The Little LISPer
Third Edition

Daniel P. Friedman

Indiana University

Bloomangton, Indiana

Matthias Felleisen

Rice University
Houston, Texas

Copyright (© Matthias Felleisen & Daniel P Friedman. 1994.

Exercises

1.1 Think of ten different atoms and write them down.
1.2 Using the atoms of Exercise 1.1, make up twenty different lists.

1.3 The list (all these problems) can be constructed by (cons @ (cons b (cons ¢ d))), where
a is all,
b is these,
¢ 1s problems, and

dis ().
Write down how you would construct the following lists:

(all (these problems))

(all (these) problems)

((all these) problems)

((all these problems))

1.4 What is (car (cons @ [)), where @ is french, and [is (fries);

and what is (cdr (cons @ [)), where @ is oranges, and [is (apples and peaches)?

1.5 Find an atom 7 that makes (eq? z) true, where y is lisp. Are there any others?
1.6 If @ is atom, is there a list [that makes (null? (cons @ [)) true?

1.7 Determine the value of
(cons s [
(cons s [
(car §

(cdr [

, where $ is x, and [isy

, where s is (), and [is ()
, where 8 is ()

, where [is (())

NN

1.8 True or false,

(meatballs) and spaghetti)
(meatballs))

two meatballs)

ball) and @ is meat

(atom? (car 1)), where [is

(null? (cdr 1)), where [is

(eq? (car 1) (car (cdr [))), where [is
)

(atom? (cons @ [)), where [is

o~ —

1.9 What is
(car (cdr (cdr (car 1)))) where [is ((kiwis mangoes lemons) and (more))
(car (cdr (car (cdr 1)))) where [is (() (eggs and (bacon)) (for) (breakfast))
(car (cdr (cdr (edr 1)))) where [is () () () (and (coffee)) please)

1.10 To get the atom and in (peanut butter and jelly on toast) we can write (car (cdr (cdr
[))). What would you write to get:

Harry in [, where [is (apples in (Harry has a backyard))
where [is (apples and Harry)
where [is (((apples) and ((Harry))) in his backyard)

Exercises

For these exercises,
[1 is (german chocolate cake)
[2 is (poppy seed cake)
[8 is ((linzer) (torte) ()
14 is ((bleu cheese) (and) (red) (wine))

15s (() ()

al is coffee
a2 is seed
ad is poppy

2.1 What are the values of: (lat? [1), (lat? [2), and (lat? [§)?
2.2 For each case in Exercise 2.1 step through the application as we did in this chapter.

2.3 What is the value of (member? al [1), and (member? a2 [2)?
Step through the application for each case.

2.4 Most Lisp dialects have an (if ...)-form. In general an (if ...)-form looks like this:

(if aexp bexp cexp).
When aezxp is true, (if aexp bexp cexp) is bexp; when it is false, (if aexp bexp cexp) is
cerp. For example,

(cond
((null?) nil)
(t (or
(eq? (car 1) a)
(member? a (cdr 1)))))

in member? can be replaced by:

(if (null? 1)
nil
(or
(eq? (car 1) a)
(member? a (cdr 1))))
Rewrite all the functions in the chapter using (if ...) instead of (cond ...).

2.5 Write the function nonlat?, which determines whether a list of S-expressions does not
contain atomic S-expressions.

Example: (nonlat? [1) is false,
nonlat? ’()) is true,

()
(nonlat? 1) is false,
(nonlat? 14) is true.

2.6 Write a function member-cake?, which determines whether a lat contains the atom cake.

Example: (member-cake? [1) is true,
(member-cake? [2) is true,
(member-cake? [5) is false.

2.7 Consider the following new definition of member?

(define member2?
(lambda (a lat)
(cond
((null? lat) nil)
(t (or
(member2? a (cdr lat))
(ca? @ (car at))))))

Do (member2? @ [) and (member? a) give the same answer when we use the same argu-
ments? Consider the examples ¢ and [1, a1 and [2, and a2 and 2.

2.8 Step through the applications (member? ¢ [2) and (member2? a8 [2). Compare the
steps of the two applications.

2.9 What happens when you step through (member? a2 [9)? Fix this problem by having
member? ignore lists.

2.10 The function member? tells whether some atom appears at least once in a lat. Write
a function member-twice?, which tells whether some atom appears at least twice in a lat.

