
Matthias Felleisen, PLT

Socially Responsible Software Development

I, Me, Myself

• programming language researcher

• … who cares about programming

• founded PLT, which is behind the Racket language

• created alternative programming curriculum (K12, freshman)

• TeachScheme! ~> Bootstrap outreach (20-30K students per year)

• maintained student-facing sw (appr. 50-80 Kloc) for ~28 years

• developed a software development curriculum for ~25 years

Software System

Purpose: Improve people’s lives
“user”

Software System

Purpose: Improve people’s lives
“user”

Software System

Purpose: Improve people’s lives
“user”

the developer

Software System Software System

Software System Software System

Must read and comprehend old code

Software System Software System

Must read and comprehend old code

The maintainer.

Software System Software System

Must read and comprehend old code

Older version of “you”

The maintainer.

Software System Software System

Think of the recipient, always!

Must read and comprehend old code

Older version of “you”

The maintainer.

Preaching to the Choir

Preaching to the Choir

Time and Change

Scale and Efficiency

Trade-offs and Costs

Preaching to the Choir

Time and Change

Scale and Efficiency

Trade-offs and Costs

Challenges

How should universities and
colleges prepare students for

software development properly?

Challenges

How should universities and
colleges prepare students for

software development properly?

How should industry identify
developers with the proper
understanding of software?

Challenges

Programming 101

Data Structures & Algo.

+

grind leetcode

$$$

Challenges

Programming 101

Data Structures & Algo.

+

grind leetcode

$$$

How does this process get socially responsible
software developers into the right place?

Preaching to the Choir, Again

an internal google email

Challenges, A Solution

I have spent the last > 25 years
working on an alternative
curriculum to make sure

students “get” what software
really is and how to do it right.

Challenges, A Solution

I have spent the last > 25 years
working on an alternative
curriculum to make sure

students “get” what software
really is and how to do it right.

What have you done?

Summary

1. Program systematically.

2. Program in pairs.

3. Program with different partners.

4. Program revisions of code.

5. Program revisions of code that isn't theirs.

6. Program "large" systems.

7. Program systematically under stress.

8. Present programs to their peers, regularly and frequently.

9. Review and critique programs of peers, regularly and frequently.

Students must learn to:

It would be great if industry signaled support for this change.

The Programming Curriculum

The Programming CurriculumSyst
em

ati
ca

lly

Curriculum: Traditional vs Sw Dev

Programming 101
teach currently fashionable

programming language

Programming 102
stacks, queues, hash

maps, …

Data Structures & Algo
trees, graphs, heaps,

O, …

Software Engineering

…

Curriculum: Traditional vs Sw Dev

Programming 101
teach currently fashionable

programming language

Programming 102
stacks, queues, hash

maps, …

Data Structures & Algo
trees, graphs, heaps,

O, …

Software Engineering

…

{Students discard

code once an

assignment is
finished never

revisit it.

Curriculum: Traditional vs Sw Dev

Programming 101
teach currently fashionable

programming language

Programming 102
stacks, queues, hash

maps, …

Data Structures & Algo
trees, graphs, heaps,

O, …

Software Engineering

… What changes over the years?

{Students discard

code once an

assignment is
finished never

revisit it.

Curriculum: Traditional vs Sw Dev

Programming 101
teach currently fashionable

programming language

Programming 102
stacks, queues, hash

maps, …

Data Structures & Algo
trees, graphs, heaps,

O, …

Software Engineering

… What changes over the years?

The programming language:

 — Algol 60, Simula 67

 — Pascal

 — Modula

 — Scheme

 — C/C++

 — Java

 — Haskell

 — Python

40 years, 10 languages {Students discard

code once an

assignment is
finished never

revisit it.

Curriculum: Traditional vs Sw Dev

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Algorithms

Discrete

Curriculum: Traditional vs Sw Dev

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Algorithms

Discrete

systematic development

untyped teaching languages

examples: interactive, distributed prog.

programming with a partner

thinking and speaking out loud

Curriculum: Traditional vs Sw Dev

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Algorithms

Discrete

programs have properties

properties as Boolean expressions

property testing

Boolean expressions as theorems

proof assistant

Curriculum: Traditional vs Sw Dev

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Algorithms

Discrete

systematic development

class-based, object-oriented prog.

Java (TS, C# would work)

programming with a partner

reinforce pair programming

Curriculum: Traditional vs Sw Dev

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Algorithms

Discrete

patterns & sys. development

Java

2 6-week GUI programs

design interfaces as “wish list item”

swap wishlist, implement, swap impl.

