :t,rng :int
t< dom:v: u num:0

uc dom:s
i € ' dom:v) u num:0
w C double

\/
h € dom:t,rng:int
t C integer
j € double

Solution

\

explicit sets &

The worse news
[t's not only n”8, it's also whole-
program only.

1,000 1lines ~ 1 mi
2,000 lines ~ 2 Components

3,000 lines ~ ¥ min TR =, oo
3,500 lines ~ 20 min w*”f?f? -)

40,000 lines ~ 10 hrs
\ 4

Constraints
\ 4 \ 4
s € \dom :t,rng :int uc dom:s € dom:t,rng:int
t< dom:v: u num:0 i € dom:v: u num:0 C integer
v C double w C double C double

Now we can work
with | module and
get on-line analysis

\/

Solution

explicit sets &

The worse news

1,000 lines
2,000 lines
3,000 lines

3,500 lines

~

~

~

1 min

2 min

3 min

20 min

40,000 lines ~ 10 hrs

What's worse, we can't just add

another module.

Components

Constraints

\

\

\

v C double

s € \dom :t,rng :int
t< dom:v: u num:0

uc dom:s
i € ' dom:v) u num:0
w C double

h € dom:t,rng:int
t C integer
j € double

[t costs O(n"2) space (writing,

reading) to store graph constraints.

\

explicit sets &

The worse

1,000
2,000
3,000

55500

40,000 lines ~ 10 hrs

NEWS

lines

lines

lines

lines

~

~

~

~

1 min

2 min

3 min

20 min

What's worse, we can't just add

another module.

Components

It isn’t really

modular in the

sense of ML’s

structures. v v
s € .dom :t,rng :int u < dom:s h € dom:t,rng:int
t< dom:v: u num:0 i € dom:v: u num:0 t C integer
v C double w C double j € double
\ 4
[t costs O(n"2) space (writing, explicit sets &

reading) to store graph constraints.

Meunier exploits Eiffel-style contracts (generalized to a higher-
order setting) to describe module interfaces, derive constraints

1,000 lines ~ 1 min Philippe Meunier

2,000 lines ~ 2 min Components

3,000 1lines ~ 3 min

3,500 1lines ~ 20 min

40,000 lines ~ 10 hrs

Constraints

v v v
s € \dom :t,rng :int u < dom:s h € dom:t,rng:int
t< dom:v: u num:0 i € dom:v: u num:0 t C integer
v C double w C double j € double
\/

explicit sets &

Meunier exploits Eiffel-style contracts (generalized to a higher-
order setting) to describe module interfaces, derive constraints

1,000 lines
2,000 lines
3,000 lines

3,500 lines

40,000 lines ~ 10 hrs

~ 1 min

~ 2 min

~ 3 min

~ 20 min

Use contracts in
lleu of signatures.

Components

[

Philippe Meunier

v C double

s € \dom :t,rng :int
tC dom:v: u num:0

uc dom:s
i € ' dom:v) u num:0
w C double

h € dom:t,rng:int
t C integer
j € double

Solution

\ 4

explicit sets &

Meunier exploits Eiffel-style contracts (generalized to a higher-
order setting) to describe module interfaces, derive constraints

1,000 1lines ~ 1 min
2,000 1lines ~ 2 min
3,000 lines ~ 3 min

3,500 1lines ~ 20 min

Use contracts in
lleu of signatures.

40,000 lines ~ 10 hrs

Components

It works in theory.
We never got it to

work well in practice.

|

_—
-

(

Philippe Meunier

s € \dom :t,rng :int

uc dom:s

h € dom:t,rng:int

t< dom:v: u num:0 i € dom:v: u num:0 t C integer
v C double w C double j € double

\/

explicit sets &

Modularity matters.

» Our code base has grown
to 500,000 loc.

» A language renaissance
has spread Untyped
Languages beyond their
niche uses.

Typeful Programming
Luca Cardelli

Digital Equipment Corpoeation, Systems Rescarch Center
130 Lyton Avense, Pado Ao, CA 301

Abstract

There exists an entifiable programming style based on the widesprend use of 1ype
information handled through mechanioal typechecking techmigues

This typefind progrsenming style is (o o sense independent of the langunge i is embedded o, it
adapes equally well to functional, imperative, otpect ariented, and algebean programmeng, and it s
st Incompatible with relational and concurrent programenng

Modularity matters. Signatures matter.

» Our code base has grown
to 500,000 loc.

» A language renaissance
has spread Untyped
Languages beyond their
niche uses.

» Nobody ought to read an
entire module to
understand its services.

» Racket programmers use
contracts as signatures.

Can we add types to this code without the ML-style projections/injections?

Representing Russian dolls and computing their depth

;5 RussianDoll = ‘doll u (cons RussianDoll ‘())

RussianDoll -> Natural
(define (depth r)
(cond
[(symbol? r) 0]

[else (+ 1 (depth (first r)))]1))

(depth ‘doll) ;; —> ©

EpECC(dolLl))) 1 => 3

Can we add types to this code without the ML-style projections/injections?

Representing Russian dolls and computing their depth

TYPE RussianDoll = ‘doll u (cons RussianDoll °())

(define (depth r : RussianDoll) : Natural
(cond
[(symbol? r) 0]

[else (+ 1 (depth (first r)))]1))

(depth ‘doll) ;; —> ©

EpECC(dolLl))) 1 => 3

Can we add types to this code without the ML-style projections/injections?

Representing propositions and checking tautology

TYPE Proposition = Boolean u [Boolean -> Proposition]

(define (tautology? p : Proposition) : Boolean
(cond
[(boolean? p) pl

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Sam Tobin-Hochstadt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Gray, Findler; Flatt Sam Tobin-Hochstadt

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibrtively expensive.

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Gray, Findler, Flatt Sam Tobin-Hochstadt

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibrtively expensive.

ASSUME identifiable “components’ (files, packages, classes,
modules) with clear boundaries.

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Gray, Findler, Flatt Sam Tobin-Hochstadt

ASSUME a large system written in an untyped language.
Translating it into a typed language is prohibrtively expensive.

ASSUME identifiable “components’ (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component

addition of type annotation on a "“by need’ basis plus the
addrtion of typed components — incrementalrty

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Gray, Findler, Flatt

ASSUME a large system written in an untyped language.
Translating it into a typed language Is prohibitively expensive.

ASSUME identifiable “components’ (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component
addition of type annotation on a "“by need’ basis plus the
addrtion of typed components — incrementality

WANTED annotations should go on variables and other
names and should not disturb existing code — idiomaticity

Sam Tobin-Hochstadt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Gray, Findler, Flatt

ASSUME a large system written in an untyped language.
Translating it into a typed language Is prohibitively expensive.

