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Aid to Verifying LISP Programs
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Write functional LISP, instead of imperative Algol:
▸ write functional programs
▸ describe them with user-defined types
▸ use these types to prove theorems 
Functional programs are theories of first-order logic.

When I arrived at Rice in 1987: 

              “let’s add types to Scheme.”



;; Representing Russian dolls and computing their depth 

;; RussianDoll = ‘doll u (cons RussianDoll ‘()) 

;; RussianDoll -> Natural 

(define (depth r) 

  (cond 

    [(symbol? r) 0] 

    [else (+ 1 (depth (first r)))])) 

(depth ‘doll) ;; —> 0 

(depth ‘(((doll))) ;; —> 3

What does ‘’adding types to Scheme’’ mean? Why is it hard?



;; Representing propositions and checking tautology 

;; Proposition = Boolean u [Boolean -> Proposition] 

;; Proposition -> Boolean 

(define (tautology? p) 

  (cond 

    [(boolean? p) p] 

    [else (and (tautology? (p true)) (tautology? (p false)))])) 

(tautology? true) 

(tautology? (lambda (x) (lambda (y) (or x y))))
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let rec is_tautology p =  

 match p with  

  | InL b -> b  

  | InR p -> is_tautology(p true) && is_tautology(p false) 

is_tautology (InR(fun x -> InL true)) 
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type proposition = InL of bool | InR of (bool -> proposition)  

let rec is_tautology p =  

 match p with  

  | InL b -> b  

  | InR p -> is_tautology(p true) && is_tautology(p false) 

is_tautology (InR(fun x -> InL true)) 

is_tautology (InR(fun x -> InR(fun y -> or (InL x) (InL y))))

My idea:   add a universal type to the program and add 
injections and projections where needed.  That’s a practical 
version of Scott’s view that untyped languages are unityped.  
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;; Representing Russian dolls and computing their depth 

;; RussianDoll = ‘doll u (cons RussianDoll ‘()) 

;; RussianDoll -> Natural 

(define (depth r) 

  (cond 

    [(symbol? r) 0] 

    [else (+ 1 (depth (first r)))])) 

(depth ‘doll) ;; —> 0 

(depth ‘(((doll))) ;; —> 3

Fagan’s “soft typer” works on all of our “hard” examples

[[μ (rd)(U ‘doll (cons RussianDoll ‘()))] 

 —> 
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Fagan’s “soft typer” works on all of our “hard” examples

;; Representing propositions and checking tautology 

;; Proposition = Boolean u [Boolean -> Proposition] 

;; Proposition -> Boolean 

(define (tautology? p) 

  (cond 

    [(boolean? p) p] 

    [else (and (tautology? (p true)) (tautology? (p false)))])) 

(tautology? true) 

(tautology? (lambda (x) (lambda (y) (or x y))))

[[μ (p)(U Boolean (—> Boolean p))] 

 —> 

 Boolean]
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Fagans’ soft typer cannot 
▸ present types in an accessible manner
▸ deal with more than small toy programs
▸ cope with anything but the core functional language

Can we deal with 
▸ 1,000 lines of code
▸ full Scheme (assignment, continuations)
▸ explain types 
▸ report errors in an “actionable” manner

???
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▸ modify type algebra (add in set!, call/cc)

▸ improve implementation of type algebra

▸ report type errors at source level

▸ use types for optimization

Wright’s 1992-1993 engineers Soft Scheme (based on Chez) 
into an ML-like variant of Scheme with idiomatic type inference

s ⊆ { dom : t, rng : int } u { num : 0 }
t ⊆ { dom : v, rng : char, num : 0 } 
v ⊆ double

s = …           γ = ∅
t = …           δ = ∅
v = double     ε = ∅

chez program.ss -o3

Andrew Wright
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My first sabbatical (1993-94)

Write many 1,000 line programs 
in SML and Soft Scheme (Foxnet, 
“extensible den.  semantics”)

Shriram Krishnamurthi’s starter project

Analyze Sitaram’s SLaTeX (now a 
benchmark) with Soft Scheme 
(3,500 lines of real-world code)

RESULT: It works. 
Soft Scheme’s were 
violations of the 
Geneva convention. 