Curriculum: Traditional vs Sw Dev

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Algorithms

Discrete

 scaling it up (10-20Kloc)

student-chosen language

10 week project (config., TCP, JSON, GUI)

write milestones and fail

present design to panel & accept criticism;

server on panel and critique code

Curriculum: Traditional vs Sw Dev

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Algorithms

Discrete

all code is inspected for quality,

not (just) functionality

code is revisited weeks later

programming language/development stage

scale up so students see problems

always talk to others about code

learn “critique is good” — “egoless programming”

swap code basis

Programming 101

Programming 101, the Old Way

int main() {

 printf(“hello world”)

}

public static void main(String argv[]) {

 System.out.println(“hello world”)

}

def main():

 print “hello world”

1990s

2000s

2010s

Programming 101, the Old Way

int main() {

 printf(“hello world”)

}

public static void main(String argv[]) {

 System.out.println(“hello world”)

}

def main():

 print “hello world”

Choose a fashionable
language.

1990s

2000s

2010s

Programming 101, the Old Way

int main() {

 printf(“hello world”)

}

public static void main(String argv[]) {

 System.out.println(“hello world”)

}

def main():

 print “hello world”

Choose a fashionable
language.

Present one syntactic
mechanism after another.

1990s

2000s

2010s

Programming 101, the Old Way

int main() {

 printf(“hello world”)

}

public static void main(String argv[]) {

 System.out.println(“hello world”)

}

def main():

 print “hello world”

Choose a fashionable
language.

Present one syntactic
mechanism after another.

1990s

2000s

2010s

Copy my code and adapt for this
slightly different problem.

Programming 101, the Old Way

int main() {

 printf(“hello world”)

}

public static void main(String argv[]) {

 System.out.println(“hello world”)

}

def main():

 print “hello world”

Choose a fashionable
language.

Present one syntactic
mechanism after another.

1990s

2000s

2010s

Copy my code and adapt for this
slightly different problem.

If it doesn’t work, add
print statements.

Programming 101, the Old Way

int main() {

 printf(“hello world”)

}

public static void main(String argv[]) {

 System.out.println(“hello world”)

}

def main():

 print “hello world”

Choose a fashionable
language.

Present one syntactic
mechanism after another.

1990s

2000s

2010s

Copy my code and adapt for this
slightly different problem.

If it doesn’t work, add
print statements.

Truly advanced? Use a
debugger.

Programming 101, the Old Way

int main() {

 printf(“hello world”)

}

public static void main(String argv[]) {

 System.out.println(“hello world”)

}

def main():

 print “hello world”

Choose a fashionable
language.

Present one syntactic
mechanism after another.

1990s

2000s

2010s

Copy my code and adapt for this
slightly different problem.

If it doesn’t work, add
print statements.

Truly advanced? Use a
debugger.

And after all that,

the code gets autograded
and no teaching assistant

looks at it.

Time to throw it away.

Fundamentals I

Programming, the Technical Skill Social Interaction about Programming

Fundamentals I

Programming, the Technical Skill Social Interaction about Programming

• break down the process

• study intermediate products

• practice good habits for even the
simplest problems

• drive course development by
increasing the complexity of data

Fundamentals I

Programming, the Technical Skill Social Interaction about Programming

• break down the process

• study intermediate products

• practice good habits for even the
simplest problems

• drive course development by
increasing the complexity of data

PL: teaching language

Fundamentals I

Programming, the Technical Skill Social Interaction about Programming

• break down the process

• study intermediate products

• practice good habits for even the
simplest problems

• drive course development by
increasing the complexity of data

• programming is thinking, thinking is
best done with others

• practice proper pair programming

• confront students with their code
from a couple of weeks ago

• ask students to react to code
criticisms by teaching assistants

PL: teaching language

Fundamentals I, the Technical Skills

Programming, the Technical Skill

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

choose a data representation to
represent “the problem” & its result

data description aka data definition

data examples

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

choose a data representation to
represent “the problem” & its result

data description aka data definition

data examples

state what goes in and what comes out

state purpose in your own words

“type signature” (in an untyped PL)

a “what does it compute” comment

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

choose a data representation to
represent “the problem” & its result

data description aka data definition

data examples

state what goes in and what comes out

state purpose in your own words

“type signature” (in an untyped PL)

a “what does it compute” comment

work through functional examples

an idea of how it computes unit tests

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

choose a data representation to
represent “the problem” & its result

data description aka data definition

data examples

state what goes in and what comes out

state purpose in your own words

“type signature” (in an untyped PL)

a “what does it compute” comment

work through functional examples

an idea of how it computes unit tests

turn data def. of input into outline

an “inventory” of available data; 90%

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

choose a data representation to
represent “the problem” & its result

data description aka data definition

data examples

state what goes in and what comes out

state purpose in your own words

“type signature” (in an untyped PL)

a “what does it compute” comment

work through functional examples

an idea of how it computes unit tests

turn data def. of input into outline

an “inventory” of available data; 90%

code

a complete “program”