ASSUME identifiable “components’ (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component
addition of type annotation on a "“by need’ basis plus the
addrtion of typed components — incrementality

WANTED annotations should go on variables and other
names and should not disturb existing code — idiomaticity

WANTED the type annotations ought to be useful and
meaningful — type soundness

Sam Tobin-Hochstadt

Tobin-Hochstadt incrementally and idiomatically adds types
to existing large systems at appropriate granularity level

Gray, Findler, Flatt

ASSUME a large system written in an untyped language.
Translating it into a typed language Is prohibitively expensive.

ASSUME identifiable “components’ (files, packages, classes,
modules) with clear boundaries.

WANTED a framework for component-by-component
addition of type annotation on a "“by need’ basis plus the
addrtion of typed components — incrementality

Sam Tobin-Hochstadt

WANTED annotations should go on variables and other
names and should not disturb existing code — idiomaticity

And all of this
works for (almost)
the full language
——COVERaE

WANTED the type annotations ought to be useful and
meaningful — type soundness

Typed Racket satisfies "“idiomaticy”

;; Representing Russian dolls and computing their depth
(define-type RussianDoll (U °‘doll [cons RussianDoll “()]))
(define (depth {r : RussianDoll}) : Natural
(cond
[(symbol? r) 0]

[else (+ 1 (depth (first r)))1))

(depth ‘doll) ;; —> 0

Qe ECECdoLL))) 55 => 3

Typed Racket satisfies “idiomaticy”

,; Representing propositions and checking tautology
(define-type Proposition (U Boolean [Boolean -> Proposition]))
(define (tautology? {p : Proposition}) : Boolean
(cond
[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy”

,; Representing propositions and checking tautology
(define-type Proposition (U Boolean [Boolean -> Proposition]))
(define (tautology? {p : Proposition}) : Boolean

(cond

no projection needed

[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (or x vy))))

no Injection needed

Typed Racket satisfies “idiomaticy” via ~ flow propositions”

,; Representing propositions and checking tautology
(define-type Proposition (U Boolean [Boolean -> Proposition]))
(define (tautology? {p : Proposition}) : Boolean
(cond
[(boolean? p) p]

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy” via ~ flow propositions”

,; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p Proposition})

boolean? : Any -> Boolean:
(cond “and if it is true, the given

value belongs to Boolean™

[(boolean? p) p

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy” via ~ flow propositions”

,; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p Proposition})

boolean? : Any -> Boolean:
(cond “and if it is true, the given

value belongs to Boolean™

[(boolean? p) p

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true)

(tautology? (lambda (X lambda (y) (or x y))))

D IS not a Boolean,

ergo it must be In
[Boolean -> Proposition]

Typed Racket satisfies “idiomaticy” via ~ flow propositions”

,; Representing propositions and checking tautology

(define-type Proposition (U Boolean [Boolean -> Proposition]))

(define (tautology? {p : Proposition})

boolean? : Any -> Boolean:
(cond “and if it is true, the given

[(boolean? p) p value belongs to Boolean

[else (and (tautology? (p true)) (tautology? (p false)))]1))

(tautology? true) p applied to true
s OK

(tautology? (lambda (X lambda (y) (or x y))))

D IS not a Boolean,

ergo it must be In
[Boolean -> Proposition]

Typed Racket satisfies “idiomaticy” via " flow propositions”

(—e: |(p+,p-))

Typed Racket satisfies “idiomaticy” via " flow propositions”

IN type environment
(the type of variables in e)

type T

(- e |(p+,p-))

Typed Racket satisfies “idiomaticy” via " flow propositions”

IN type environment
(the type of variables in e)

type T

(- e |(p+,p-))

Typed Racket satisfies “idiomaticy” via " flow propositions”

IN type environment
(the type of variables in e)

type T

(- e |(p+,p-))

Typed Racket satisfies “idiomaticy” via " flow propositions”

IN type environment
(the type of variables in e)

type T

(- e |(p+,p-))

The knowledge deals with plain values

and paths into values:
(odd?! n) ~> If this yields False, n Is even
(prime? (second l)) ~> if this yields
True, we know | has the shape [one,
two, {] and two Is a prime number.

Typed Racket satisfies “idiomaticy” via " flow propositions”

IN type environment
(the type of variables in e)

The logic can cope with the usual Boolean
primrtives in a programming language: and,
or, not, If (conditionals), etc.

The knowledge deals with plain values
and paths into values:
(odd?! n) ~> If this yields False, n Is even
(prime? (second l)) ~> if this yields
True, we know | has the shape [one,
two, {] and two Is a prime number.

Typed Racket satisfies “incrementalrty”

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

(define-struct over (top bot)) ;;Any -> Boolean

;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)

;; Circ = (make-circ Posn Number) - Plain -> Number

;; the area of this plain shape s

;; Shape -> Number (define (plain-area s)
;; the area of all rectangles in this s (cond
(define (area s) [(rect? s) (rect-area s)]
(cond [(circ? s) (rect-area s)]))
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] ;; Rect -> Number
[else (apply + (map rect-area (filter rect? s)))])) ;; the area of this rectangle r
(define (rect-area s)
;;Any -> Boolean (* (rect-width s) (rect-height s)))

;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define-struct rect (nw width height)) (define (area s)
(define-struct circ (cntr radius)) (cond
[(over? s) (+ ((area (over-bot s)))]
;;Any -> Boolean [else (apply + (map rect-area (filter rect? s)))]))

;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality”

Racket has always been a

family of languages

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)

;; Circ = (make-circ Posn Number) = Plain -> Number

;; the area of this plain shape s

;; Shape -> Number (define (plain-area s)
;; the area of all rectangles in this s (cond
(define (area s) [(rect? s) (rect-area s)]
(cond [(circ? s) (rect-area s)]))
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] ;; Rect -> Number
[else (apply + (map rect-area (filter rect? s)))])) ;; the area of this rectangle r
(define (rect-area s)
;;Any -> Boolean (* (rect-width s) (rect-height s)))

;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define-struct rect (nw width height)) (define (area s)
(define-struct circ (cntr radius)) (cond
[(over? s) (+ ((area (over-bot s)))]
;;Any -> Boolean [else (apply + (map rect-area (filter rect? s)))]))

;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality”

Racket has always been a

family of languages

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)

;; Circ = (make-circ Posn Number) = Plain -> Number

;; the area of this plain shape s

i Shape -> Number (define (plain-area s) Racket modules already specify

;; the area of all rectangles in this s (cond
(define (area s) [(rect? s) (rect-area s)]

iy Sl e their implementation language

[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] ;; Rect -> Number
[else (apply + (map rect-area (filter rect? s)))])) ;; the area of thi
(define o4 S

rect-width s) (rect-height s)))

;;Any -> Boolean
;; is this p a plain shape?