Exercises

For these exercises,

[1 is ((paella spanish) (wine red) (and beans))
12is ()

[8 is (cincinnati chili)

l4 is (texas hot chili)

[5 is (soy sauce and tomato sauce)
[6 is ((spanish) () (paella))

[7 is ((and hot) (but dogs))

al is chili

a2 is hot

ad is spicy

a4 is sauce

ad is soy

3.1 Write the function seconds, which takes a list of lats and makes a new lat consisting of
the second atom from each lat in the list.

Example: (seconds [1) is (spanish red beans)
(seconds [2) is ()
(seconds [7) is (hot dogs)

3.2 Write the function dupla of an atom @ and a list of atoms [, which makes a new lat con-
taining as many @’s as there are elements in [.

Example: (dupla a2 [4) is (hot hot hot)
(dupla a2 [2)is ()
(dupla a1 [5) is (chili chili chili chili chili)

3.3 Write the function double of @ and [, which is a converse to rember. The function dou-
bles the first @ in [instead of removing it.

Example: (double a2 [2)is ()
(double a1 [3) is (cincinnati chili chili)
(double a2 14) is (texas hot hot chili)

3.4 Write the function subst-sauce of ¢ and [, which substitutes @ for the first atom sauce in
[.

Example: (subst-sauce al [4) is (texas hot chili)
(subst-sauce a1 [J) is (soy chili and tomato sauce)

(subst-sauce a4 [2)is ()

3.5 Write the function subst3 of new, 01, 02, 08, and lat, which—like subst2—replaces the
first occurrence of either 01, 02, or 09 in lat by new.
Example: (subst3 ad al a2 a4 15)is (soy soy and tomato sauce)

(subst3 a4 al a2 a8 1§)is (texas sauce chili)

(subst3 a3 al a2 a5 12)is ()

3.6 Write the function substN of new, slat, and lat, which replaces the first atom in [at
that also occurs in slat by the atom new.
Example: (substN a2 [8 1) is (texas hot hot)

(substN a4 18 15) is (soy sauce and tomato sauce)

(substN a4 18 12)is ()

3.7 Step through the application (rember a4 [5). Also step through (insertr ¢ a2 [5) for
the “bad” definitions of insertr.

3.8 Determine the typical elements and the natural recursions of the functions that
you have written so far.

3.9 Write the function rember2 of @ and [, which removes the second occurrence of @ in /.

Example: (rember2 al [9) is (cincinnati chili)

(rember2 a4 15) is (soy sauce and tomato)
(rember2 a4 [2)is ()

Hint: Use the function rember.

3.10 Consider the functions insertr, insertL, and subst. They are all very similar. Write the
functions next to each other and draw boxes around the parts that they have in common.
Can you see what rember has in common with these functions?

Exercises

For these exercises,

vecl is (1 2)

vec? is (32 4)

vecd is (21 3)

vecq is (6 2 1)

lis ()
zero 1s 0
one is 1
three is 3

0bj is (x y)

4.1 Write the function duplicate of 7 and 0bj, which builds a list containing n objects 0bj.

Example: (duplicate three 0by)is ((x y) (xy) (x y)),
(duplicate zero 0by) is (),
(duplicate one vecl) is ((1 2)).

4.2 Write the function multvec that builds a number by multiplying all the numbers in a vec.

Example: (multvec vec?) is 24,
(multvec vecd) is 6,
(multvec 1) is 1.

4.3 When building a value with t, which value should you use for the terminal line?

4.4 Argue the correctness for the function 1 as we did for (x 7 m). Use 3 and 4 as data.

4.5 Write the function index of an atom @ and a list of atoms [that returns the place of the
atom @ in [. If @ is not in [, then the value of (index @ [) is false.

Example: When ¢ is car,
lat1 is (cons cdr car null? eq?),
b is motor, and
lat?2 is (car engine auto motor),

we have (index @ latl) is 3,
(index @ lat2)is 1,

(index @ ’()) is nil,
(index b lat2) is 4.

4.6 Write the function product of vecl and vec2 that multiplies corresponding numbers in
vecl and vec2 and builds a new vec from the results. The vecs, vecl and vec2, may differ
in length.

Example: (product vecl wvec2)is (3 4 4),
(product vec2 vecd) is (6 2 12),
(product vecd vec4) is (12 2 3).

4.7 Write the function dot-product of vecl and wec2 that multiplies corresponding numbers
in vecl and vec? and builds a new number by summing the results. The vecs, vecl and
vec?, are the same length.

Example: (dot-product vec? vec?2) is 29,
(dot-product vec2 wvec4) is 26,
(dot-product vecd wvecq) is 17.