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

choose a data representation to
represent “the problem” & its result

data description aka data definition

data examples

state what goes in and what comes out

state purpose in your own words

“type signature” (in an untyped PL)

a “what does it compute” comment

work through functional examples

an idea of how it computes unit tests

turn data def. of input into outline

an “inventory” of available data; 90%

code

a complete “program”

test

eliminate basic mistakes

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum)

correspond to the respective

geometric shapes. */

Data Examples
let sq = Square(4)

let cr = Circle(3)

let tr = Triangle(2,1)

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum)

correspond to the respective

geometric shapes. */

Data Examples
let sq = Square(4)

let cr = Circle(3)

let tr = Triangle(2,1)

An instructor or teaching assistant can
inspect these intermediate results and

intervene before the student goes off track.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

Purpose, Signature, Stub

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 0

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

Purpose, Signature, Stub

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 0

Purpose: do student/devs understand the problem?

Signature: don’t you wish all untyped code had those?

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

Worked Functional Examples
// area(tr)

// = 1/2 * tr.base * tr.height

// = 1/2 * 2 * 1

// = 1

checkExpect(area(tr),1)

Data Examples
let sq = Square(4)

let cr = Circle(3)

let tr = Triangle(2,1)

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

Worked Functional Examples
// area(tr)

// = 1/2 * tr.base * tr.height

// = 1/2 * 2 * 1

// = 1

checkExpect(area(tr),1)

It is a bit more than test-driven development. The
teaching assistant can check whether students can
work through or whether they are guessing.

Data Examples
let sq = Square(4)

let cr = Circle(3)

let tr = Triangle(2,1)

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum. */

Function Outline/Inventory of data
def area(s):

 condition:

 s is Square: .. s.side ..

 s is Circle: .. s.radius ..

 s is Triangle:

 .. s.base .. s.height ..

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Problem A shape is either a square, a
circle, or a triangle. Design a program that
computes the area of one of these shapes.

A program must compute its outputs from the given
data and nothing else. Scales to all forms of data.

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum. */

Function Outline/Inventory of data
def area(s):

 condition:

 s is Square: .. s.side ..

 s is Circle: .. s.radius ..

 s is Triangle:

 .. s.base .. s.height ..

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

The Code

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 condition:

 s is Square: sq(s.side)

 s is Circle: pi * sq(s.radius)

 s is Triangle: s.base * s.height

checkExpect(area(tr),1)

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Coding means filling in a last few gaps in the outline.

The Code

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 condition:

 s is Square: sq(s.side)

 s is Circle: pi * sq(s.radius)

 s is Triangle: s.base * s.height

checkExpect(area(tr),1)

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum. */

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 condition:

 s is Square: sq(s.side)

 s is Circle: pi * sq(s.radius)

 s is Triangle: s.base * s.height

checkExpect(area(tr),1)

Test failed.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Testing reveals typos and simple mistakes.

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum. */

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 condition:

 s is Square: sq(s.side)

 s is Circle: pi * sq(s.radius)

 s is Triangle: s.base * s.height

checkExpect(area(tr),1)

Test failed.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum. */

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 condition:

 s is Square: sq(s.side)

 s is Circle: pi * sq(s.radius)

 s is Triangle: s.base * s.height

checkExpect(area(tr),1)

Coverage incomplete.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

And yes, incomplete coverage is taught as “it is a bug”.

Data Representation
struct Square(side)

struct Circle(radius)

struct Triangle(base,height)

/* Shape is one of

 - Square(posnum)

 - Circle(posnum)

 - Triangle(posnum, posnum. */

// determine the area of `s`

// Shape -> PosNumber

def area(s):

 condition:

 s is Square: sq(s.side)

 s is Circle: pi * sq(s.radius)

 s is Triangle: s.base * s.height

checkExpect(area(tr),1)

Coverage incomplete.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Enumeration description.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Enumeration description.

Structure description.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Enumeration description.

Structure description.