(define (plain? p) P
(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define-struct rect (nw width height)) (define (area s)
(define-struct circ (cntr radius)) (cond
[(over? s) (+ ((area (over-bot s)))]
;;Any -> Boolean [else (apply + (map rect-area (filter rect? s)))]))

;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality”

Racket has always been a

family of languages

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)

;; Circ = (make-circ Posn Number) = Plain -> Number

;; the area of this plain shape s

i Shape -> Number (define (plain-area s) Racket modules already specify

;; the area of all rectangles in this s (cond
(define (area s) t? t- 1 '
iy Sl e their implementation language
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] :: Rect -> Number
[else (apply + (map rect-area (filter rect? s)))])) ;; the area of thi

(defipa o4 S
rect-width s) (rect-height s)))

;;Any -> Boolean
;; is this p a plain shape?

(define (plain? p) P
(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define-struct rect (nw width height)) (define (area s)
(define-struct circ (cntr radius)) (cond
[(over? s) (+ ((area (over-bot s)))]
;;Any -> Boolean [else (apply + (map rect-area (filter rect? s)))]))

;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

#lang racket

Typed Racket satisfies “incrementality”

Racket has always been a

family of languages

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot)) ;:Any -> Boolean

;; is this p a plain shape?
;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] (define (plain? p)

;; Plain = Rect | Circ (or (rect? p) (circ? p)))
;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number) = Plain -> Number

;; the area of this plain shape s

iShape -> Number (define (plain-area) Racket modules already specify
;; the area of all rectangles in this s (cond
(define (area s) [(rect? s) (rect-area s)] L~ '
iy Sl e their implementation language
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] ;; Rect -> Number
[else (apply + (map rect-area (filter rect? s)))])) ;; the area of thi
(define s s

;;Any -> Boolean rect-width s) (rect-height s)))
;; is this p a plain shape?

(define (plain? p) =

(or (rect? p) (circ? p))) | 5 S:ape -> l;lulrlnber G Ad d -i n g
;; the area of all rectangles in this s
#lang typed/racket

(define-struct rect (nw width height)) (define (area s)
is easy

(define-struct circ (cntr radius)) (cond
[(over? s) (+ ((area (over-bot s)))]

[else (apply + (map rect-area (filter rect! s

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

#lang racket

Typed Racket satisfies “incrementality’’ at the module level

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)

;; Circ = (make-circ Posn Number) = Plain -> Number

;; the area of this plain shape s

;; Shape -> Number (define (plain-area s)
;; the area of all rectangles in this s (cond
(define (area s) [(rect? s) (rect-area s)]
(cond [(circ? s) (rect-area s)]))
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] ;; Rect -> Number
[else (apply + (map rect-area (filter rect? s)))])) ;; the area of this rectangle r
(define (rect-area s)
;;Any -> Boolean (* (rect-width s) (rect-height s)))

;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define-struct rect (nw width height)) (define (area s)
(define-struct circ (cntr radius)) (cond
[(over? s) (+ ((area (over-bot s)))]
;;Any -> Boolean [else (apply + (map rect-area (filter rect? s)))]))

;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

(define-struct rect (nw width height)) # -I_ a n g t y p e d / r a C k e t

(define-struct circ (cntr radius))
(define-struct over (top bot))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number Number)

;; Circ = (make-circ Posn Number) = Plain -> Number

;; the area of this plain shape s

;; Shape -> Number (define (plain-area s)
;; the area of all rectangles in this s (cond
(define (area s) [(rect? s) (rect-area s
(cond [(circ? s) (rect-areg
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] ;; Rect -=> Nu

[else (apply + (map rect-area (filter rect? s)))]))

;;Any -> Boolean -width s) (rect-height s)))
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p))) ;; Shape ->
;; the areadlt all rectangles in this s

(define-struct rect (nw width height))

(define-struct circ (cntr radius))
[(over? s) (+ ((area (over-bot s)))]

;;Any -> Boolean / [else (apply + (map rect-area (filter rect? s)))]))

;; is this p a plain shape?
(define (plain? p) /

(or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality’” at the module level

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Plain = Rect | Circ

;; Circ = (make-circ Posn Number)

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]

;; Rect = (make-rect Posn Number Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(plain? s) (plain-area s)]

[(over? s) (+ (area (over-top s)) (area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

;; Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
(cond
[(rect? s) (rect-area s)]
[(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)

(* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)

(cond

[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

—

Typed Racket satisfies “incrementality’” at the module level

(define-struct rect (nw width height)) iAny -> Boolean
(define-struct circ (cntr radius)) ;»is this p a.plaln shape?
(define-struct over (top bot)) (define (plain? p)

(or (rect? p) (circ? p)))
;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] ' .

;; Plain = Rect | Circ » Plain -> Number
;; the area of this plain shape s
(define (plain-area s)
(cond
[(rect? s) (rect-area s)]
[(circ? s) (rect-area s)]))

;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Shape -> Number

;; the area of all rectangles in this s
(define (area s) 4_
(cond
[(plain? s) (plain-area s)]

[(over? s) (+ (area (over-top s)) (area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)

(* (rect-width s) (rect-height s)))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean *‘_

;; is this p a plain shape?
(define (plain? p)

(or (et p) (crc?) How do typed/racket

communhnicate with racket

Typed Racket satisfies “incrementality’” at the module level

[Integer -> Integer]
->

Integer

(define-struct rect (nw width height)) ;;Any > Boole.an
(define-struct circ (cntr radius)) ;;is this p a.plaln shape?
(define-struct over (top bot)) (define (plain? p)

(or (rect? p) (cin
;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] . .

;; Plain = Rect | Circ

;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

[(rect? s) (rect-area s)]

RN [(circ? s) (rect-area s)]))

;; the area of all rectangles in this s ,
(define (area s) 4_
(cond
[(plain? s) (plain-area s)]

[(over? s) (+ (area (over-top s)) (area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)

(* (rect-width s) (rect-height s)))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean <—T
;;is this p a plain shape?
(define (plain? p)

(or (rect) (cre?) How do typed/racket

communicate with racket

Typed Racket satisfies “incrementality’” at the module level

[Integer -> Integer]
->

Integer

(define-struct rect (nw width height)) ;;Any > Boole?n
(define-struct circ (cntr radius)) ;»is this p a.plaln shape?
(define-struct over (top bot)) (define (plain? p)

(or (rect? p) (cir
;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] . .