4.8 Write the function / that divides nonnegative integers.

Example: (/ n m)is 1, when n is 7 and m is 5.
(/ n m)is 4, when nis 8 and m is 2.
(/ n m)is 0, when n is 2 and m is 3.

Hint: A number is now defined as a rest (between 0 and m — 1) and a multiple addition of m.
The number of additions is the result.

4.9 Here 1s the function remainder:

(define remainder
(lambda (n m)

(cond

(t (= n (xm(/nm)))))

Make up examples for the application (remainder n m) and work through them.

4.10 Write the function <, which tests if two numbers are equal or if the first is less than the
second.

Example: (< zero one) is true,
(< one one) is true,
(< three one) is false.

Exercises

For these exercises,
Z 1s comma
7/ is dot
a is kiwis
b is plums
latl is (bananas kiwis)
lat?2 is (peaches apples bananas)
lat$ is (kiwis pears plums bananas cherries)
lat4 is (kiwis mangoes kiwis guavas kiwis)
[1 is ((curry) () (chicken) ())
[2 is ((peaches) (and cream))
[8 is ((plums) and (ice) and cream)
(

l4 s ()

5.1 For Exercise 3.4 you wrote the function subst-cake. Write the function multisubst-kiwis.

Example: (multisubst-kiwis b latl) i
(multisubst-kiwis y lat2) i
(multisubst-kiwis y lat4) i

(multisubst-kiwis y 4) i

(bananas plums),

(peaches apples bananas),
dot mangoes dot guavas dot),
g g

(

)-

5.2 Write the function multisubst2. You can find subst2 at the end of Chapter 3.

Example: (multisubst2 z @ b latl) is (bananas comma),
(multisubst2 y @ b latd) is (dot pears dot bananas cherries),
(multisubst2 @ x y latl) is (bananas kiwis).

n o wm wm

5.3 Write the function multidown of lat which replaces every atom in lat by a list contain-
ing the atom.

Example: (multidown lat1) is ((bananas) (kiwis)),
(multidown [at2) is ((peaches) (apples) (bananas)),
(multidown 14) is ().

5.4 Write the function occurN of a list of atoms markers and a second list of atoms lat,
which counts how many times the atoms in markers also occur in lat.

Example: (occurN latl 14)is 0,
(occurN lat! lat2)is 1,
(occurN lat! latd) is 2.

5.5 The function I of lat! and lat2 returns the first atom in {a@t2 that is in both latl and
lat?2. Write the functions T and multil. multil returns a list of atoms common to lat! and

lat2.

Example: (I latl 14
(T latl lat2

(T latl lats
(multil lat! 14
(multil lat! lat?
(multil lat! lat$

is (),
is bananas,

1s kiwis;

is ()

is (bananas),

is (kiwis bananas).

NN AN AN AN

5.6 Consider the following alternative definition of one?

(define one?
(lambda (n)

(cond

((zero? (subl m)) t)
(t nil))))

Which Laws and/or Commandments does it violate?

5.7 Consider the following definition of =

(define =
(lambda (n m)

(cond
((zero? m) (zero? m))

(t (= 7 (subl m))))))

This definition violates The Sixth Commandment. Why?

5.8 The function countO of vec counts the number of zero elements in vec. What is wrong

with the following definition? Can you fix it?

(define count0
(lambda (vec)
(cond
((null? vec) 1)
(t (cond
((zero? (car vec))
(cons 0 (count0 (cdr vec))))

(t (count0 (cdr wec))))))))

5.9 Write the function multiup of [, which replaces every lat of length one in [by the atom
in that list, and which also removes every empty list.

Example: (multiup 14) is (),
(multiup 1) is (curry chicken),

(multiup [2) is (peaches (and cream)).

5.10 Review all the Laws and Commandments. Check the functions in Chapters 4 and 5
to see if they obey the Commandments. When did we not obey them literally? Did we act

according to their spirit?

But answer came there none—
And this was scarcely odd, because
They’d eaten every one.

The Walrus and The Carpenter
—Lewis Carroll

Exercises

For these exercises,
[1 is ((fried potatoes) (baked (fried)) tomatoes)
12 is (((chili) chili (chili)))
18 is ()
lat1 is (chili and hot)
lat?2 is (baked fried)
a is fried

6.1 Write the function down* of a general list [, which puts every atom in [in a list by itself.
Example: (downx [2) is ((((chili)) (chili) ((chili)))),
(downx [8)is (),
(downx lat1) is ((chili) (and) (hot)).

6.2 Write the function occurN#* of a list of atoms markers and a general list [, which counts
how many times the atoms in markers also occur in /.