Soft Scheme supports my 
module’s but is not modular. Undergraduates cannot use 

Soft Scheme in PL course. 

Type errors in SML/
NJ were torture.
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Errors matter. Developers matter.
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Flanagan uses a regular type algebra, but solves inequations instead 
of equations, via an approach inspired by Heintze & Jaffar’s SBA

double ⊆ dom(t)
t          ⊆ rng(v) 
dom(v) ⊆ double

transitive 
closure through 

constructors 

s = …           
t = …           
v = (-> double  (-> double …))

the solution is a 
least-fix point in 

a lattice

because (first ‘()) raises an exn

Cormac Flanagan

[Listof X]    ⊆ dom(first @1) 

[Pairof Y Z] ⊆ dom(first @2) 

compare with 
specifications for 

primitive 
operations
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• HM performs in near-
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• HM is easy to 
understand in principle 

• HM “smears” origin 
information across 
solution due to bi-
directional flow 

• SBA performs in linear 
time up to 2,500 loc

• SBA is also easy to 
explain to 
programmers

• SBA pushes information 
only along actual edges 
in the flow graph

And we can 
visualize those!
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void may flow here

look at types
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the source of void

the flow of void to first
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Flanagan can deal with 
▸ 2,000 lines of code
▸ full Scheme (assignment, continuations)
▸ explain types 
▸ report errors in an “actionable” manner

Can we deal with 
▸ get juniors and seniors to use it (future devs)
▸ improve precision (e.g., arity of functions) 
▸ “modules” (independently developed pieces)?

???



EVEN WITH JUNIORS AND 
SENIORS

The good news
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;; Natural Symbol -> S-expression 

(define (wrap depth stuff) 
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to 500,000 loc.

▸ A language renaissance 
has spread Untyped 
Languages beyond their 
niche uses.

Signatures matter.

▸ Nobody ought to read an 
entire module to 
understand its services. 

▸ Racket programmers use 
contracts as signatures. 
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}And all of this 
works for (almost) 
the full language
— coverage



;; Representing Russian dolls and computing their depth 

(define-type RussianDoll (U ‘doll [cons RussianDoll ‘()])) 
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(define (tautology? {p : Proposition}) : Boolean 

  (cond 

    [(boolean? p) p] 

    [else (and (tautology? (p true)) (tautology? (p false)))])) 

(tautology? true) 

(tautology? (lambda (x) (lambda (y) (or x y))))

Typed Racket satisfies “idiomaticy” via ``flow propositions’’

boolean? : Any -> Boolean: 
``and if it is true, the given 
value belongs to Boolean’’

p is not a Boolean, 
ergo it must be in 

[Boolean -> Proposition]

p applied to true 
is OK
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Typed Racket satisfies “idiomaticy” via ``flow propositions’’

IN type environment
(the type of variables in e)

the expression e HAS

type τ

and if e evaluates 
to a Truish value, 
we KNOW p+

and if e evaluates 
to a False value, we 

KNOW p-

The knowledge deals with plain values 
and paths into values: 
▸ (odd? n) ~> if this yields False, n is even
▸ (prime? (second l)) ~> if this yields 

True, we know l has the shape [one, 
two, ?] and two is a prime number. 

The logic can cope with the usual Boolean 
primitives in a programming language: and, 
or, not, if (conditionals), etc. 
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;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))
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    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))
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;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))



Typed Racket satisfies “incrementality”

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Racket has always been a 
family of languages



Typed Racket satisfies “incrementality”

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Racket modules already specify 
their implementation language

Racket has always been a 
family of languages



Typed Racket satisfies “incrementality”

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
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  (cond
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(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Racket modules already specify 
their implementation language

Racket has always been a 
family of languages

#lang racket



Typed Racket satisfies “incrementality”

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Racket modules already specify 
their implementation language

Racket has always been a 
family of languages

#lang racket

Adding  
#lang typed/racket 

is easy



Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

#lang typed/racket#lang typed/racket

Typed Racket satisfies “incrementality” at the module level
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket 
communicate with racket
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket 
communicate with racket

[Integer -> Integer] 
-> 
Integer
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket 
communicate with racket

[Integer -> Integer] 
-> 
Integer

Who’s responsible for which 
part of the communication?
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket 
communicate with racket

[Integer -> Integer] 
-> 
Integer

Who’s responsible for which 
part of the communication?