;; Plain = Rect | Circ

;; Rect = (make-rect Posn Number Number)
;; Circ = (make-circ Posn Number)

;; Plain -=>

[(rect? s) (rect-area s)]

RN [(circ? s) (rect-area s)]))

;; the area of all rectangles in this s
(define (area s) 4_
(cond
[(plain? s) (plain-area s)]

[(over? s) (+ (area (over-top s)) (area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)

(* (rect-width s) (rect-height s

Who's responsible for which
s oA part of the communication?

(define (plain? p)
(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean 4—T

;; is this p a plain shape?
(define (plain? p)

(or (et p) (crc?) How do typed/racket

communicate with racket

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain]
;; Plain = Rect | Circ

;; Rect = (make-rect Posn Number Number)

;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))]

[else (apply + (map rect-area (filter rect? s)))]))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

Typed Racket satisfies “incrementality’” at the module level

[Integer -> Integer]
->

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (cir

[(rect? s) (rect-area s)]
[(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)

(* (rect-width s) (rect-height s

Integer

(or (rect? p) (circ? p))) ;; Shape -> Number

(define (area s)
(cond

;; the area of all rectangles in this s

[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean 4—T

;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

Who's responsible for which
part of the communication!?

How do typed/racket

communicate with racket

(define-struct rect (nw widt
(define-struct circ (cntr radi
(define-struct over (top bot)

;; Shape = Plain | (make-over | jape Shape) | [Listof Plain]
;; Plain = Rect | Circ

;; Rect = (make-rect Posn N{ nber Number)

;; Circ = (make-circ Posn Nufber)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))]

Typed Racket satisfies “incrementality’” at the module level

[Integer -> Integer]
->

[else (apply + (map rect-area (filter rect? s)))]))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (cin

[(rect? s) (rect-area s)]
[(circ? s) (rect-area s)]))

;; Rect -> Number

;; the area of this rectangle r

(define (rect-area s)

(* (rect-width s) (rect-height s

Integer

(or (rect? p) (circ? p))) ;; Shape -> Number

(define (area s)
(cond

;; the area of all rectangles in this s

[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean <—T
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

Who's responsible for which
part of the communication!?

How do typed/racket

communicate with racket

Typed Racket satisfies “incrementality’” at the module level

(f (A (x)

nhowdyu))

;; Plain = Rect | Circ
;; Rect = (make-r
;; Circ = (make-c

;; Shape -> Numb
;; the area of all re
(define (area s)
(cond
[(plain? s) (plai
[(over? s) (+ (a

(define-struct rect (nw widt
(define-struct circ (cntr radi
(define-struct over (top bot)

;; Shape = Plain | (make-over

[else (apply + (map rect-area (filter rect! s)))]

ight)) ;;Any -> Boolean

;;is this p a plain shape?
(define (plain? p)
(or (rect? p) (cin

be Shape) | [Listof Plain] . .

;; Plain -=> N Jer
- arthis plain shape s
ea s)

t-area s)]

t-area s)]))

er

s rectangle r
2a s)

&W's) (rect-height s

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

[Integer -> Integer]
->

Integer

;; Shape -> Number

;; the area of all rectangles in this s
(define (area s)

Do we need to discover this
(cond

“miscommunication’?
[(over? s) (+ ((area (over-bot s)))]

[else (apply + (map rect-area (filter rect? s)))]))

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

S|

Who's responsible for which
part of the communication!?

How do typed/racket

communicate with racket

Typed Racket satisfies “incrementality’” at the module level

(f (A (x)

nhowdyu))

;; Plain = Rect | Circ
;; Rect = (make-r
;; Circ = (make-c

;; Shape -> Numb

;; the area of all re

(define (area s)
(cond

[(plain? s) (plai
[(over? s) (+ (a

(define-struct rect (nw widt
(define-struct circ (cntr radi
(define-struct over (top bot)

;; Shape = Plain | (make-over

[else (apply + (map rect-area (fi

ight

be $hape) | [Listof Plain]

T

;; Plain -=> N

Do we need to discover this
“miscommunication’’?

rect! s)))]

;;Any -> Boolean

;;is this p a plain shape?

(define (plain? p)
(or (rect? p) (cin

s rectangle r
2a s)
20Ws) (rect-height s

er
it this plain shape s

ea s)

t-area s)]
t-area s)]))

er

[Integer -> Integer]
->

Integer

;;Any -> Boolean

define (plain? p

;; is this p a plain shape?

es in this s

If so, who should we blame for
the miscommunication?

;;Any -> Boolean

(define (plain? p)

;;is this p a plain shape?

(or (rect? p) (circ? p)))

e

yver-bot s)))]

2ct-area (filter rect? s)))]))

Who's responsible for which
part of the communication!?

How do typed/racket

communicate with racket

Typed Racket satisfies “incrementality’” at the module level

[Integer -> Integer]

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? r

(define-struct rect (nw wid
(define-struct circ (cntr rad
(define-struct over (top bo

ape Shape) | [Listof Plain] . .

;; Shape = Plain | (make-ove

;; Plain = Rect | Circ ;; Plain -> o
;; Rect = (make-rect Posn ber Number) ;; the are T plain shape s
;; Circ = (make-circ Posn N¢ nber) (de y plain-area s)

on

[(rect? s) (rect-area s)]

;; Shape -> Number [(circ? s) (rect-area s)]))

;; the area of all rectangles injthis s
(define (area s) 4_
(cond
[(plain? s) (plain-area s)]

[(over? s) (+ (area (over-top s)) (area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)

(* (rect-width s) (rect-height s)))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p))) ;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean “_

;;is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality’” at the module level

[Integer -> Integer]
->

(f (A (x) "howdy"))

Integer

(define-struct rect (nw wid
(define-struct circ (cntr rad
(define-struct over (top bot

;; Shape = Plain | (make-ove
;; Plain = Rect | Circ

;; Rect = (make-rect Posn
;; Circ = (make-circ Posn Nt

;; Shape -> Number

If you think it’s acceptable to let
this kind of mistake slip,
welcome to industrial-strength,
modern day C++ reincarnation.
(This can’t possibly happen.)