Example: (occurN# [at] [2) is 3,
(occurN#* [at2 1) is 3,
(occurN#* lat] 18)is 0.

6.3 Write the function double* of an atom @ and a general list [, which doubles each occur-
rence of @ in [.

Example: (doublex @ [1) is ((fried fried potatoes) (baked (fried fried)) tomatoes),
(doublex a [2) is (((chili) chili (chili))),
(doublex a [at2) is (baked fried fried).

6.4 Consider the function lat? from Chapter 2. Argue why lat? has to ask three questions
(and not two like the other functions in Chapter 2). Why does lat? not have to recur on the
car?

6.5 Make sure that (member* @ [), where
a is chips and
[is ((potato) (chips ((with) fish) (chips))),
really discovers the first chips. Can you change member#* so that it finds the last chips first?

6.6 Write the function list4, which adds up all the numbers in a general list of numbers.

Example: When 1 is ((1 (6 6 ()))),
and {2 is ((1 2 (3 6)) 1), then
(list+ 11) is 13,
(list+ 12) is 13,
(list+ 13) is 0.

6.7 Consider the following function g* of [vec and acc.

(define g*
(lambda (lvec acc)
(cond
((null? lvec) acc)
((atom? (car lvec))
(g* (cdr lvec) (4 (car lvec) ace)))
(t (g (car lvec) (g (cdr lvec) acc))))))

The function is always applied to a (general) list of numbers and 0. Make up examples and
find out what the function does.

6.8 Consider the following function f* of [and acc.

(define f*
(lambda (I acc)
(cond
((null? 1) acc)
((atom? (car 1))
(cond
((member? (car [) ace) (f* (cdr 1)
ace))
(t (f* (cdr I) (cons (car 1) acc)))))
(t (f* (car) (f* (cdr 1) acc))))))

The function is always applied to a list and the empty list. Make up examples for [and step
through the applications. Generalize in one sentence what f* does.

6.9 The functions in Exercises 6.7 and 6.8 employ the accumulator technique. This
means that they pass along an argument that represents the result that has been computed
so far. When these functions reach the bottom (null?, zero?), they just return the result con-
tained in the accumulator. The original argument for the accumulator is the element that
used to be the answer for the null?-case. Write the function occur (see Chapter 5) of @ and
lat using the accumulator technique. What is the original value for acc?

6.10 Step through an application of the original occur and the occur from Exercise 6.9 and
compare the arguments in the recursive applications. Can you write occur* using the accumu-
lator technique?

Have you taken a tea break yet?

We're taking ours now.

For these exercises,

7.1 So far we have neglected
For example, mk+exp

Exercises

aexpl is (1 + (3 x 4))
aexpl is (31 4) + 5)
aexpd is (3 x (4 x (5 x 6)))
aerp4 is b
l1is ()
[2is (3 + (66 6))
lexp! is (AND (OR x y) y)
lexp2 is (AND (NOT y) (OR u v))
lexpd is (OR x y)

lexp4 is z

functions that build representations for arithmetic expressions.

(define mk+exp
(lambda (aezpl aexp?)
(cons aezxpl
(cons (quote +)

(cons aezp?2 ()))))

)

makes an arithmetic expression of the form (aexpl + aexp2), where aexpl, aexp? are
already arithmetic expressions. Write the corresponding functions mkxexp and mktexp.

The arithmetic expression (1 + 3) can now be built by (mk+4exp z ¥), where z is 1 and y is

3. Show how to build aezpl,

aerp?, and aexps.

7.2 A useful function is aexp? that checks whether an S-expression is the representation of
an arithmetic expression. Write the function aexp? and test it with some of the arithmetic ex-
pressions from the chapter. Also test it with S-expressions that are not arithmetic expressions.
Example: (aexp? aexpl) is true,
(aexp? aexp?) is true,
(aexp? 1) is false,
(aexp? [2) is false.

7.3 Write the function count-op that counts the operators in an arithmetic expression.
Example: (count-op aezpl) is 2,

(count-op aezpd) is 3,

(count-op aezp4) is 0.
Also write the functions count+, countx, and countt that count the respective operators.
Example: (count+ aezpl) is 1,

(countx aexpl) is 1,

(countt aexpl) is 0.

7.4 Write the function count-numbers that counts the numbers in an arithmetic expression.

Example: (count-numbers aezpl) is 3,
(count-numbers aezpd) is 4,
(count-numbers aezp4) is 1.