[Integer -> Integer] 
-> 
Integer
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket 
communicate with racket

[Integer -> Integer] 
-> 
Integer

Who’s responsible for which 
part of the communication?

[Integer -> Integer] 
-> 
Integer

(f (λ (x) "howdy"))
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket 
communicate with racket

[Integer -> Integer] 
-> 
Integer

Who’s responsible for which 
part of the communication?

[Integer -> Integer] 
-> 
Integer

(f (λ (x) "howdy"))

Do we need to discover this 
“miscommunication”?
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

How do typed/racket 
communicate with racket

[Integer -> Integer] 
-> 
Integer

Who’s responsible for which 
part of the communication?

[Integer -> Integer] 
-> 
Integer

(f (λ (x) "howdy"))

If so, who should we blame for 
the miscommunication? 

Do we need to discover this 
“miscommunication”?
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

[Integer -> Integer] 
-> 
Integer

(f (λ (x) "howdy"))
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;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

[Integer -> Integer] 
-> 
Integer

(f (λ (x) "howdy"))

If you think it’s acceptable to let 
this kind of mistake slip, 

welcome to industrial-strength, 
modern day C++ reincarnation. 

(This can’t possibly happen.) 



Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

If you think that this kind of 
miscommunication deserves the 

programmer’s attention, you 
want “type sound” interactions. 

[Integer -> Integer] 
-> 
Integer

(f (λ (x) "howdy"))

If you think it’s acceptable to let 
this kind of mistake slip, 

welcome to industrial-strength, 
modern day C++ reincarnation. 

(This can’t possibly happen.) 



Typed Racket satisfies “incrementality”

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “incrementality” at the module level

If you think that this kind of 
miscommunication deserves the 

programmer’s attention, you 
want “type sound” interactions. 

[Integer -> Integer] 
-> 
Integer

(f (λ (x) "howdy"))

If you think it’s acceptable to let 
this kind of mistake slip, 

welcome to industrial-strength, 
modern day C++ reincarnation. 

(This can’t possibly happen.) 

And if you want soundness, the 
run-time check ought to blame 
this connection between the 

two arrows. 



;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via 
the compilation of types to higher-order contracts

[Integer -> Integer] 
-> 
Integer(f (λ (x) "howdy"))



;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via 
the compilation of types to higher-order contracts

[Integer -> Integer] 
-> 
Integer(f (λ (x) "howdy"))

[integer? -> integer] 
-> 
integer?



;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
(define-struct over (top bot))

;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
;; Plain = Rect | Circ 
;; Rect  = (make-rect Posn Number Number)
;; Circ  = (make-circ Posn Number)

;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(plain? s) (plain-area s)]
    [(over? s) (+ (area (over-top s)) (area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via 
the compilation of types to higher-order contracts

[Integer -> Integer] 
-> 
Integer(f (λ (x) "howdy"))

(λ (g) 
  (λ (x) ;; known Integer 
    (let ([result (g x)]) 
      (if (integer? result) 
          (f result) 
          (error "blame, result")))))

[integer? -> integer] 
-> 
integer?



;; Shape -> Number
;; the area of all rectangles in this s 
(define (area s)
  (cond
    [(over? s) (+ ((area (over-bot s)))]
    [else (apply + (map rect-area (filter rect? s)))]))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))
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;; Shape = Plain | (make-over Shape Shape) | [Listof Plain] 
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;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

;; Plain -> Number 
;; the area of this plain shape s
(define (plain-area s)
  (cond
    [(rect? s) (rect-area s)]
    [(circ? s) (rect-area s)]))

;; Rect -> Number 
;; the area of this rectangle r
(define (rect-area s)
  (* (rect-width s) (rect-height s)))

(define-struct rect (nw width height))
(define-struct circ (cntr radius))

;; Any -> Boolean 
;; is this p a plain shape? 
(define (plain? p)
  (or (rect? p) (circ? p)))

Typed Racket satisfies “soundness” at the module levels via 
the compilation of types to higher-order contracts

[Integer -> Integer] 
-> 
Integer(f (λ (x) "howdy"))

(λ (g) 
  (λ (x) ;; known Integer 
    (let ([result (g x)]) 
      (if (integer? result) 
          (f result) 
          (error "blame, result")))))

[integer? -> integer] 
-> 
integer?