Hierarchical data description.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Enumeration description.

Structure description.

Self-referential data descriptions.

Hierarchical data description.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Enumeration description.

Structure description.

Self-referential data descriptions.

Mutually-referential data descriptions.

Hierarchical data description.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Enumeration description.

Structure description.

Self-referential data descriptions.

Mutually-referential data descriptions.

Higher-order data descriptions.

(lambda, map, fold, streams, etc)

Hierarchical data description.

Fundamentals I, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Atomic.

Enumeration description.

Structure description.

Self-referential data descriptions.

Mutually-referential data descriptions.

Higher-order data descriptions.

(lambda, map, fold, streams, etc)

Hierarchical data description.

with accumulators generative recursion

Fundamentals II, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

Fundamentals II, the Technical Skills

Programming, the Technical Skill

• break down the process

• study intermediate products

• practice good habits for even
the simplest problems

• increase the complexity of data

+ classes and objects

+ types

 … but otherwise, it repeats the basics:

 develop code systematically

Fundamentals I & II, the Technical Skills

felleisen.org/matthias/htdc.html

Fundamentals I, the so-called "soft" skills

Social Interaction about Programming

• programming is thinking, thinking is
best done with others

• practice proper pair programming

• confront students with their code
from a couple of weeks ago

• ask students to react to code
criticisms by teaching assistants

Share a screen, speak aloud what they think,
question everything, teach each other.

Change partners because that’s life (and
good for dissolving ill-matched pairs).

Fundamentals I, the so-called "soft" skills

Social Interaction about Programming

• programming is thinking, thinking is
best done with others

• practice proper pair programming

• confront students with their code
from a couple of weeks ago

• ask students to react to code
criticisms by teaching assistants

Graded are the building blocks of an
evolving semester-long project.

Add features (new callbacks). Rewrite
code using new PL concepts (h-o.
functions).

Fundamentals I, the so-called "soft" skills

Social Interaction about Programming

• programming is thinking, thinking is
best done with others

• practice proper pair programming

• confront students with their code
from a couple of weeks ago

• ask students to react to code
criticisms by teaching assistants

Week n: TAs leave comments on parts of
a building block.

Week n+2: Students must react to the
comments.

Fundamentals I, the so-called "soft" skills

Social Interaction about Programming

• programming is thinking, thinking is
best done with others

• practice proper pair programming

• confront students with their code
from a couple of weeks ago

• ask students to react to code
criticisms by teaching assistants

What students get out of this approach to “101”:

— Programs don’t get thrown away.

— Systematic programming helps w/ comprehension.

— Talking to others is a good thing.
— Rotating partners is normal.

Software Development (“Hell”)
(not software engineering)

Year 1: Fundamentals I & II; Discrete; optionally: Logic.

Year 2: Fundamentals III; opt.: Algorithms, Co-op 1

Year 3: Software Development

Year 4: Co-op 2; electives in AI, Big Data, Compilers, …

Year 5: Co-op 3; electives in AI, Big Data, Compilers, …

Software Development: Its Context

Software Development: Overview
Goal: distributed board game, autonomous players

Software Development: Overview

Choose and explore a programming language & eco. system. ~2 weeks

Goal: distributed board game, autonomous players

Software Development: Overview

Choose and explore a programming language & eco. system. ~2 weeks

Inspect, review, discuss the project, its rough architecture, & its dev. plan. ~1 week

Goal: distributed board game, autonomous players

Software Development: Overview

Choose and explore a programming language & eco. system. ~2 weeks

Inspect, review, discuss the project, its rough architecture, & its dev. plan. ~1 week

week n:

Implement the

instructor’s design for
milestone n

week n:

Write test script/tests
for implementation of

milestone n-1

week n:

Design components

and interfaces for

milestone n+1 ~10 week

Goal: distributed board game, autonomous players

Software Development: Overview

Choose and explore a programming language & eco. system. ~2 weeks

Inspect, review, discuss the project, its rough architecture, & its dev. plan. ~1 week

week n:

Implement the

instructor’s design for
milestone n

week n:

Write test script/tests
for implementation of

milestone n-1

week n:

Design components

and interfaces for

milestone n+1 ~10 week

Goal: distributed board game, autonomous players

Students w
rite reflections.

Assistants inspect code.