7.5 Since it is inconvenient to write (3 x (4 x (5 x 6))) for multiplying 4 numbers, we now
introduce prefix notation and allow + and X expressions to contain 2, 3, or 4 subexpressions.
For example, (+ 3 2 (x 7 8)), (x 345 6) etc. are now legal representations. T-expressions are
also in prefix form but are still binary.

Rewrite the functions numbered? and value for the new definition of aexp.

Hint: You will need functions for extracting the third and the fourth subexpression of an
arithmetic expression. You will also need a function cnt-aexp that counts the number of arith-
metic subexpressions in the [18t following an operator.

Example: When aexpl is (+ 32 (x 7 8)),
aexp? is (x 345 6), and
aexpd is (* aexpl aexp?), then
(cnt-aexp aexpl) is 3,
(cnt-aexp aexpl) is 4,
(cnt-aexp aezxpd) is 2.

For exercises 7.6 through 7.10 we define a representation for L-expressions. An L-expression is
defined in the following way: It 1s either:

—(AND 1 12), or

—(OR 11 12), or

—(NOT), or

—an arbitrary symbol. We call such a symbol a variable.

In this definition, AND, OR, and NOT are literal symbols; I, [1, [2 stand for arbitrary L-
expressions.

7.6 Write the function lexp? that tests whether an S-expression is a representation of an L-
expression.

Example: (lexp? lexpl) is true,
(lexp? lexp2) is true,
(lexp? lexpd) is true,
(lexp? aezxpl) is false,
(lexp? 12) is false.
Also write the functions and-exp? or-exp? and not-exp? which test whether or not an S-
expression is a representation of an L-expression of the respective shape.
Write the functions and-exp-left and and-exp-right, which extract the left and the right part
of an (recognized) L-expression.
Example: (and-exp-left lexpl) is (OR x y),
(and-exp-right lexpl) isy,
(and-exp-left lexp2) is (NOT y),
(and-exp-right lexp2) is (OR u v).
Finally, write the functions or-exp-left, or-exp-right, and not-exp-subexp, which extract the
respective piecs of OR and NOT L-expressions.

7.7 Write the function covered? of an L-expression lexp and a list of symbols [0s that tests
whether all the variables in lexp are in los.
Example: When [1 is (x y z u), then

(covered? lexpl 1) is true,

(covered? lexp2 1) is false,

(covered? lexp4 1) is true.

7.8 For the evaluation of L-expressions we need association lists (alists). An alist for L-
expressions 1s a list of pairs. The first component of a pair is always a symbol, the second one
is either the number 0 (signifying false) or 1 (signifying true). The second component is re-
ferred to as the value of the variable. Write the function lookup of the symbol var and the
association list @l, which returns the value of the first pair in @l whose car is eq? to var.

Example: When [1 is ((x 1) (y 0)),
12 ((u1) (v1)),
18is (),

aisy,

b is u, then
(lookup @ 1) is 0,
(lookup b 12)is 1,

(lookup @ 1) has an unspecified answer.

7.9 If the list of symbols in an alist for L-expressions contains all the variables of an L-
expression [exp, then lexp is called closed and can be evaluated with respect to this alist.
Write the function Mlexp of an L-expression lexp and an alist al, which, after verifying that
lexp is closed, determines whether [exp means true or false.

Given al such that lexp is covered lexp, exp means true
— if lexp is a variable and its value means true, or
— if lexp is an AND-expression and both subexpressions mean true, or
— if lexp is an OR-expression and one of the subexpressions means true, or
— if lexp is a NOT-expression and the subexpression means false.
Otherwise [ezp means false.
If lexp is not closed in al, then (Mlexp lexp al) returns the symbol not-covered.

Example: When [1 is ((x 1) (y 0) (z 0)),
12 is ((y 0) (u 0) (v 1)), then
(Mlexp lexpl [1) is false,
(Mlexp lexp2 [2) is true,
(Mlexp lexp4 11) is false.

Hint: You will need the function lookup from Exercise 7.8 and covered? from Exercise 7.7.

7.10 Extend the representation of L-expressions to AND and OR expressions that contain
several subexpressions, i.e.,

(AND x (OR u v w) y).

Rewrite the function Mlexp from Exercise 7.9 for this representation.

Hint: Exercise 7.5 is a similar extension of arithmetic expressions.

Exercises

For these exercises,

rl %s ((ab)(aa)(bb))
rd is ((c¢))
73 is ((a ¢) (b ¢))
rf is (3 b) (b a))
F1is (2 1) (b2) (¢ 2) (d 1)
72 ()
73 is ((2) (b 1))
7 is ((19) (34)
d1 is (a b)
d2 is (c d)
Z is a

8.1 Write the function domset of 7el, which makes a set of all the atoms in rel. This set is
referred to as domain of discourse of the relation rel.