Findler introduced higher-order contracts [ICFP 2002]

Dimoulas developed elegant, flexible technique for proving 
the soundness of mixed systems [ESOP 2012]

Robby Findler

Christos Dimoulas

Theorem 

For all mixed programs e ∈ Racket ⊕ Type Racket, one of these statements holds:
▸ eval(e) is a value
▸ eval(e) is a known exception from TR
▸ eval(e) is a contract error blaming a specific boundary between a typed and an untyped module
▸ eval(e) diverges.  
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#lang racket  

;; a mixing that adds search capabilities 

(define (add-search %) 

  (class % 

    (inherit text) 

    (field [state #f]) 

    (define/public (search str) 

      ...)))

Typed Racket can cope with (almost) all linguistic constructs from Racket

#lang racket 

… (add-search analysis-presentation%)… 

Asumu Takikawa
a function from class to class

add-search%

exported …

… and used in a separate module 

Yes, this is real-world code.

Yes, you can do this is Python, too.
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Abstract
Over the past 20 years, programmers have embraced dynamically-typed programming languages.
By now, they have also come to realize that programs in these languages lack reliable type in-
formation for software engineering purposes. Gradual typing addresses this problem; it empowers
programmers to annotate an existing system with sound type information on a piecemeal basis.
This paper presents an implementation of a gradual type system for a full-featured class-based
language as well as a novel performance evaluation framework for gradual typing.
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1 Gradual Typing for Classes

Gradual type systems allow programmers to add type information to software systems in
dynamically typed languages on an incremental basis [39, 48]. The ethos of gradual typing
takes for granted that programmers choose dynamic languages for creating software, but also
that for many software engineering tasks, having reliable type information is an advantage.
The landscape of gradual typing includes many theoretical designs [26, 29, 39, 40, 46, 53],
some research implementations [3, 20, 49, 52, 55], and, recently, the first industrial systems
(Typescript [51], Hack,1 Flow2).

Despite these numerous e�orts, no existing project deals with the full power of object-
oriented programming in untyped languages, e.g., JavaScript, Python, Racket, Ruby, or

˚ Due to a conflict of interest, we could not submit an o�cial artifact for consideration to the ECOOP
Artifact Evaluation Committee. However, we have prepared an uno�cial artifact that is available at
the following URL: http://www.ccs.neu.edu/home/asumu/artifacts/ecoop-2015.tar.bz2

1 See hacklang.org and Verlaguet, Commercial Users of Functional Programming, Boston, MA 2013.
2 See flowtype.org
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Abstract
Dynamic type-checking and object-oriented programming
often go hand-in-hand; scripting languages such as Python,
Ruby, and JavaScript all embrace object-oriented (OO) pro-
gramming. When scripts written in such languages grow and
evolve into large programs, the lack of a static type disci-
pline reduces maintainability. A programmer may thus wish
to migrate parts of such scripts to a sister language with a
static type system. Unfortunately, existing type systems nei-
ther support the flexible OO composition mechanisms found
in scripting languages nor accommodate sound interopera-
tion with untyped code.