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? r

;; Plain ->
the ar: is plain shape s
(de lain-area s)
ond

[(rect? s) (rect-area s)]
[(circ? s) (rect-area s)]))

;; Rect -> Number
;; the area of this rectangle r
(define (rect-area s)

(* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean “_T

;;is this p a plain shape?
(define (plain? p)
(or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality’” at the module level

(f (A (x) "howdy"))

(define-struct rect (nw wid
(define-struct circ (cntr rad
(define-struct over (top bot

;; Shape = Plain | (make-ove
;; Plain = Rect | Circ

;; Rect = (make-rect Posn
;; Circ = (make-circ Posn Nt

;; Shape -> Number

,(,

If you think it’s acceptable to let

this kind of mistake slip,
welcome to industrial-strength,

modern day C++ reincarnation.

(This can’t possibly

happen.)

[Integer -> Integer]
->

Integer

”

.o
”»

.o
a4

E

.o
”

”

;;Any -> Boolean

(define (plain? p)

(define (rect-area s

is this p a plain shape?
(or (rect? p) (circ? r

Plain ->
the are
plain-area s)
ad
[
[(cir

s) (rect-area s)]

Rect -> Nu
the area of thi

(* (rect-width s) (rec

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

is plain shape s

ect-area s)]))

gle r

If you think that this kind of
miscommunication deserves the

programmer’s attention, you
want “type sound” interactions.

Typed Racket satisfies “incrementality’” at the module level

" " [Integer -> Integer]
(f (AN (x) "howdy")) o

Integer

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? -

(define-struct rect (nw wid
(define-struct circ (cntr rad
(define-struct over (top bot

;; Shape = Plain | (make-ove
;; Plain = Rect | Circ
;; Rect = (make-rect Posn
;; Circ = (make-circ Posn Nt >

hE ™Y

[
[(cir

;; Rect -> Nu
;; the area of thi
(define (rect-area s
(* (rect-width s) (rec

;; Plain -=>
;; the are

is plain shape s
plain-area s)

s) (rect-area s)]
ect-area s)]))

;; Shape -> Number

,(,

gler

If you think it’s acceptable to let
this kind of mistake slip,
welcome to industrial-strength,
modern day C++ reincarnation.
(This can’t possibly happen.)

If you think that this kind of
miscommunication deserves the
programmer’s attention, you
want “type sound” interactions.

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

iAny > Boolean <—T And if you want soundness, the
;; is this p a plain shape?
run-time check ought to blame

(define (plain? p)
(or (rect? p) (circ? p)))

this connection between the
tWO arrows.

Typed Racket satisfies “soundness’ at the module levels via
the compilation of types to higher-order contracts

NICLI Or)

"howdy "))

(f (A (x)
+; Plain = Rect | Circ

;; Rect = (make-rect Posn Number
;; Circ = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(plain? s) (plain-area s)]
[(over? s) (+ (area (over-top s)) (area (over-bot s)))]

;;Any -> Boolean
5

(define (plain? p)

.o
”»
.o
”

(define (plain-are

.o
”

”

(define (rect-area s)
(* (rect-width s) (rect-height s)))

[Integer -> Integer]
->

Integer

is this p a plain shape?

(or (rect? p) (circ? p)))

Plain -> Number
the area of this plain sk

70 ..s) (rect-area s)]
(circ? s) (rect-area s)]))

Rect -> Number
the area of this rectangle r

[else (apply + (map rect-area (filter rect? s)))]))

;;Any -> Boolean
;; is this p a plain shape?
(define (plain? p)

==

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(over? s) (+ ((area (over-bot s)))]

(or (rect? p) (circ? p)))

[else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

Typed Racket satisfies “soundness’ at the module levels via
the compilation of types to higher-order contracts

;;Any -> Boolean [Integer -2 Integer]

;;is this p a plain shape? ->
(define (plain? p)

(or (rect? p) (circ? p))) I n t e g e r

;; Plain -=> Number
;; the area of this plain sh

(f ()\ (X) "hOWdy"))
;: Plain = Rect | Circ

;; Rect = (make-rect Posn Number
;; Circ = (make-circ Posn Number)

70 ..s) (rect-area s)]
(circ? s) (rect-area s)]))

;; Shape -> Number
;; the area of all rectangles in this s
(define (area s)
(cond
[(plain? s) (plain-area s)] L
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] (d:ﬁne (rec'td-art"ea hei
[else (apply + (map rect-area (filter rect? s)))])) (* (rect-width s) (rect-heig

——— * [integer? -> integer]
;; is this p a plain shape?
(define (plain? p)

->
(or (rect? p) (circ? p))) ;; Shape -> Number .
;; the area of all rectangles in this s -I n t e g e r ?
(define (area s)
(cond
[(over? s) (+ ((area (over-bot s)))]
[else (apply + (map rect-area (filter rect? s)))]))

- Rect -> Number
;; the :

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean
;;is this p a plain shape?
(define (plain? p)

(or (rect? p) (circ? p)))

Typed Racket satisfies “soundness’ at the module levels via
the compilation of types to higher-order contracts

;;Any -> Boolean [Integer -2 Integer]

;;is this p a plain shape? ->
(define (plain? p)

(or (rect? p) (circ? p))) I n t e g e r

;; Plain -=> Number
;; the area of this plain sh
(define (plain-are

(cond

(f ()\ (X) "hOWdy"))
;: Plain = Rect | Circ

;; Rect = (make-rect Posn Number
;; Circ = (make-circ Posn Number)

(rect-area s)]

;; Shape -> Number (circ? s) (rect-area s)]))

;; the area of all rectangles in this s
(define (area s)
(cond
[(plain? s) (plain-area s)] ared :
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] (d(:ﬁ(::cgctsfitd:r:ia) (rect-hei
[else (apply + (map rect-area (filter rect? s)))])) g
;;Any -> Boolean

* [integer? -> 1nteger]
;; is this p a plain shape?
(define (plain? p)

->
(or (rect? p) (circ? p))) ;; Shape -> Number

;; the area of all rectangleg) this s -I n t e g e r ?

(define (area s)
(cond
[(over? s) (+ ((area (oY oot s)))]
[eI annlv + (map re ¥ o

;;is this p a plain shape?

(A (x) ;; known Integer
(d(ifri'n(ie(ftl?m:).z:)irc?p))) (1@1: ([reSU-l.t (g X)])

- Rect -> Number
;; the :

oct?