Example: (domset 71) is (a b),
(domset 72) is (c),
(domset 73) is (a b ¢).
Also write the function idrel of s, which makes a relation of all pairs of the form (d d) where
d is an atom of the set s. (idrel $) is called the identity relation on s.
Example: (idrel d1)is ((a a) (b b)),
(idrel d2) is ((c ¢) (d d)),
(idrel f2)is ().

8.2 Write the function reflexive? | which tests whether a relation is reflezive. A relation
is reflexive if it contains all pairs of the form (d d) where d is an element of its domain of
discourse (see Exercise 8.1).

Example: (reflexive? 1) is true,
(reflexive? 72) is true,
(reflexive? 73) is false.

8.3 Write the function symmetric? , which tests whether a relation is symmetric. A rela-
tion is symmetric if it is egset? to its revrel.

Example: (symmetric? r1) is false,

(symmetric? 72) is true,

(symmetric? f2) is true.
Also write the function antisymmetric? | which tests whether a relation is antisymmetric.
A relation 1s antisymmetric if the intersection of the relation with its revrel is a subset of the
identity relation on its domain of discourse (see Exercise 8.1).

Example: (antisymmetric 71) is true,
(antisymmetric 72) is true,
(antisymmetric 74) is false.

And finally, this 1s the function asymmetric? , which tests whether a relation is asymmetric:

(define asymmetric?
(lambda (Tel)
(null? (intersect rel (revrel Tel)))))

Find out which of the sample relations is asymmetric. Characterize asymmetry in one sen-
tence.

8.4 Write the function Fapply of f and x , which returns the value of f at place 2. That is,
it returns the second of the pair whose first is eq? to x.
Example: (Fapply f1 z)is 1,
(rapply f2 x) has no answer,
(rapply f3 z)is 2.

8.5 Write the function Fcomp of f and ¢, which composes two functions. If ¢ contains an
element (x y) and f contains an element (y z), then the composed function (Fcomp f ¢) will
contain (x z).

Example: Fcomp f1 f4) is (),
Fcomp f1 ft?) 15 ()
Fcomp M f1)is ((a$) (d 9)),

(rcomp f4 [3)is ((b $)).
Hint: The function Fapply from Exercise 8.4 may be useful.

8.6 Write the function Rapply of 7€l and , which returns the value set of rel at place x.
The value set 1s the set of second components of all the pairs whose first component is eq?
to T.
Example: (rRapply fI z) is (1),

(Rapply 71 z) is (b a),

(Rapply f2 z) is ().

8.7 Write the function Rin of z and set, which produces a relation of pairs (z d) where d is

an element of set.

Example: (rin z d1)is ((a a) (a b)),
(Rin z d2) is ((a) (a d))
(Rin z f2)is ().

bl

8.8 Relations can be composed with the following function:

(define rRcomp
(lambda (rell rel2)
(cond
((null? rell) (quote ()))
(t (union
(Rin
(first (car rell))
(rapply Tel2 (second (car

rell))))
(Rcomp (cdr rell) rel2))))))

See Exercises 8.6 and 8.7.
Find the values of (Rcomp 71 78), (Rcomp 71 f1), and (Rcomp 1 71).

8.9 Write the function transitive? | which tests whether a relation is transitive. A relation
rel is transitive if the composition of el with 7el is a subset of 7el (see Exercise 8.8).

Example: (transitive? r1) is true,
(transitive? 73) is true,
(transitive? f1) is true.

Find a relation for which transitive? yields false.

8.10 Write the functions quasi-order?, partial-order?, and equivalence?, which test whether
a relation is a quasi-order, a partial-order, or an equivalence relation, respectively. A
relation is a

—aquasi-order if it is reflexive and transitive,

—partial-order if it is a quasi-order and antisymmetric,

—equivalence relation if 1t 1s a quasi-order and symmetric.
See Exercises 8.2, 8.3, and 8.9.

For that elephant ate all night,
And that elephant ate all day;
Do what he could to furnish him food,

The cry was still more hay.

Wang: The Man with an Elephant
on His Hands [1891]
—John Cheever Goodwin

Exercises

9.1 Look up the functions firsts and seconds in Chapter 3. They can be generalized to a
function map of f and [that applies f to every element in [and builds a new list with the
resulting values. Write the function map. Then write the function firsts and seconds using

map.