In this paper, we present the design of a gradual typing
system that supports sound interaction between statically-
and dynamically-typed units of class-based code. The type
system uses row polymorphism for classes and thus supports
mixin-based OO composition. To protect migration of mix-
ins from typed to untyped components, the system employs a
novel form of contracts that partially seal classes. The design
comes with a theorem that guarantees the soundness of the
type system even in the presence of untyped components.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects

General Terms Languages, Design

Keywords gradual typing, first-class classes, contracts,
sealing, design by contract, row polymorphism, blame theo-
rem (proof technique)
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1. Untyped Object-Oriented Style
The popularity of untyped programming languages such as
Python, Ruby, or JavaScript has stimulated work on com-
bining static and dynamic type-checking. The idea is now
popularly called gradual typing [27]. At this point, gradual
typing is available for functional programming languages
such as Racket [33, 34], for object-oriented languages such
as Ruby [12] or Thorn [38], and for Visual Basic [23] on the
.NET platform. Proposals for gradual typing also exist for
JavaScript [19] and Perl [31]. Formal models have validated
soundness for gradual type systems, allowing seamless in-
teroperation between sister languages [22, 27, 32].

(define drracket-frame%
(size-pref-mixin
(searchable-text-mixin
(searchable-mixin
(status-line-mixin
(text-mixin
(editor-mixin
(standard-menus-mixin
frame%))))))))

Figure 1. Abbreviated code with a chain of mixins

Unfortunately, no existing gradual type system supports
the full range of object-oriented styles found in scripting
languages. These untyped languages tend to support flexible
mechanisms for class composition, such as mixins or traits,
that allow the programmer to abstract over inheritance. Fur-
thermore, some untyped languages support a generalization
of mixins and traits where classes are first-class values and
thus can inherit from other classes at runtime. For example,
the implementation of the DrRacket IDE [8] makes exten-
sive use of layered combinations of mixins to implement text
editing features, as seen in the abbreviated example given in
figure 1—the full code uses 17 mixins.

In such languages, class composition requires the pro-
grammer to reason about the specialization interfaces [20]
of superclasses. A faithful type system must enable the pro-
grammer to express this reasoning via types. Meanwhile, a
gradually typed language should support the exchange of
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gramming. When scripts written in such languages grow and
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pline reduces maintainability. A programmer may thus wish
to migrate parts of such scripts to a sister language with a
static type system. Unfortunately, existing type systems nei-
ther support the flexible OO composition mechanisms found
in scripting languages nor accommodate sound interopera-
tion with untyped code.

In this paper, we present the design of a gradual typing
system that supports sound interaction between statically-
and dynamically-typed units of class-based code. The type
system uses row polymorphism for classes and thus supports
mixin-based OO composition. To protect migration of mix-
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1. Untyped Object-Oriented Style
The popularity of untyped programming languages such as
Python, Ruby, or JavaScript has stimulated work on com-
bining static and dynamic type-checking. The idea is now
popularly called gradual typing [27]. At this point, gradual
typing is available for functional programming languages
such as Racket [33, 34], for object-oriented languages such
as Ruby [12] or Thorn [38], and for Visual Basic [23] on the
.NET platform. Proposals for gradual typing also exist for
JavaScript [19] and Perl [31]. Formal models have validated
soundness for gradual type systems, allowing seamless in-
teroperation between sister languages [22, 27, 32].

(define drracket-frame%
(size-pref-mixin
(searchable-text-mixin
(searchable-mixin
(status-line-mixin
(text-mixin
(editor-mixin
(standard-menus-mixin
frame%))))))))

Figure 1. Abbreviated code with a chain of mixins

Unfortunately, no existing gradual type system supports
the full range of object-oriented styles found in scripting
languages. These untyped languages tend to support flexible
mechanisms for class composition, such as mixins or traits,
that allow the programmer to abstract over inheritance. Fur-
thermore, some untyped languages support a generalization
of mixins and traits where classes are first-class values and
thus can inherit from other classes at runtime. For example,
the implementation of the DrRacket IDE [8] makes exten-
sive use of layered combinations of mixins to implement text
editing features, as seen in the abbreviated example given in
figure 1—the full code uses 17 mixins.