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean

(1f (integer? result)
(f result)
(error "blame, result")))))

Typed Racket satisfies “soundness’ at the module levels via
the compilation of types to higher-order contracts

;;Any -> Boolean [Integer -2 Integer]

- SRR ;;is this p a plain shape? ->
(define (plain? p)
(f (A (X) ”hOWdy”)) (or(recl:at?p)(I::irc?p))) Integer
;; Plain -> Number
;; the area of this plain sk

(define (plain-are
(cond

;; Plain = Rect | Circ
;; Rect = (make-rect Posn Number
;; Circ = (make-circ Posn Number)

(rect-area s)]

;; Shape -> Number (circ? s) (rect-area s)]))

;; the area of all rectangles in this s
(define (area s)
(cond
[(plain? s) (plain-area s)] :
[(over? s) (+ (area (over-top s)) (area (over-bot s)))] (define (rect-area

[else (apply + (map rect-area (filter rect? s)))])) (* (rect-width s) (rect-heig

;;Any -> Boolean [-Integer? —> -lnteger]
;; is this p a plain shape? S
(define (plain? p) =

(or (rect? p) (circ? p))) ;; Shape -> Number .
thi' integer?

;; the area of all rectangle
(define (area s)
(cond
[(over? s) (+ ((area (o
[else (apply + (map re

;;is this p a plain shape?

(A (x) ;; known Intrger
(d(ifri'n(ie(ftl?m:).z:)irc?p))) (1@1: ([resu-l."' (g X)])

- Rect -> Number
;; the arec :

angle r

ot 5)))]

oct?

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;;Any -> Boolean

(1f (integer? result)
(f result)
(error "blame, result")))))

Findler introduced higher-order contracts [ICFP 2002]

Robby Findler

Dimoulas developed elegant, flexible technique for proving
the soundness of mixed systems [ESOP 20| 2]

Christos Dimoulas

Theorem

For all mixed programs e € Racket @ Type Racket, one of these statements holds:

eval(e) Is a value
eval(e) is a known exception from TR

eval(e) diverges.

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket
Asumu Takikawa
,; a mixing that adds search capabilities
(define (add-search %)
(class %
(inherit text)
(field [state #f])

(define/public (search str)

.)))

add-search%

#lang racket

. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket a function from class to class

,; A mixing th adds search capabilities
(define (add-search %)
(class %
(inherit text)
(field [state #f])

(define/public (search str)

.)))

add-search%

#lang racket

. (add-search analysis-presentation%)..

4

Asumu Takikawa

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket a function from class to class

Asumu Takikawa

,; A mixing th adds search capabilities
(define (add-search %)
(class %

(inherit text)

(field [state #T])

(define/public (search str) eXpCWTed o

)))

add-search%

#lang racket

.. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

.
| #%
|

-»
i..

Asumu Takikawa

#lang racket a function from class to class

,; A mixing th adds search capabilities
(define (add-search %)
(class %

(inherit text)

(field [state #T])

(define/public (search str) eXpCWTed o

)))

... and used In a separate module
add-search?%

#lang racket

.. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

va
A

Asumu Takikawa

#lang racket a function from class to class

,; A mixing th adds search capabilities

(define (add-search %) .
Yes, this Is real-world code.

(class %

(inherit text)

(field [state #T])

(define/public (search str) expcwted o

.)))

... and used In a separate module
add-search%

#lang racket

. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket a function from class to class

Asumu Takikawa

a mixing th adds search capabilities

(define (add-search %) .
Yes, this Is real-world code.

(class %

(inherit text)
(field [state #f]) Yes, you can do this Is Python, too.

\4/\I.JVI () 70 N e I I}

(define/public (search str)

.)))

... and used In a separate module
add-search%

#lang racket

. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

add-search%

#lang racket

.. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

What kind of types do classes have!

add-search%

#lang racket

.. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

What kind of types do classes have!

What contracts do these types compile to?

add-search%

#lang racket

.. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang typed/racket Gradual Typing for First-Class Classes * |

;; a mixing that adds search capabilities Asumu Takikawa T. Stephen Strickland ~ Christos Dimoulas

Sam Tobin-Hochstadt =~ Matthias Felleisen
(d e f 1 ne (d d d -Searc h %) PLT, Northeastern University

{asumu, sstrickl, chrdimo, samth, matthias}@ccs.neu.edu

(class % ——
—*

(inherit text)
(field [state #f])
(define/ pub]_ ic (search str) Towards Practical Gradual Typing”

Asumu Takikawa!, Daniel Feltey!, Earl Dean?, Matthew Flatt?,

))) Robert Bruce Findler*, Sam Tobin-Hochstadt?, and Matthias
* Felleisen'

1 Northeastern University
Boston, Massachusetts
o) asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu
add—searCh /) 2 Indiana University
Bloomington, Indiana
samth@cs.indiana.edu, edean@cs.indiana.edu
3 University of Utah
Salt Lake City, Utah
#1 ang racket nflattQcs.utah.edu
4 Northwestern University
Evanston, Illinois
robby@eecs.northwestern.edu

.. (add-search analysis-presentation%)..

v -

Typed Racket can cope with (almost) all linguistic constructs from Racket

Innovations needed:
class types, with row polymorphism

sealing contracts for enforce polymorphism

, , | Gradual Typing for First-Class Classes * !
innovative soundness proof

mu Takikawa T. Stephen Strickland ~ Christos Dimoulas
Sam Tobin-Hochstadt =~ Matthias Felleisen
(d e f 1 ne (d d d -Searc h %) PLT, Northeastern University

{asumu, sstrickl, chrdimo, samth, matthias}@ccs.neu.edu

(class %
(inherit text)

(field [state #T])

. . L] = *
(define/public (search str) Towards Practical Gradual Typing
Asumu Takikawa!, Daniel Feltey!, Earl Dean?, Matthew Flatt?,
))) Robert Bruce Findler*, Sam Tobin-Hochstadt?, and Matthias
* Felleisen'

1 Northeastern University

Boston, Massachusetts

asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu

add—SearCh% 2 Indiana University .

Bloomington, Indiana

samth@cs.indiana.edu, edean@cs.indiana.edu
3 University of Utah

Salt Lake City, Utah
#1 ang racket nflattQcs.utah.edu

4 Northwestern University
Evanston, Illinois

robbyQ@eecs.northwestern.edu

.. (add-search analysis-presentation%)..

Typed Racket can cope with (almost) all linguistic constructs from Racket

Innovations needed:
class types, with row polymorphism

sealing contracts for enforce polymorphism "Gradual Typing for First-Class Classes*
innovative soundness proof

mu Takikawa T. Stephen Strickland ~ Christos Dimoulas
Sam Tobin-Hochstadt ~ Matthias Felleisen

(d e f 1 ne (ad d -Searc h %) PLT, Northeastern University

{asumu, sstrickl, chrdimo, samth, matthias}@ccs.neu.edu

—————

(class %

Translating theory into practice:
design for usabllity

implementation engineering
performance evaluation

))) Robert Bruce Findler*, Sam Tobin-Hochstadt?, and Matthias

Towards Practical Gradual Typing”

Asumu Takikawa!, Daniel Feltey!, Earl Dean?, Matthew Flatt?,

Felleisen?!