Software Development: Overview

Choose and explore a programming language & eco. system. ~2 weeks

Inspect, review, discuss the project, its rough architecture, & its dev. plan. ~1 week

week n:

Implement the

instructor’s design for
milestone n

week n:

Write test script/tests
for implementation of

milestone n-1

week n:

Design components

and interfaces for

milestone n+1 ~10 week

Goal: distributed board game, autonomous players test fests: run
everyone’s tests

against everyone’s Students w
rite reflections.

Assistants inspect code.

Software Development: Overview

Choose and explore a programming language & eco. system. ~2 weeks

Inspect, review, discuss the project, its rough architecture, & its dev. plan. ~1 week

week n:

Implement the

instructor’s design for
milestone n

week n:

Write test script/tests
for implementation of

milestone n-1

week n:

Design components

and interfaces for

milestone n+1 ~10 week

Goal: distributed board game, autonomous players

Rotate code base. Switch partners.

Rotate code base. Switch partners.

test fests: run
everyone’s tests

against everyone’s Students w
rite reflections.

Assistants inspect code.

Software Development: Its Goals

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Social Interaction about Programming

• more pair programming; on-boarding
new partners; learning to be onboarded

• presenting in public to a panel
composed of peers

• inspecting code as a panelist with the
goal of finding design flaws and bugs

• reflecting on code; writing about code

Programming, the Technical Skill

To each student: choose your favorite programming language

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Students pick emotionally. Fashion rules.

(Self-selection suggests quality of code is somewhat related to

choice of PL.)

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Students pick emotionally. Fashion rules.

(Self-selection suggests quality of code is somewhat related to

choice of PL.)

Students write external and/or internal
specifications per milestone.

Teaching assistants check minimal standards.

Learning from compare and reflect.

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Students pick emotionally. Fashion rules.

(Self-selection suggests quality of code is somewhat related to

choice of PL.)

Students write external and/or internal
specifications per milestone.

Teaching assistants check minimal standards.

Learning from compare and reflect.

Coding a non-trivial component per week and
presenting them is intentional.

Partner and code-base rotation add stress.

Teaching assistants check minimal standards

using the ideas from Fundamentals I through III.

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Students pick emotionally. Fashion rules.

(Self-selection suggests quality of code is somewhat related to

choice of PL.)

Students write external and/or internal
specifications per milestone.

Teaching assistants check minimal standards.

Learning from compare and reflect.

Coding a non-trivial component per week and
presenting them is intentional.

Partner and code-base rotation add stress.

Teaching assistants check minimal standards

using the ideas from Fundamentals I through III.

The remote-proxy pattern is the the only new
design technique they encounter.

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Student: “We don’t know how to write unit tests for
this function. It’s too long."

Staff: “Fundamentals teach you to work through
examples first; write tests; keep methods short

(‘atomic’ xor ‘composite’).”

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance

Student: “We don’t know how to write unit tests for
this function. It’s too long."

Staff: “Fundamentals teach you to work through
examples first; write tests; keep methods short

(‘atomic’ xor ‘composite’).”

Code: int distance;

Student: “I think it is the distance between the left of

the car and the lane marker on the street.”

Staff: “Fundamentals teach about data

representation. If ou don’t remember now, how will
the maintain of the code?”

Software Development: Coding Details

Programming, the Technical Skill

• get to know a PL eco. sys. in depth

• designing components & interfaces

• “grace under pressure” systematic
program development

• a first taste: a systematically
developed distributed system with
some failure tolerance Student: “We didn’t have time to write unit tests,

because we had to do so much debugging.”

Staff: “Fundamentals I, II, and III teach you to write
unit tests to reduce debugging time.”

Student: “We don’t know how to write unit tests for
this function. It’s too long."

Staff: “Fundamentals teach you to work through
examples first; write tests; keep methods short

(‘atomic’ xor ‘composite’).”

Code: int distance;

Student: “I think it is the distance between the left of

the car and the lane marker on the street.”

Staff: “Fundamentals teach about data

representation. If ou don’t remember now, how will
the maintain of the code?”

Software Development: “Soft” Skills

Social Interaction about Programming

• more pair programming; on-boarding
new partners; learning to be onboarded

• presenting in public to a panel
composed of peers (“egoless”)

• inspecting code in public as a panelist
with the goal of finding design flaws
and bugs (“egoless”)

• reflecting on code; writing about code

Software Development: “Soft” Skills

Social Interaction about Programming

• more pair programming; on-boarding
new partners; learning to be onboarded

• presenting in public to a panel
composed of peers (“egoless”)

• inspecting code in public as a panelist
with the goal of finding design flaws
and bugs (“egoless”)

• reflecting on code; writing about code

Pair programming under pressure reveals a lot
about personality and attitude.