In such languages, class composition requires the pro-
grammer to reason about the specialization interfaces [20]
of superclasses. A faithful type system must enable the pro-
grammer to express this reasoning via types. Meanwhile, a
gradually typed language should support the exchange of

Innovations needed: 
▸ class types, with row polymorphism
▸ sealing contracts for enforce polymorphism
▸ innovative soundness proof
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… (add-search analysis-presentation%)… 

add-search%
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Abstract
Over the past 20 years, programmers have embraced dynamically-typed programming languages.
By now, they have also come to realize that programs in these languages lack reliable type in-
formation for software engineering purposes. Gradual typing addresses this problem; it empowers
programmers to annotate an existing system with sound type information on a piecemeal basis.
This paper presents an implementation of a gradual type system for a full-featured class-based
language as well as a novel performance evaluation framework for gradual typing.
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1 Gradual Typing for Classes

Gradual type systems allow programmers to add type information to software systems in
dynamically typed languages on an incremental basis [39, 48]. The ethos of gradual typing
takes for granted that programmers choose dynamic languages for creating software, but also
that for many software engineering tasks, having reliable type information is an advantage.
The landscape of gradual typing includes many theoretical designs [26, 29, 39, 40, 46, 53],
some research implementations [3, 20, 49, 52, 55], and, recently, the first industrial systems
(Typescript [51], Hack,1 Flow2).
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Abstract
Dynamic type-checking and object-oriented programming
often go hand-in-hand; scripting languages such as Python,
Ruby, and JavaScript all embrace object-oriented (OO) pro-
gramming. When scripts written in such languages grow and
evolve into large programs, the lack of a static type disci-
pline reduces maintainability. A programmer may thus wish
to migrate parts of such scripts to a sister language with a
static type system. Unfortunately, existing type systems nei-
ther support the flexible OO composition mechanisms found
in scripting languages nor accommodate sound interopera-
tion with untyped code.

In this paper, we present the design of a gradual typing
system that supports sound interaction between statically-
and dynamically-typed units of class-based code. The type
system uses row polymorphism for classes and thus supports
mixin-based OO composition. To protect migration of mix-
ins from typed to untyped components, the system employs a
novel form of contracts that partially seal classes. The design
comes with a theorem that guarantees the soundness of the
type system even in the presence of untyped components.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects

General Terms Languages, Design

Keywords gradual typing, first-class classes, contracts,
sealing, design by contract, row polymorphism, blame theo-
rem (proof technique)
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1. Untyped Object-Oriented Style
The popularity of untyped programming languages such as
Python, Ruby, or JavaScript has stimulated work on com-
bining static and dynamic type-checking. The idea is now
popularly called gradual typing [27]. At this point, gradual
typing is available for functional programming languages
such as Racket [33, 34], for object-oriented languages such
as Ruby [12] or Thorn [38], and for Visual Basic [23] on the
.NET platform. Proposals for gradual typing also exist for
JavaScript [19] and Perl [31]. Formal models have validated
soundness for gradual type systems, allowing seamless in-
teroperation between sister languages [22, 27, 32].

(define drracket-frame%
(size-pref-mixin
(searchable-text-mixin
(searchable-mixin
(status-line-mixin
(text-mixin
(editor-mixin
(standard-menus-mixin
frame%))))))))

Figure 1. Abbreviated code with a chain of mixins

Unfortunately, no existing gradual type system supports
the full range of object-oriented styles found in scripting
languages. These untyped languages tend to support flexible
mechanisms for class composition, such as mixins or traits,
that allow the programmer to abstract over inheritance. Fur-
thermore, some untyped languages support a generalization
of mixins and traits where classes are first-class values and
thus can inherit from other classes at runtime. For example,
the implementation of the DrRacket IDE [8] makes exten-
sive use of layered combinations of mixins to implement text
editing features, as seen in the abbreviated example given in
figure 1—the full code uses 17 mixins.

In such languages, class composition requires the pro-
grammer to reason about the specialization interfaces [20]
of superclasses. A faithful type system must enable the pro-
grammer to express this reasoning via types. Meanwhile, a
gradually typed language should support the exchange of

Innovations needed: 
▸ class types, with row polymorphism
▸ sealing contracts for enforce polymorphism
▸ innovative soundness proof

Translating theory into practice:
▸ design for usability
▸ implementation engineering
▸ performance evaluation
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Two kinds of evaluation: 
▸ formative
▸ summative

Three aspects to design evaluation:
▸ effort of adding annotations
▸ usability with (future) dev 
▸ performance of mixed systems

Two kinds of feedback:
▸ idea level (back to drawing 

board)
▸ realization level (previously 
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Typed 
Racket Performance!