9.2 Write the function assq-sf of a, I, sk, and fk. The function searches through [, which is a
list of pairs until 1t finds a pair whose first component is eq? to @. Then the function invokes

the function sk with this pair. If the search fails, (fk @) is invoked.

Example: When @ is apple,
b1 is (),
b2 is ((apple 1) (plum 2)),
b3 is ((peach 3)),
sk is (lambda (p)
(build (first p) (addl (second p)))),
fk is (lambda (name)
(cons
name
(quote (not-in-list)))), then
(assq-sf @ b1 sk fk) is (apple not-in-list),
(assq-sf @ b2 sk fk) is (apple 2),
(assq-sf @ b3 sk fk) is (apple not-in-list).

9.3 In the chapter we have derived a Y-combinator that allows us to write recursive functions
of one argument without using define. Here is the Y-combinator for functions of two argu-
ments:

(define Y2
(lambda (M)
((lambda (future)
(M (lambda (argl arg?2)
((future future) argl arg2))))
(lambda (future)
(M (lambda (argl arg?2)
((future future) argl
arg2)))

Write the functions =, rempick, and pick from Chapter 4 using Y2.

Note: There is a version of (lambda ...) for defining a function of an arbitrary number of
arguments, and an apply function for applying such a function to a list of arguments. With
this you can write a single Y-combinator for all functions.

9.4 With the Y-combinator we can reduce the number of arguments on, which a function has
to recur. For example member can be rewritten as:

(define member-Y
(lambda (a)
((Y (lambda (recfun)
(lambda (1)

(cond

((null? 1) nil)
(t (or
(eq? (car 1) a)

(recfun (cdr 1))))))))

H)

Step through the application (member-Y @ [) where @ is x and [is (y x). Rewrite the func-
tions rember, insertR, and subst2 from Chapter 3 in a similar manner.

9.5 In Exercises 6.7 through 6.10 we saw how to use the accumulator technique. Instead
of accumulators, continuation functions are sometimes used. These functions abstract what
needs to be done to complete an application. For example, multisubst can be defined as:

(define multisubst-k
(lambda (new old lat k)
(cond

((null? lat) (k (quote ())))

((eq? (car lat) old)

(multisubst-k new old (cdr lat)

(lambda (d)

(k (cons new d)))))

(t (multisubst-k new old (cdr lat)
(lambda (d)

(k (cons (car lat) d)))))))

The initial continuation function k is always the function (lambda (z)). Step through the
application of

(multisubst-k new old lat k),
where
new is vy,
old is x, and
latis (uvxxyzx).
Compare the steps to the application of multisubst to the same arguments. Write down the
things you have to do when you return from a recursive application, and, next to it, write
down the corresponding continuation function.

9.6 In Chapter 4 and Exercise 4.2 you wrote addvec and multvec. Abstract the two functions
into a single function accum. Write the functions length and occur using accum.

9.7 In Exercise 7.3 you wrote the four functions count-op, count-+, count-x, and count-1.
Abstract them into a single function count-op-f, which generates the corresponding functions
if passed an appropriate help function.

9.8 Functions of no arguments are called thunks. If f is a thunk, it can be evaluated with
(f). Consider the following version of or as a function.

(define or-func
(lambda (or! or2)
(or (orl) (072))))

Assuming that or] and or2 are always thunks, convince yourself that (or ...) and or-func
are equivalent. Consider as an example
(or (null? [) (atom? (car 1)))
and the corresponding application
(or-func
(lambda () (null? [))
(lambda () (atom? (car 1)))),
where
Lis ().
Write set-f7 to take or-func and and-func. Write the functions intersect? and subset? with
this set-f? function.

9.9 When you build a pair with an S-expression and a thunk (see Exercise 9.8) you get a
stream. There are two functions defined on streams: first$ and second$.

Note: In practice, you can actually cons an S-expression directly onto a function. We prefer
to stay with the less general cons function.

(define first$ first)

(define second$
(lambda (str)
((second st7))))

An example of a stream is (build 1 (lambda () 2)). Let’s call this stream 5. (first$ s) is
then 1, and (second$ §) is 2. Streams are interesting because they can be used to represent
unbounded collections such as the integers. Consider the following definitions.

Str-maker is a function that takes a number 7 and a function nez? and produces a stream:

define str-maker
(
(lambda (next n)
(build n (lambda () (str-maker nezt (nezt

n)))))

With str-maker we can now define the stream of all integers like this:

(define int (str-maker add1 0))

Or we can define the stream of @ll even numbers:

(define even (str-maker (lambda (n) (+ 2 n)) 0))

With the function frontier we can obtain a finite piece of a stream in a list:

(define frontier
(lambda (str n)
(cond

((zero? 1) (quote ()))
(t (cons (first$ sir) (frontier (second$ str) (subl 7m)))))))

What is (frontier int 10)7 (frontier int 100)7 (frontier even 23)?
Define the stream of odd numbers.