Northeastern University
Boston, Massachusetts
aSumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu

add‘searCh% 2 Indiana University .

Bloomington, Indiana

samth@cs.indiana.edu, edean@cs.indiana.edu
3 University of Utah

Salt Lake City, Utah
#1 ang racket nflattQcs.utah.edu

4 Northwestern University
Evanston, Illinois

robbyQ@eecs.northwestern.edu

.. (add-search analysis-presentation%)..

b S S, LSl ¢

Design matters.

\<I\<I\<I\<I

HEC
DiglE
oigle

Disl@

Rac
Hale
Rele

Rac

et Is incrementa/»/
et is idiomatic. v
ket Is sound/

et covers it all. v

Does it work!?
Does it really work?
Truthfully?

No cheating!

b S S, LSl ¢

Design matters.

\<I\<I\<I\<I

HEC
DiglE
oigle

Disl@

Rac
Hale
Rele

Rac

et Is incrementa/»/
et is idiomatic. v
ket Is sound/

et covers it all. v

Fvaluation matters even more.

L W =N O

Does it work!?
Does it really work?
Truthfully?

No cheating!

Design needs feedback loop.

Design and
Theory

aemnd IMmplementation

Typed .

Design needs feedback loop.

Design and
Theory

ammnd IMmplementation

Typed
Racket

Evaluation

Two kinds of evaluation:
» formative
» summative

Design needs feedback loop.

Three aspects to design evaluation:
> effort of adding annotations

> usability with (future) dev

» performance of mixed systems

Typed .

Design and
Theory

ammnd IMmplementation

Two kinds of evaluation:
» formative
» summative

Design needs feedback loop.

Two kinds of feedback: Three aspects to design evaluation:

» idea level (back to drawing ~+ effort of adding annotations
board) > usability with (future) dev

> redlization level (previously » performance of mixed systems

Design and
Theory

ammnd IMmplementation

Typed .

Two kinds of evaluation:
» formative
» summative

Design needs feedback loop.

Typed

Racket

Design needs feedback loop.

Typed
Racket

Design needs feedback loop.

Typed
Racket

Design needs feedback loop.

Typed

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

WHICH
MODULE WILL A

PROGRAMMER
EQUIP WITH

Ben Greenman

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

BT cce act

WHICH
MODULE WILL A

PROGRAMMER
EQUIP WITH

Ben Greenman

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

MODULE WILL A
PROGRAMMER

EQUIP WITH

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

Ben Greenman

MODULE WILL A
PROGRAMMER
EQUIP WITH

Greenman create and evaluate all possible mixed
configurations of existing multi-module systems

Ben Greenman

WE DON’T KNOW. MODULE WILL A

ALL 22N OF THESE PROGRAMMER

CONFIGURATIONS EQUIP WITH
ARE FEASIBLE.

Typed Racket's contract impose a high run-time cost on mixed system performance.

POPL 2016 and Journal of Functional Programming [in preparation]
~20 modular programs with ~100,000 configurations.
90% of those impose a penalty of 3x or more.

many configurations impose a 10x penalty

some configurations cost as much as 100x of the baseline

Typed Racket's contract impose a high run-time cost on mixed system performance.

POPL 2016 and Journal of Functional Programming [in preparation]

~20 modular programs with ~100,000 configurations.

90% of those impose a penalty of 3x or more.
many configurations impose a 10x penalty

some configurations cost as much as 100x of the baseline

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen
Northeastern University, Boston, MA

= e ———————

Premature Death?

» Practical evaluations are critical for the design feedback loop.
» They focus our mind and our research efforts.

Premature Death? Research is when it can fail.

» Practical evaluations are critical for the design feedback loop.
» They focus our mind and our research efforts.

10
0,
-
C
(Q
D

=
n
¢
O
N
N
)

]

| essons Learned

the goal the nature of the question

level of granularity

type inference vs
explicit static type

the role of evaluation

| essons Learned

the goal the nature of the question

level of granularity

type inference vs
explicit static type
do developers care!?

the role of evaluation

| essons Learned

the goal the nature of the question

level of granularity

what's in 1t for you? .
type inference vs

explicit static type
do developers care!?

the role of evaluation

| essons Learned

the goal the nature of the question

level of granularity

what's in 1t for you? .
type inference vs

explicit static type
do developers care!?

the role of evaluation

L essons Learned

the goal

Why do we add types to
untyped languages!

L essons Learned

the goal

|s it about bug finding!

s it about IDE mechanics?
Why do we add types to

untyped languages!

|s it about execution speed!

L essons Learned

the goal

|s it about bug finding!

s it about IDE mechanics?
Why do we add types to

untyped languages!

|s it about execution speed?

[t Is about communicating yourself

and others developers in the future.

L essons Learned

the goal

|s it about bug finding!

s it about IDE mechanics?
Why do we add types to
untyped languages!

|s it about execution speed?

[t I1s about communicating yourself
and others developers in the future.

Challenge ~ how to gather
evidence for that!

L essons Learned

the nature of the question

What are we

investigating!

L essons Learned

the nature of the question

s it about A calculus?

What are we

investigating!

|s it about new languages?

s 1t about industrial
languages and needs!

L essons Learned

the nature of the question

s it about A calculus?

What are we

| N .
nvestigating: |s it about new languages?

s 1t about industrial
languages and needs!

We use Racket for two reasons:
it Is useful to, and representative
of, Industrial untyped languages
but 1t Is academic and we change
it If we must

| essons Learned

What are we
investigating!

Should we aim for
soundness!

the nature of the question

|s it about A calculus?
|s it about new languages?

s 1t about industrial
languages and needs!

We use Racket for two reasons:
it I1s useful to, and representative
of, Industrial untyped languages
but 1t Is academic and we change
it If we must

L essons Learned

the nature of the question

s it about A calculus?

What are we

| s .
nvestigating |s it about new languages?

s 1t about industrial

Should we aim for
languages and needs!

soundness!?

We use Racket for two reasons:
Absolutely! If academics don't, it is useful to, and representative
nobody will as the numerous of, industrial untyped languages

designs of hybrid languages in but it is academic and we change
industry show (exception: C#). it if we must

| essons Learned

the nature of the question

Challenge ~ can we make It
work? VWhat does a compromise
look like!?

s it about A calculus?

What are we

| s .
nvestigating: |s it about new languages?

s 1t about industrial

Should we aim for
languages and needs!

soundness!?