Effort of adding type annotations:
▸ FP style calls for 3-5% changes 
▸ OOP style needs 10-15% changes
▸ mostly annotations, some changes to code to get around the type checker

Usability of Typed Racket: 
▸ TR devs are easily proficient
▸ seniors in a PL course
▸ real-world users 
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WE DON’T KNOW. 
ALL 2^N OF THESE 
CONFIGURATIONS 

ARE FEASIBLE.

Greenman create and evaluate all possible mixed 
configurations of existing multi-module systems

Ben Greenman
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Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen
Northeastern University, Boston, MA

Abstract
Programmers have come to embrace dynamically-typed languages
for prototyping and delivering large and complex systems. When it
comes to maintaining and evolving these systems, the lack of ex-
plicit static typing becomes a bottleneck. In response, researchers
have explored the idea of gradually-typed programming languages
which allow the incremental addition of type annotations to soft-
ware written in one of these untyped languages. Some of these
new, hybrid languages insert run-time checks at the boundary be-
tween typed and untyped code to establish type soundness for the
overall system. With sound gradual typing, programmers can rely
on the language implementation to provide meaningful error mes-
sages when type invariants are violated. While most research on
sound gradual typing remains theoretical, the few emerging imple-
mentations suffer from performance overheads due to these checks.
None of the publications on this topic comes with a comprehensive
performance evaluation. Worse, a few report disastrous numbers.

In response, this paper proposes a method for evaluating the per-
formance of gradually-typed programming languages. The method
hinges on exploring the space of partial conversions from untyped
to typed. For each benchmark, the performance of the different ver-
sions is reported in a synthetic metric that associates runtime over-
head to conversion effort. The paper reports on the results of ap-
plying the method to Typed Racket, a mature implementation of
sound gradual typing, using a suite of real-world programs of var-
ious sizes and complexities. Based on these results the paper con-
cludes that, given the current state of implementation technologies,
sound gradual typing faces significant challenges. Conversely, it
raises the question of how implementations could reduce the over-
heads associated with soundness and how tools could be used to
steer programmers clear from pathological cases.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—Performance measures

Keywords Gradual typing, performance evaluation

1. Gradual Typing and Performance
Over the past couple of decades dynamically-typed languages have
become a staple of the software engineering world. Programmers
use these languages to build all kinds of software systems. In
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many cases, the systems start as innocent prototypes. Soon enough,
though, they grow into complex, multi-module programs, at which
point the engineers realize that they are facing a maintenance night-
mare, mostly due to the lack of reliable type information.

Gradual typing [21, 26] proposes a language-based solution to
this pressing software engineering problem. The idea is to extend
the language so that programmers can incrementally equip pro-
grams with types. In contrast to optional typing, gradual typing
provide programmers with soundness guarantees.

Realizing type soundness in this world requires run-time checks
that watch out for potential impedance mismatches between the
typed and untyped portions of the programs. The granularity of
these checks determine the peformance overhead of gradual typing.
To reduce the frequency of checks, macro-level gradual typing
forces programmers to annotate entire modules with types and
relies on behavioral contracts [12] between typed and untyped
modules to enforce soundness. In contrast, micro-level gradual
typing instead assigns an implicit type Dyn [1] to all unannotated
parts of a program; type annotations can then be added to any
declaration. The implementation must insert casts at the appropriate
points in the code. Different language designs use slightly different
semantics with different associated costs and limitations.

Both approaches to gradual typing come with two implicit
claims. First, the type systems accommodate common untyped
programming idioms. This allows programmers to add types with
minimal changes to existing code. Second, the cost of soundness is
tolerable, meaning programs remain performant even as program-
mers add type annotations. Ideally, types should improve perfor-
mance as they provide invariants that an optimizing compiler can
leverage. While almost every publication on gradual typing vali-
dates some version of the first claim, no projects tackle the second
claim systematically. Most publications come with qualified re-
marks about the performance of partially typed programs. Some
plainly admit that such mixed programs may suffer performance
degradations of up to two orders of magnitude [18, 25, 28].