9.10 This exercise builds on the results of Exercise 9.9. Consider the following functions:

(define Q
(lambda (str n)
(cond
((zero? (remainder (first$ str) m))
(Q (second$ str) m))
(t (build (first$ str)
(lambda ()
(Q (second$ str) m)))

(define P
(lambda (str)
(build (first$ str) (lambda () (P (Q str (first$ s77)))))))

They can be used to construct streams. What is the result of
(frontier (P (second$ (second$ int))) 10)7

What is this stream of numbers? (See Exercise 4.9 for the definition of remainder.)

Exercises

For these exercises,
el is ((lambda (x)
(cond
((atom? x) (quote done))
((null? x) (quote almost))
(t (quote never))))
(quote)),
e2 is (((lambda (x y)
(lambda (u)
(cond
(u)
(t)
()
nil),
ed is ((lambda (x)
((lambda (x)
(addl x))
(addl 4)))

6),
e4 is (3 (quote a) (quote b)),
ed is (lambda (lat) (cons (quote lat) lat)),
el is (lambda (lat (lyst)) a (quote b)).

10.1 Make up examples for e and step through (value €). The examples should cover truth
values, numbers, and quoted S-expressions.

10.2 Make up some S-expressions, plug them into the of el, and step through the ap-

plication of (value el).

10.3 Step through the application of (value €2). How many closures are produced during
the application?

10.4 Consider the expression ¢5. What do you expect to be the value of €37 Which of
the three x’s are “related”? Verify your answers by stepping through (value €§). Observe to
which x we add one.

10.5 Design a representation for closures and primitives such that the tags (i.e., primitive and
non-primitive) at the beginning of the lists become unnecessary. Rewrite the functions that are
knowledgeable of the structures. Step through (value €5) with the new interpreter.

10.6 Just as the table for predetermined identifiers, initial-table, all tables in our interpreter
can be represented as functions. Then, the function extend-table is changed to:

(define extend-table
(lambda (entry table)
(lambda (name)
(cond
((member? name (first en-
try))

iry))

(pick (index name (first en-

(second entry)))
(t (table name))))))

(For pick see Chapter 4; for index see Exercise 4.5.) What else has to be changed to make the
interpreter work? Make the least number of changes. Make up an application of value to your
favorite expression and step through it to make sure you understand the new representation.

Hint: Look at all the places where tables are used to find out where changes have to be made.

10.7 Write the function *lambda?, which checks whether an S-expression is really a represen-
tation of a lambda-function.
Example: (xlambda? €J) is true,

(xlambda? e6') is false,

(¢lambda? e2) is false.
Also write the functions *quote? and *cond?, which do the same for quote- and cond-
expressions.

10.8 Non-primitive functions are represented by lists in our interpreter. An alternative is to
use functions to represent functions. For this we change xlambda to:

(define #lambda
(lambda (e table)
(build
(quote non-primitive)
(lambda (vals)
(meaning (body-of ¢)
(extend-table
(new-entry (formals-of €) vals)

table))))))

How do we have to change apply-closure to make this representation work? Do we need to
change anything else? Walk through the application (value €2) to become familiar with this
new representation.

10.9 Primitive functions are built repeatedly while finding the value of an expression. To see
this, step through the application (value €J) and count how often the primitive for add1 is
built. However, consider the following table for predetermined identifiers:

(define initial-table
((lambda (add?)
(lambda (name)
(cond
((eq? mame (quote t)) t)
((eq? mame (quote nil)) nil)
((eq? name (quote addl)) addl)
(t (build (quote primitive)
name)

(build (quote primitive) addl)))

Using this initial-table, how does the count change? Generalize this approach to include all
primitives.

10.10 In Exercise 2.4 we introduced the (if ...)-form. We saw that (if ...) and (cond ...)
are interchangeable. If we replace the function *cond by *if where

(define «if
(lambda (e table)
(if (meaning (test-pt e) table)
(meaning (then-pt €) table)
(meaning (else-pt €) table))))

we can almost evaluate functions containing (if ...). What other changes do we have to
make? Make the changes. Take all the examples from this chapter that contain a (cond .. .),
rewrite them with (if ...), and step through the modified interpreter. Do the same for €1 and
e2.