We use Racket for two reasons:
Absolutely! If academics don't, it is useful to, and representative
nobody will as the numerous of, industrial untyped languages

designs of hybrid languages in but it is academic and we change
industry show (exception: C#). it if we must

L essons Learned

level of granularity

VWhat do programmers

want when they add types!

L essons Learned

level of granularity

VWhat do programmers

want when they add types!

Modules?

| essons Learned

level of granularit
VWhat do programmers 2 Y

want when they add types!

Modules?

Typed Racket bets on modules, for two reasons:
typically small enough for conversion
large enough to keep cost of contracts low

L essons Learned

| was wrong.

level of granularity

VWhat do programmers
want when they add types!

Modules?

Typed Racket bets on modules, for two reasons:
typically small enough for conversion
large enough to keep cost of contracts low

L essons Learned

| was wrong.

level of granularity

VWhat do programmers
want when they add types!

the “Eli experience™ with TypeScript
_

Typed Racket bets on modules, for two reasons:

typically small enough for conversion
large enough to keep cost of contracts low

L essons Learned

| was wrong.

the performance evaluation is
disastrous (until proven otherwise)

level of granularit
Wha do programmers 2 Y

want \ 1en they add types!

the “Eli experience™ with TypeScript
;

Typed Racket bets on modules, for two reasons:
typically small enough for conversion
large enough to keep cost of contracts low

L essons Learned

Does type inference work

for Untyped Languages?

type inference vs

explicit static type

L essons Learned

Hindley-Milner?

Does type inference work

for Untyped Languages’

type inference vs
explicit static type

| essons Learned

Hindley-Milner?

Set-based!
| !
Does type inference work

for Untyped Languages’

type inference vs

Probably not: explicit static type

type inference needs an explicit type language

HM inference by itself is extremely brittle

HM inference for Untyped PLs cannot explain errors
SBA inference cannot deal with modules

... and isn't compositional

| essons Learned

Hindley-Milner?

But |:"run time" inference (see work by

Shriram Krishnamurthi and Jeff Foster)

Set-based!
!
Does type Il erence work

for Untype | Languages’

type inference vs

Probably not: explicit static type

type inference needs an explicit type language

HM inference by itself is extremely brittle

HM inference for Untyped PLs cannot explain errors
SBA inference cannot deal with modules

... and isn't compositional

L essons Learned

But 2: IDE tools that assist “‘conversion”

Hindley-Milner?
But |:"run time" inference (see work by
Shriram Krishnamurthi and Jeff Foster)

Dc s type I erence work
for Untype | Languages?

. type inference vs

Probably not:
type inference needs an explicit type language

HM inference by Itself is extremely brittle

HM inference for Untyped PLs cannot explain errors

explicit static type

SBA inference cannot deal with modules
... and isn't compositional

L essons Learned

But 3: the syntax system necessitates more than plain local inference

But 2: IDE tools that ¢ sist “‘conversion”
Hindley-Milner?

But |:"run tir 2" inference (see work by

Shriram Krisl hamurthi and Jeff Foster)

Dc s type 11 erence work
for Untype | Languagi s?

.. type inference vs

Probably not:
type inference needs an explicit type language

HM inference by Itself is extremely brittle

HM inference for Untyped PLs cannot explain errors

explicit static type

SBA inference cannot deal with modules
... and isn't compositional

L essons Learned

How important is the

evaluation process for this field?

the role of evaluation

L essons Learned

Expressiveness

Performance

How important is the

evaluation process for this field?

the role of evaluation

| essons Learned

Performance

How important is the
evaluation process for this field?

Our “business’” Is design, evaluation Is imperative:

calcull help with soundness
existing body of code is critical
but we are academic so preserve flexibility

the role of evaluation

| essons Learned

Challenge ~ how can academic
teams create and maintain a PL! | "
Effectiveness Usability

\

Our “business’” Is design, eval jation Is imperative:
calculi help with soundnes:
existing body of code is critical
but we are academic so preserve flexibility

Performance

How important is the
evaluation process for this field:

the role of evaluation

B=c<ons Learned

Even academics care in PL
ought to care whether the
"developer on the street” will
eventually care.

do developers care!

| essons Learned

Even academics care in PL
ought to care whether the
"developer on the street” will
eventually care.

Obviously developers care. People built
big systems In Untyped, people discover
problems with this approach, and
industry 1s mimicking the incremental/
oradual approach to typing.

do developers care!?

L essons Learned

Even academics care in PL

ought to care whether the

“developer on the street” will PL has failed to gather data
eventually care. that support soundness

and sound design.

Obviously developers care. People built
big systems In Untyped, people discover
problems with this approach, and
industry 1s mimicking the incremental/
oradual approach to typing.

do developers care!?

L essons Learned

Even academics care in PL
ought to care whether the
"developer on the street” will
eventually care.

do developers care!?

PL fails to make the
argument (even) at
the "“theoretical”
level of courses.

PL has falled to gather data
that support soundness
and sound design.

Obviously developers care. People built
big systems In Untyped, people discover
problems with this approach, and
industry 1s mimicking the incremental/
oradual approach to typing.

L essons Learned

Challenge ~ how can academic PL fails to make the
PL improve Iits teaching! argument (even) at

Even academics care in PL
ought to care whether the
"developer on the street” will
eventually care.

do developers care!?

the "theoretical’
level of courses.

PL has falled to gather data
that support soundness
and sound design.

Obviously developers care. People built
big systems In Untyped, people discover
problems with this approach, and
industry 1s mimicking the incremental/
oradual approach to typing.

| essons Learned

what's in 1t for you?

| essons Learned

what's in 1t for you?

The area provides a rich field of
challenging problems, ranging from the
incredibly theoretical to the highly practical.

| essons Learned

Practical grounding matters.

what's in 1t for you?

The area provides a rich field of
challenging problems, ranging from the
incredibly theoretical to the highly practical.

| essons Learned

Take a the long-term view (Wright,
Flanagan, Krishnamurthi, Tobin-Hochstadt).

Practical grounding matters.

what's in 1t for you?

The area provides a rich field of
challenging problems, ranging from the
incredibly theoretical to the highly practical.

Soft Typists

The MrSpidey Crew
Contractors

Typed Racketeers

Evaluators

THals=he

Robert “Corky” Cartwright, Mike Fagan, Andrew Wright

Cormac Flanagan, Shriram Krishnamurthi, Matthew Flatt

Robby Findler, Christos Dimoulas Philippe Meunier, Stevie Strickland
Sam Tobin-Hochstadt, Vincent, St-Amour, Asumu Takikawa

Ben Greenman, Max New, Jan Vitek