This paper presents a single result: a method for systematically
evaluating the performance of a gradual type system. It is illustrated
with an application to Typed Racket, a mature implementation of
macro-level gradual typing. We find that Typed Racket’s cost of
soundness is not tolerable. If applying our method to other gradual
type system implementations yields similar results, then sound
gradual typing is dead.

The insight behind the method is that to understand the perfor-
mance of a gradual type system, it is necessary to simulate how a
maintenance programmer chooses to add types to an existing soft-
ware system. For practical reasons, such as limited developer re-
sources or access to source code, it may be possible to add types to
only a part of the system. Our method must therefore simulate all
possibilities. Thus, applying our method to Typed Racket requires
annotating all n modules with types. The resulting collection of
2 ¨ n modules is then used to create 2n configurations. The col-
lection of these configurations forms a complete lattice with the
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It is about communicating yourself 
and others developers in the future. 

Why do we add types to 
untyped languages? 

Is it about bug finding?

Is it about IDE mechanics?

Is it about execution speed?

Challenge ~ how to gather 
evidence for that?
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the nature of the question
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What are we 
investigating? 

Is it about λ calculus?

Is it about new languages?

Is it about industrial 
languages and needs?Should we aim for 

soundness? 

We use Racket for two reasons: 
▸ it is useful to, and representative 

of, industrial untyped languages
▸ but it is academic and we change 

it if we must

Absolutely! If academics don’t, 
nobody will as the numerous 
designs of hybrid languages in 

industry show (exception: C#).

Challenge ~ can we make it 
work? What does a compromise 

look like?
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Expressions?

Functions?Classes?

Modules?
Typed Racket bets on modules, for two reasons: 
▸ typically small enough for conversion
▸ large enough to keep cost of contracts low

I was wrong. 

the “Eli experience” with TypeScript

the performance evaluation is 
disastrous (until proven otherwise)



type inference vs 
explicit static type 

Lessons Learned

Does type inference work 
for  Untyped Languages?



type inference vs 
explicit static type 

Lessons Learned

Does type inference work 
for  Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?



type inference vs 
explicit static type 

Lessons Learned

Probably not: 
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle 
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work 
for  Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?



type inference vs 
explicit static type 

Lessons Learned

Probably not: 
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle 
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work 
for  Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

But 1: “run time” inference (see work by 
Shriram Krishnamurthi and Jeff Foster)



type inference vs 
explicit static type 

Lessons Learned

Probably not: 
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle 
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work 
for  Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

But 2: IDE tools that assist “conversion”

But 1: “run time” inference (see work by 
Shriram Krishnamurthi and Jeff Foster)



type inference vs 
explicit static type 

Lessons Learned

Probably not: 
▸ type inference needs an explicit type language
▸ HM inference by itself is extremely brittle 
▸ HM inference for Untyped PLs cannot explain errors
▸ SBA inference cannot deal with modules
▸ … and isn’t compositional

Does type inference work 
for  Untyped Languages?

Hindley-Milner?

Set-based?Local?

Modules?

But 2: IDE tools that assist “conversion”

But 1: “run time” inference (see work by 
Shriram Krishnamurthi and Jeff Foster)

But 3: the syntax system necessitates more than plain local inference
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Our “business” is design, evaluation is imperative: 
▸ calculi help with soundness
▸ existing body of code is critical 
▸ but we are academic so preserve flexibility

Challenge ~ how can academic 
teams create and maintain a PL?
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Obviously developers care. People built 
big systems in Untyped, people discover 

problems with this approach, and 
industry is mimicking the incremental/

gradual approach to typing.

Challenge ~ how can academic 
PL improve its teaching? 
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what’s in it for you?

The area provides a rich field of 
challenging problems, ranging from the 

incredibly theoretical to the highly practical. 

Practical grounding matters. 

Take a the long-term view (Wright, 
Flanagan, Krishnamurthi, Tobin-Hochstadt). 
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