Software Development: “Soft” Skills

Social Interaction about Programming

• more pair programming; on-boarding
new partners; learning to be onboarded

• presenting in public to a panel
composed of peers (“egoless”)

• inspecting code in public as a panelist
with the goal of finding design flaws
and bugs (“egoless”)

• reflecting on code; writing about code

Pair programming under pressure reveals a lot
about personality and attitude.

Head Reader Asst. ReaderSecretary

Presenter

Code

Quiet Partner

S. S. S. S. S. S. S. S. S.

S. S. S. S. S. S. S. S. S.

TA

Prof.

Software Development: Soft Skills

Social Interaction about Programming

• more pair programming; on-boarding
new partners; learning to be onboarded

• presenting in public to a panel
composed of peers (“egoless”)

• inspecting code in public as a panelist
with the goal of finding design flaws
and bugs (“egoless”)

• reflecting on code; writing about code

Pair programming under pressure reveals a lot
about personality and attitude.

There is nothing like a formal code review, eye-
to-eye, that brings out what it means to “code
as if the next guy to take on the code matters.”

Software Development: Soft Skills

Social Interaction about Programming

• more pair programming; on-boarding
new partners; learning to be onboarded

• presenting in public to a panel
composed of peers (“egoless”)

• inspecting code in public as a panelist
with the goal of finding design flaws
and bugs (“egoless”)

• reflecting on code; writing about code

Pair programming under pressure reveals a lot
about personality and attitude.

There is nothing like a formal code review, eye-
to-eye, that brings out what it means to “code
as if the next guy to take on the code matters.”

Describe issues with presented code.

Software Development: Soft Skills

Social Interaction about Programming

• more pair programming; on-boarding
new partners; learning to be onboarded

• presenting in public to a panel
composed of peers (“egoless”)

• inspecting code in public as a panelist
with the goal of finding design flaws
and bugs (“egoless”)

• reflecting on code; writing about code

Pair programming under pressure reveals a lot
about personality and attitude.

There is nothing like a formal code review, eye-
to-eye, that brings out what it means to “code
as if the next guy to take on the code matters.”

Every milestone comes with a self-evaluation:

“Method m must perform three tasks: t1, t2, t3.

Does your implementation of m reflect this
specification? How? Where? Cite git lines.”

Describe issues with presented code.

Software Development: Teaching It.

Programming, the Technical Skill Social Interaction about Programming

• Instructor must manage a highly
unusual classroom set-up (read,
observe, control).

• Instructor must deal with student
problems (“couple counseling” vs
“divorces”).

• Instructor must be the “first egoless
programmer”.

• Instructor must develop a new
project for every semester.

• Instructor must code and practice
the “classroom gospel” of coding.

• Instructor must explore design
alternatives for in-class use and
grading purposes.

• Instructor must write extremely
hardened test scripts (and unit tests).

Software Development: Teaching It.

Programming, the Technical Skill Social Interaction about Programming

• Instructor must manage a highly
unusual classroom set-up (read,
observe, control).

• Instructor must deal with student
problems (“couple counseling” vs
“divorces”).

• Instructor must be the “first egoless
programmer”.

It’s not easy. But it is our moral obligation, and it is extremely rewarding.

• Instructor must develop a new
project for every semester.

• Instructor must code and practice
the “classroom gospel” of coding.

• Instructor must explore design
alternatives for in-class use and
grading purposes.

• Instructor must write extremely
hardened test scripts (and unit tests).

Warning

Warning: Past Reality vs Present Reality

Fundamentals I

Fundamentals IILogic

Fundamentals III

Software Dev. (IV)

…
Software Eng.

Take Aways

Challenges, and a Solution

Challenges, and a Solution

- teach software-is-a-message

- start in “101”, continue

- inspect code, don’t just run it

- switch code bases

- teach techn. communication

- start in “101” with pairs

- rotate partners

- grow to in-person reviews

Challenges, and a Solution

- teach software-is-a-message

- start in “101”, continue

- inspect code, don’t just run it

- switch code bases

- teach techn. communication

- start in “101” with pairs

- rotate partners

- grow to in-person reviews

Repeat in as many

courses as feasible

Challenges, and a Solution

- teach software-is-a-message

- start in “101”, continue

- inspect code, don’t just run it

- switch code bases

- teach techn. communication

- start in “101” with pairs

- rotate partners

- grow to in-person reviews

What will you do?
Repeat in as many

courses as feasible

Thanks for listening.

